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I. BACKGROUND ON RANDOM VARIABLES

Many of the following are standard facts, recalled for a self-contained reference.

A. Transforms of random variables and convergence in distribution

Definition I.1 (Pushforward measure). Let g : Rn → Rn be a diffeomorphism and Y = g(X). The pushforward
probability measure µY is, for all measurable U ⊂ Rn,

µY (U) = µX(g−1(U)). (S1)

a. Transforms of random variables. When µX has a Radon-Nikodym derivative fX with respect to the Lebesgue
measure —i.e. is expressible by the probability density µX(U) =

∫
U
fX(x)dx—then by the rule for integration under

a diffeomorphic change of coordinates y = g(x),

µX(U)(g−1(U)) =

∫
g−1(U)

fX(x)dx =

∫
U

fX(g−1(y))

∣∣∣∣det ∂g−1

∂y
(y)

∣∣∣∣ dy. (S2)

with ∂g−1/∂y denoting the Jacobian of the inverse. As this is true for all U we conclude

fY (y) = fX(g−1(y))

∣∣∣∣det ∂g−1

∂y
(y)

∣∣∣∣ . (S3)

When preferable to work with g rather than g−1, we may apply the chain rule to g−1 ◦ g = 1 to convert (S3) to

fY (g(x)) = fX(x)

∣∣∣∣∣det
(
∂g

∂x
(x)

)−1
∣∣∣∣∣ =: fX(x)J−1(x). (S4)

Due to this fact, we will abbreviate the scaling factor as J−1, denoting the inverse Jacobian determinant. For affine
transforms Y = cX + b, (S3) becomes

fY (y) =
1

c
fX

(
y − b

c

)
. (S5)

b. Sums of random variables. Let X,Y be independent random variables taking values in UX , UY ⊆ R. Then
their sum is distributed as the convolution

X + Y = Z ∼ fZ(z) =

∫
x∈Ux, x≤z

fX(x)fY (z − x)dx = fX ∗ fY . (S6)

This can alternatively be deduced by applying the transform rule (S3) to the map (X,Y ) 7→ (X,X + Y ).
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Definition I.2 (Convergence in distribution). A sequence of random variables {Xn} taking values in an interval
U ⊆ R is said to converge in distribution if, for all x at which the cumulative distribution function FX is continuous,
the c.d.f.s. FXn

converge pointwise, i.e.

lim
n→∞

FXn(x) = FX(x). (S7)

B. Several properties of the exponential and gamma random variables

Let us recall with proof some properties of the gamma random variable (and the exponential, which is a special
case).

Definition I.3 (Gamma random variable.). The gamma random variable Yk,λ with shape parameter k > 0 and rate
λ > 0 is the continuous random variable with probability density function

fY (y) =
λkyk−1 exp(−λy)

Γ(k)
. (S8)

Its namesake is the normalizing constant, the gamma function

Γ(k) =

∫ ∞

0

yk−1e−ydy. (S9)

Lemma I.1 (Gamma random variables are closed under addition). The sum of two independent gamma random
variables Y1, Y2 with k1, k2 ∈ R≥0 of common rate λ > 0 is (k1 + k2)-gamma distributed.

Proof. Since Y1, Y2 ∈ [0,∞), by the convolution rule (S6),

Y1 + Y2
pdf∼ fY1 ∗ fY2 =

λk1+k2

Γ(k1)Γ(k2)

∫ y2

0

yk1−1
1 e−λy1(y2 − y1)

k2−1e−λ(y2−y1)dy1. (S10)

Taking the Beta function

B(k1, k2) =

∫ 1

0

tk1−1(1− t)k2−1dt =
Γ(k1)Γ(k2)

Γ(k1 + k2)
(S11)

with the change of variable t = y1/y2 yields

=
1

yk1+k2−1
2

∫ y2

0

yk1−1
1 (y2 − y1)

k2−1dy1. (S12)

Substituting into (S10) and letting x = y2, we obtain

(S10) =
λk1+k2xk1+k2−1e−λx

Γ(k1 + k2)

pdf∼ Y;k1+k2,λ. (S13)

Corollary. The sum of k iid exponential random variables of rate λ are gamma-distributed with shape parameter k
and rate λ.

Corollary. The gamma random variable is infinitely divisible.

Corollary. By the central limit theorem, (λYk,λ − 1)/
√
k

d→W0,1 as k → ∞.

Lemma I.2 (Beta-gamma convergence). Let Z2,m be a beta random variable. Then m
α Z2,m converges in distribution

as m→ ∞ to the gamma random variable Y2,α of rate α.
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Proof. By direct calculation,

m

α
Z2,m

cdf∼ P
[
Z2,m ≤ zα

m

]
=

1

B(2,m)

∫ zα
m

0

t(1− t)m−1dt z ∈
[
0,
m

α

]
, (S14)

with the change of variables s = 1− t,

=
1

B(2,m)

∫ 1

1−αz
m

(1− s)sm−1ds (S15)

= m(m+ 1)

[
1

m
sm − 1

m+ 1
sm+1

]1
1− zα

m

(S16)

= 1−
(
(m+ 1)

(
1− zα

m

)m
−m

(
1− zα

m

)m+1
)

(S17)

= 1−
(
1− zα

m

)m
(1 + zα) (S18)

m→∞−→ 1− e−zα(1 + zα) z ∈ [0,∞). (S19)

Recalling the cumulative density function for Y2,α (S8),

Y2,α
cdf∼
∫ z

0

α2ye−αydy = −αye−αy
∣∣z
0
+

∫ z

0

αe−αydy = 1− e−zα(1 + zα). (S20)

As the c.d.f.s of both are C∞ and exhibit the pointwise convergence above, we have the distributional convergence
m
α Z2,m

d→ Y2,α.

Lemma I.3 (Memoryless characterization of the exponential). The only continuous random variable X which (i)
possesses a cumulative distribution function FX such that F ′

X(0) exists and (ii) satisfies the memoryless property

P[X > x+ y | X > x] = P[X > y] (S21)

is the exponential.

Proof. By Bayes’ theorem, (S21) is equivalent to

P[X > x+ y] = P[X > x]P[X > y] ⇔ 1− F (x+ y) = (1− F (x))(1− F (y)). (S22)

Let G = 1− F ; then (S22) is G(x+ y) = G(x)G(y). Then for all z,

G′(z) = lim
h→0

G(z)G(h)−G(z)G(0)

h
= G(z)G′(0). (S23)

Since by hypothesis (i) F ′(0) exists, (S23) implies F ′ exists everywhere. Let u be such that F (u) < 1. Since F is
nondecreasing, this implies G > 0 for w ∈ (−∞, u]. Then, letting G′(0) = −F ′(0) = c,

c =
G′(w)
G(w)

=
d

dw
logG(w). (S24)

Integrating, we obtain G(x) = b exp(cx) for some b. By the conditions F (0) = 0, limt→∞ F (x) = 1, we have b = 1, c <
0. Letting c = −λ for λ > 0 we obtain FX(x) = 1 − exp(−λx). Hence, fX(x) = F ′

X(x) = λ exp(−λx), and X is an
exponential random variable of rate λ.

Lemma I.4 (Maximum-entropy characterization of the exponential). The only nonnegative continuous random vari-
able X with density fX which maximizes the entropy with fixed mean µ > 0 is the exponential.

Proof. By hypothesis, fX is a critical point of the functional

J [f ] =

∫ ∞

0

L(f(x), λ0, λ1)dx, (S25)
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with Lagrange multipliers λ0 and λ1 constraining the 0th and 1st moments in the Lagrangian density

L(f(x), λ0, λ1) = f(x) log f(x) + λ0f(x) + λ1xf(x). (S26)

Since for all test functions φ, the Fréchet derivative vanishes,

0 = ⟨DJ [f ], φ⟩ =
∫ ∞

0

∂L

∂f(x)
φ(x)dx, (S27)

by the fundamental lemma of the calculus of variations,

0 =
∂L

∂f(x)
= 1 + log f(x) + λ0 + xλ1, (S28)

hence f(x) = exp(−1− λ0 − xλ1). Applying the total probability constraint,

1 =

∫ ∞

0

exp(−1− λ0 − xλ1)dx =
1

λ1
exp(−1− λ0), (S29)

where λ1 > 0 necessarily. Then, fX(x) = λ1 exp(−λ1x) is the density of an exponential random variable with rate
λ1.

Theorem I.5 (Characterization of gamma random variables, Lukacs 1955 [S1]). Let Y1, Y2 be independent random
variables. Then

A = Y1 + Y2, B =
Y1

Y1 + Y2
(S30)

are independent if and only if Y1, Y2 are gamma random variables of the same rate λ.

Proof ( =⇒ ). Consider the map

g(Y1, Y2) =

(
Y1 + Y2,

Y1
Y1 + Y2

)
=: (A,B). (S31)

Then for a ̸= 0,

g−1(a, b) = (ab, a− ab). (S32)

Therefore ∣∣∣∣det ∂g−1

∂(a, b)

∣∣∣∣ = ∣∣∣∣det [b 1− b
a −a

]∣∣∣∣ = a. (S33)

By (S4), the pushforward density is

fg(Y1,Y2)(a, b) = afY1
(ab)fY2

(a− ab) (S34)

=
a(ab)k1−1(a− ab)k2−1

Γ(k1)Γ(k2)
λk1+k2e−λa (S35)

=
bk1−1(1− b)k2−1

Γ(k1)Γ(k2)
ak1+k2−1λk1+k2e−λa. (S36)

The total A and fraction B are therefore independent. Substituting the Beta function (S11),

(S34) =
bk1−1(1− b)k2−1

B(k1, k2)

ak1+k2−1λk1+k2e−λa

Γ(k1 + k2)
=: fB(b)fA(a). (S37)

Then fA(a) is a gamma distribution (as expected, I.1) and fB(b) is a beta distribution. Therefore,

B =
Y1;k1,λ

Y1;k1,λ + Y2;k2,λ
= Zk1,k2

(S38)

is beta-distributed for k1, k2 ∈ R≥0.
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Note that (S38) is independent of the rate λ of Y1, Y2. The converse ( ⇐= ), that gamma distributions are unique
in possessing this independence property, is not proven here, but we refer the reader to a proof [S2] using the fact
that the gamma distribution is uniquely determined by its moments (3.3.25, [S3]).

Corollary (Beta-thinned gamma random variable). If Y1;k1+k2,λ and Z1;k1,k2 are independent gamma and beta ran-
dom variables, respectively, then

Y2;k1,λ = Z1;k1,k2
Y1;k1+k2,λ (S39)

is an independent gamma random variable of the same rate λ and lower shape parameter k1.

The thinning here refers to the fact that Z1 is supported on [0, 1], hence decreasing the number of events occurring
in a section of a 1D Poisson process.

Lemma I.6 (Differential entropy of a fixed-mean gamma random variable is strictly decreasing in k ∈ (1,∞)).

Proof. Let Yk,λ be a gamma random variable of shape parameter k and rate λ. Its differential entropy is

H(Y ) = k + log Γ(k) + (1− k)ψ(k)− log λ, (S40)

where ψ(k) = d
dk log Γ(k) is the digamma function. Hence, at fixed mean µ = k/λ, using the hypothesis k > 1 and

the trigamma inequality ψ′(k) > 1/k [S3], we have the k-monotonicity

∂H

∂k
= 1 + ψ′(k)(1− k)− 1

k
< 1 +

1

k
(1− k)− 1

k
= 0. (S41)

Note furthermore that H(Y ) ≥ 0 for k ≤ 1, so one recovers the maximum-entropy property of the exponential
random variable I.4.

A note on maximum likelihood estimation. Throughout, we use standard methods for maximum-likelihood
estimation of the shape and scale parameters (k, λ) of the gamma distribution at fixed offset 0, as implemented in
Python’s scipy.stats.gamma.fit function. As the maximum likelihood estimate of λ is given by the k/x where k is
given and x is the empirical mean, we estimate 95% confidence intervals for the shape parameter k at fixed scale λ
using N = 1000 parametric bootstraps as follows. Each sample of size n, where n is the size of the original dataset

to be fit, is produced from a gamma distribution with (k̂, λ̂), the estimated parameters from the original empirical

distribution. Then, at fixed λ̂, a new k̃ is maximum-likelihood estimated from these samples. From this set {k̃i}Ni=1,
the values corresponding to the (2.5, 97.5) percentiles are reported as the 95% CIs.

II. 1-DIMENSIONAL MODELS OF CELLS WITHIN AN ECM

Recall that the configuration of a sequence of cellular positions {Ri} in a one-dimensional ECM (e.g. [0,∞) or the
circle S1) is uniquely defined, up to relabeling, by the intercellular spacings Li = Ri+1 −Ri. In the following models,
we let Li be given (up to appropriate scaling) by the steady-state protein concentration P ∗

i referred to in the main text.
Realizing random 1D configurations in different ways by applying constraints analogous to the ensembles of statistical
physics, we obtain the same k = 2b-gamma distribution governing the Voronoi lengths in a regime analogous to the
thermodynamic limit. These models are named by the ECM dimension d (I or II) and described by the particular
ensemble considered. as summarized in Table I.

Notation. We denote random variables by capital letters Xi;α,β,... accompanied by indices i and parameters α, β, · · · .
Variables i ̸= j are independent unless otherwise noted. The letters Wi;µ,σ2 , Xi;λ, Yi;k,λ, Zi;α,β , and Ni;λ, and are

reserved for Gaussian, exponential, gamma, beta, and Poisson random variables respectively. X
pdf∼ fX(x) indicates

that X has the probability density function fX(x), with X
cdf∼ FX(x) indicating the same for the cumulative density.

Xi
d→ Y indicates that Xi converges to Y in distribution. For example, we would say that Yk, k

v−vc
+ vc

pdf∼ p(v),

where p(v) is the distribution (1).
As in the Gibbs, microcanonical, and grand canonical ensembles, we consider three types of random configurations

of cells in the ECM: (i) fixed cell counts N = n, with random intercell spacings and circumferences; (ii) fixed
circumferences C = c and counts N = n, with random positions {Ri}Ni=1; and (iii) fixed circumferences C = c, with
random cell counts N and positions. Like the convergence of the ensembles in the thermodynamic limit, we show
that the same gamma distribution arises in the large-n, c limits of these cases.
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TABLE I. Models in 1D and 2D

Model Description

I.0 on the half-line
I.1 circular Gibbs
I.2 circular canonical
I.3 circular grand canonical
I.4 circular canonical, finite size
I.D.1 circular canonical, Brownian motion
I.D.2 circular canonical, noncolliding Brownian motion
I.D.3 noncolliding Brownian motion on a growing circle
I.D.4 maximum-entropy growth rates
II.1 canonical on periodic unit square

Model I.0 (on the half-line) —Consider a semi-infinite Volvox modelled as a sequence of cellular positions {Ri}∞i=1

on the half-line [0,∞) as in Fig. 1(c). In the special case of b = 1 protein bursts, Ri are the cumulative sums of i
i.i.d. exponential random variables:

Ri =

i∑
j=1

Xj,i;λ, (S42)

and therefore occur on the half-line [0,∞) as a Poisson process [S4]. This is the configuration of the ideal gas—or the
maximum-entropy configuration—in which the number of cells observed in any interval of length ℓ is a Poisson random
variable Nλℓ whose positions are i.i.d. uniform random variables [S4]. This is the case of class (i) configurations.
The Voronoi lengths Vi = (Li + Li+1)/2 = (Xi;λ +Xi+1;λ)/2 are therefore gamma-distributed with k = 2,

Vi =
Xi;λ +Xi+1;λ

2
=

1

2
Yi;2,λ

pdf∼ 4λ2ve−2λv. (S43)

This result already shows explicitly the deep link between the Voronoi construction and gamma distributions. More
generally, for burst count b, the resulting Voronoi lengths, by the same argument, are k = 2b-gamma random variables.
In the opposite limit, holding the mean spacing E[Li] = b/λ fixed while taking the burst count b→ ∞, the variance

σ2 = b/λ2 = E[Li]
2/b vanishes while the central limit theorem ensures the convergence of the shifted and rescaled

lengths
√
b
(

Li

E[Li]
− 1
)
→ Wi;0,1 to a Gaussian. This is the perfectly spaced lattice of cellular positions occurring as

the natural numbers N on [0,∞)—the “crystalline,” or class (i) configuration.
Model I.1 (circular Gibbs) —Consider a circular Volvox, constructed by selecting a fixed number N;λ = n + 1 of

successive points {Ri}n+1
i=0 from the half-line in I.0 and identifying the first and last points, as in Fig. 1(c). This circle

has a random circumference C (“Gibbs ensemble”) which is nb-gamma distributed, with resulting Voronoi lengths
Vi = Yi;2b,2λ governed by k = 2b-gamma distributions by an identical argument as in I.0. Fig. 1(d) shows an empirical
distribution of Vi from 104 samples.
Model I.2 (circular canonical)—Consider a fixed-N , fixed-C configuration as follows. Let us take the intercellular

spacings Li to be b-gamma random variables Yi;b,λ as in I.1, conditional on their sum
∑

i Yi = C. That is, if A = Y1;b,λ
is one spacing and B =

∑n
j=2 Yj;b,λ = YB;(n−1)b,λ is the rest, then the distribution of A given A+B = C is

fA|C(a|c) =
ab−1(c− a)(n−1)b−1

B(b, (n− 1)b)cnb−1
(S44)

which one shows by the fraction-sum independence property of gamma random variables I.5, where B(α, β) is the Beta
function. Then, by inspection of (S44) and scaling laws for r.v.s, Li is the beta random variable A|C = cZi;b,b(n−1)

with C = c now the fixed circumference.
Once more, in the special case of protein burst count b = 1, Li = cZi;1,n−1, which is simply the first order statistic

of (n + 1) i.i.d. uniform random variables on the interval [0, c] (with n + 1 arising from identifying the ends of the
interval to form a circle). Then, this is the distribution of uniform spacings of the interval [0, c], which is precisely
the distribution of waiting times for n events in a Poisson process conditional on a total wait time C = c (see §4.1,
[S5]), as shown in Fig. 1(c).

Since Zi;b,b(n−1) can be expressed as the fraction Yi;b,λ/
∑n

j=1 Yj;b,λ I.5, this allows us to compute the corresponding
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Voronoi lengths Vi as

Vi =
c

2

Yi + Yi+1∑n
j=1 Yj

=
c

2
Zj;2b,(n−2)b, (S45)

with subscript Zj indicating that Zj is a distinct (though not independent) random variable from the earlier Zi. In
the Poisson case b = 1, this is now simply one-half the second order statistic of i.i.d. uniform r.v.s. on [0, c].
Taking the large-cell count and ECM circumference limits n, c → ∞ limit at fixed cell number density ρ = m/c =

(n− 2)/c (analogous to the thermodynamic limit of statistical mechanics) and per-cell burst count b, one obtains I.2
the convergence in distribution of the Voronoi segments,

Vi =
mb

2ρ
Z;2b,mb

m→∞−→ 1

2
Y;2b,ρ, (S46)

whose limit is once again the k = 2b gamma random variable (with rate ρ) in I.0 and the Gibbs ensemble I.1.
Model I.3 (circular grand canonical)—Let the circumference C = c now be fixed with the countN a random variable.

In the case of b = 1 bursts, N = N;cλ is Poisson-distributed. Using a similar argument to I.2, the Voronoi length
distribution pVi

can be determined by marginalizing the joint distribution pZ;2,n−1,N;λ
over n, giving the compound

beta-Poisson distribution which is once again a k = 2 gamma distribution, shown as follows.
As in I.2, let us consider the kth order statistic of N uniform random variables (representing the fixed-circumference

constraint), with Nλ now a Poisson-distributed random variable conditioned to be minimum k. The marginal distri-
bution of the order statistic given λ is (a particular) compound beta-Poisson distribution, given by

P(Zk,N−k+1 = x|λ,N ≥ k) =

∞∑
n=k

P(Zk,n−k+1 = x|N = n)P(N = n|λ,N ≥ k). (S47)

To see the parametrization more clearly, let m = n− k + 1; then,

(S47) =
1

1− P(N < k)

∞∑
m=1

xk−1(1− x)m−1

B(k,m)

λm−1+ke−λ

Γ(m+ k)
(S48)

=
1

1− P(N < k)

λkxk−1e−λ

Γ(k)

∞∑
m=1

(λ(1− x))m−1

Γ(m)
(S49)

=
1

1− P(N < k)

λkxk−1e−λx

Γ(k)
(S50)

=:
1

Z

λkxk−1e−λx

Γ(k)
, x ∈ [0, 1]. (S51)

Recognizing the second factor as the gamma distribution, the first factor Z is simply a normalizing constant restricting
the support to [0, 1]. Here we see the emergence of gamma distributions from the order statistics of a Poisson-
distributed number of uniform random variables. This may be viewed as a roundabout method of constructing
the 1D Poisson process. As we take the support of this distribution (the circumference C) to infinity, we have
P (NCλ < k) → 0 for any fixed k, hence Z → 1 and we recover the true gamma distribution.
For the general b case, we note that this construction is equivalent to placing an observation window [x, x + c] at

random on the half-line process I.0, in which case the spacings Li follow a truncated b-gamma distribution:

Li
pdf∼ λbxb−1e−λx

γ(b, λc)
, x ∈ [0, c] (S52)

with γ the lower incomplete gamma function. Taking c → ∞ with rate λ fixed (thermodynamic limit), we have

γ(b, λc) → Γ(b), hence Li
d→ Yi;b,λ and Vj

d→ Yj;2b,2λ, giving the same k = 2b-gamma distribution for Voronoi lengths.
Model I.4 (circular canonical, finite size)—This refers to the fixed-cell size model discussed and analyzed in the

main text.
Model I.D.1 (Brownian motion on the circle)—Let {R(i)

t }ni=1 be n Brownian motions (BMs) on a circle of radius r
given by

R
(j)
t = r exp(iθ

(j)
t ), (S53)

with θ
(j)
t standard BMs on R and initial conditions for the probability density p(j)(0) = δ

R
(j)
0
. The time-dependent

probability density p(i)(t) tends exponentially in L2 to the uniform distribution, hence R
(i)
t converge in distribution
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(a1) Standard Brownian motion
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(b1) Dyson Brownian motion
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(c1) DBM with growth
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1
2Y;2,1

0 1 2 3 4 5
nv
c

10−3

10−2

10−1

100

(b2)

n = 102
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1
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t = 100

1
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FIG. S1. Dynamic models of cellular positions during growth converge to gamma distributions in various limits. (a1,a2)
Standard Brownian motion in angular coordinates converges to beta-distributed segments in large t, and gamma-distributed
segments in large n. (b1,b2) Dyson Brownian motion in angular coordinates converges to gamma-distributed segments at large
t and n. Non-conformance to gamma distributions is observed at low n due to pair-repulsion. (c1,c2) Dyson Brownian motion
on a growing domain satisfying particular growth constraints converges in large-t and n to gamma-distributed segments.

to i.i.d. uniform r.v.s. and the configuration approaches that of Model I.2. Vi are therefore beta-distributed (S45) in
large t and gamma-distributed in large t, n (S46)—see Fig. S1(a1,a2). Yet, the sample paths of (S53) almost surely
intersect, unphysically reordering the cells.

Model I.D.2 (noncolliding Brownian motion)—Let {R(i)
t }ni=1 be samples of the conditional distributions of n circular

Brownian motions whose angles are in ascending order modulo 2π, thereby lying in the set

Dn = {x ∈ Rn | x1 < · · · < xn < x1 + 2π}, (S54)

a construction known as noncolliding Brownian motion or Brownian motion within the Weyl chamber Dn [S6]. In
[S7] eq. 4.1, it is shown that the conditional fluctuations are Gaussian plus a singular r−1 pair-repulsion,

dθ
(i)
t = σdB

(i)
t +

σ2

2

∑
j ̸=i

cot

(
θ
(i)
t − θ

(j)
t

2

)
dt. (S55)

A physical interpretation of (S55) is that of a gas confined to the unit circle with the pair-potential

U = −
∑
j<k

log |exp(iθk)− exp(iθj)| , (S56)

constituting a simple model of non-colliding cell motion. Eq. S55 is precisely the eigenvalue dynamics λ
(j)
t = exp(iθ

(j)
t )

of a Brownian motion Ut on the unitary group U(n), known as Dyson Brownian motion [S8].

Being confined to Dn (S54), the positions R
(i)
t do not converge to uniform r.v.s on the circle as in I.5—compare

Figs. S1(a1) and S1(b1). The stationary distribution of (S55) is the circular unitary ensemble (CUE) [S8],

ρ∗(θ1, · · · , θn) =
1

Zn

∏
j<k

| exp(iθj)− exp(iθk)|β , (S57)

where β = 2 is the inverse temperature. We use this result to derive the Voronoi length distribution in the large-t, n
limits. Let {θ(i)}ni=1 be a sample of the stationary distribution (S57), the spectrum of a uniform sample of U(n); the
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empirical distribution µθ(n) = n−1
∑n

i=1 δθ(i) converges almost surely in large n (Theorem 3, [S9]) to the uniform

distribution on the unit circle. Thus, the spacings θ
(i+1)
t − θ

(i)
t converge in large-t and n to the spacings of the order

statistics of n uniform random variables as in IS.2. Taking n → ∞ with density ρ = (n − 2)/c fixed, Vi converge to
k = 2 gamma random variables as in (S46).
Convergence to gamma laws depending on particle count n is shown for BM and DBM in Figs. S1(a2,b2); in

contrast to BM, DBM spacings lose the long tail at low n due to repulsion (S57).
Model I.D.3 (noncolliding Brownian motion, growth)—To account for growth of the ECM, let the radius r(t) in

A.I.1 be time-dependent, scaling the configuration as R
(i)
t = r(t) exp(iθ

(i)
t ) with θ

(i)
t given by (S55) as shown in Fig.

S1(c1). Applying Itô’s lemma, R
(i)
t satisfies the stochastic differential equation

dR
(i)
t = ṙ exp(iθ

(i)
t )dt+ iR

(i)
t dθ

(i)
t − r

2
θ
(i)
t dt. (S58)

Substituting dθ
(i)
t from (S55), the diffusion constant for (S58) is D = r2σ2/2. Requiring that the lateral diffusion is

time invariant implies Ḋ = 0, and thus that the standard deviation of the radius-normalized dynamics (S55) should
decay as σ(t) ∝ r(t)−1. Exponential convergence of (S55) to the stationary solution (S57) is ensured by a growth
condition on r(t). By standard Fourier arguments (e.g. §2.2, [S10]), solutions to the time-dependent diffusion equation
for the probability density of p(t) of the unitary Brownian motion Ut satisfy, for some Poincaré-like constant Cn > 0
depending only on n,

d(p(t), ν) ≤ d(p(0), ν) exp

(
−Cn

∫ t

0

σ(s)2ds

)
, (S59)

with d the L2 metric and ν the uniform (Haar) measure on the unitary group U(n). Therefore, if r(t) satisfies:

lim
t→∞

∫ t

0

1

r(s)2
ds = ∞, r(0) > 0 (S60)

the RHS in (S59) vanishes in large t, and global exponential stability is assured. Then, as in ID.2, the positions

R
(i)
t approach a random uniform spacing of a circle of radius r(t) in large n, resulting in gamma-distributed Voronoi

segments Vi. Rapid convergence in t to a gamma law (with D = 0.1, n = 1000, ṙ = 1) is shown in Fig. S1(c2).
Formally, (S60) is not satisfied by such a linear growth law, yet we observe empirical convergence to a gamma law on
the order of a unit of (scaled) time.

Condition (S60) can be understood by a Péclet number relating drift and diffusion timescales in growth. Considering
the radial drift velocity vr in (S58), let

Pe =
τd
τvr

=
2Lṙ

r2σ2
∝ Lṙ (S61)

with L a test length section. In the limit Pe → 0, condition (S60) is satisfied; when Pe → ∞, the exponential

multiplier in the bound (S59) approaches 1, “freezing” the angles θ
(i)
t to initial conditions. Finally, conditions Ḋ = 0,

Ṗe = 0, and (S60) cannot simultaneously be satisfied.

Model I.D.4 (maximum-entropy growth rates)—Let the segments grow linearly in time as L̇i = Gi;µ, with i.i.d.
growth rates Gi which are positive continuous random variables with some common mean growth rate µ. If the
distribution of Gi maximizes entropy subject to the mean and nonnegativity constraint—perhaps more interpretable
as uncertainty about cellular behavior than global maximum-entropy assumptions [S11]—then Gi;µ = Xi;1/µ is an
exponential random variable of rate λ = 1/µ. Then, for any time t, the normalized configuration

Li(t)∑n
j=1 Lj(t)

=
Li(0) + tGi∑n

j=1 Lj(0) + tGj

d→ Xi;1/µ∑n
j=1Xj;1/µ

(S62)

converges in large t to a uniform spacing as in I.2, and therefore has beta-distributed Voronoi lengths converging to
gamma-distributed lengths in large n (S46).

III. DEFINING POINT PROCESSES IN d DIMENSIONS

Many of the following definitions are standard and recalled here for a self-contained reference.
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A. Definitions in Rd

The familiar Poisson process of rate λ on the half-line [0,∞) is constructible as the cumulative sum of i.i.d.
exponential random variables Xi;λ. The construction of general point processes on a domain K ⊆ Rd, however, is
more technical, formalizing the notion of a “random almost-surely finite subset,” for which we recall several standard
definitions [S4]. Throughout, we assume K is a complete separable metric space (c.s.m.s.), e.g. a closed subset of Rn.

Definition III.1 (Finite point process —2.2-2.4, [S4]). A finite point process N on a complete separable metric space
K is a family of random variables N(E) for each Borel set E ∈ FK , such that, for every bounded E,

P[N(E) <∞] = 1. (S63)

Formally, N is a random measure (see e.g. 5.1 [S4] or Chapter 9 [S4]). Without delving too deeply into this
formalism, let us introduce the following definition based upon samples of N .

Definition III.2 (Simple point process). A simple point process N is one whose points are non-overlapping. In other
words, every sample of N can be written as the counting measure

ν =
∑
i∈I

δxi (S64)

where I is an index set, δ denotes the Dirac measure, and P[xi = xj ] = 0 for all i ̸= j.

Definition III.3 (Non-atomic point process). A nonatomic point process N is one for whom the probability of
realizing any particular point x ∈ K is zero. That is,

P[N({x}) > 0] = 0. (S65)

These definitions are sufficient to define and analyze the Poisson point process.

Definition III.4 (Poisson point process). A Poisson point process N on a c.s.m.s. K is defined by an intensity
measure Λ(E) such that, for all Borel sets E ∈ FK , N(E) is a Poisson random variable, i.e.

N(E)
pdf∼ Λ(E)k exp(−Λ(E))

k!
. (S66)

Example III.1 (Stationary Poisson process). A stationary Poisson process of rate λ is given by the intensity measure
Λ(E) = λµ(E), where µ is the Lebesgue measure and λ > 0 is a positive rate.

Definition III.5 (Independent scattering / complete independence). A point process N satisfies the independent
scattering or complete independence property if, for all n > 1 and disjoint Borel sets E1, . . . , En ∈ FK , the variables
N(E1), . . . , N(En) are mutually independent.

B. Characterizing Poisson point processes

Immediately, we see that Poisson point processes are simple and finite if the intensity measure Λ(E) is given by

Λ(E) =

∫
E

λ(x)dx (S67)

for some function λ : K → R+. Poisson point processes III.4 satisfy the complete independence property III.5—but
remarkably, these properties are not logically independent.

Theorem III.1 (Prekopa 1957, Theorem 2.4.V [S4]). A point process N is a non-atomic Poisson point process if
and only if it is finite III.1, simple III.2, non-atomic III.3, and completely independent III.5.

The characterization theorem III.1 motivates and justifies the use of Poisson processes (i.e. Poisson-distributed
count variables) in any scenario where points in realizations are non-interacting.
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C. Sampling

Lemma III.2. The conditional distribution of a Poisson point process of intensity λ(x) on a domain K is 1
Λ(K)λ(x).

Lemma III.2 allows one to sample a homogeneous Poisson point process of rate λ by first sampling a Poisson random
variable Nλµ(K) = n, and scattering the n as points as i.i.d. uniform random variables in K. Point processes with a
hard-core repulsion (such as the Matérn Type-II point process [S12]) can often be realized as a thinning of a Poisson
point process.

Definition III.6 (Matérn type-II hard-core point process, [S12]). Let N be a homogeneous Poisson point process of
rate λ. To each point Xi of N , assign a markMi which is an i.i.d. uniform random variable on (0, 1). Then, construct
the Matérn process N ′ with hard-core repulsion distance r as

N ′ = {Xi ∈ N | Mi < Mj ∀Mj ∈ B(Xi, r), i ̸= j}. (S68)

The points of N ′ are situated at a minimum distance r from one another.

1. Poisson and Matérn processes on Sd

Recall that a zero-mean multivariate Gaussian W0,Σ with Σ a d× d symmetric positive-definite covariance matrix
has the ellipsoids {x | x⊺Σ−1x = r2} as level sets of constant density. When Σ = I, this is the property of spherical

symmetry. Combined with the fact that the map x 7→ x ∥x∥−1
is surface-area-preserving up to a constant multiple,

this yields a computationally efficient and numerically stable method for generating iid uniform random variables Ui

on Sd: Ui =Wi;0,I ∥Wi;0,I∥−1
.

Lemma III.2 then allows the realization of homogeneous Poisson processes on d-spheres of radius r as NλArd =
n, {Ui}ni=1, with A the surface area of the unit sphere Sd and λ the intensity per unit area. Conveniently, the
parametrization of Ui in Cartesian coordinates allows the realization of Matérn processes (III.6) using the geodesic
(great-circle) distance d(Ui, Uj) = r arccos(U⊺

i Uj).

IV. RESULTS FOR TWO-DIMENSIONAL POISSON-VORONOI TESSELLATIONS

In dimension d ≥ 2, known analytical results concerning Voronoi tessellations of point processes are limited to
lower-dimensional facets, such as edge (2D) and face (3D) distributions (see [S13] and §4.4, [S14]). The difficulty
in higher dimensions arises primarily from the loss of uniqueness for shapes satisfying geometric properties—such as
fixed measure (length, area, volume)—for which one must first consider distributions over shapes, then marginalize
over the level-sets satisfying a scalar geometric property, such as aspect ratio. For this reason, in the following models
we present primarily numerical results (with partial analytical arguments where applicable), and present a validation
of the numerical method in IVA.

Model II.1 (periodic unit square)—Consider a homogeneous Poisson point process on the unit square [0, 1]2 with
periodic boundary conditions, denoted T2. On general d-dimensional domains, the point process is specified by an
intensity measure λ(A) for subsets A ⊆ T2 in which the count NA;λ(A) is a Poisson random variable of rate λ(A).
A homogeneous Poisson process —one whose intensity λ is constant on sets A of constant measure—is realizable by
sampling the total count N;λ(T2) and assigning the positions {Ri}ni=1 conditional on N = n as i.i.d. uniform random

variables. Figure S2 shows numerical simulations for k = 1000 trials with intensity λ(T2) = 103, which is on the order
of the number of somatic cells in Volvox carteri.

The periodic Voronoi tessellation on T2, shown in the small-n example in Figure S2(a1)-(d1), is constructed by
copying {Ri} in four quadrants around T2 and selecting the sub-tessellation corresponding to the original points. Areas
a, nondimensionalized as λa, conform to a gamma random variable with k ≈ 3.5, as in Fig. S2(a2). The isoperimetric

deficit D = L/
√
4πa−1 with L the perimeter, conforms after an appropriate rescaling to a log-normal random variable

with σ ≈ 0.6, shown in Fig. S2(c2). The aspect ratio AR of a Poisson-Voronoi tessellation does not conform to a
gamma distribution (Fig. S2(b2)), in contrast to confluent tissue [S15] in which gamma-distributed aspect ratios
appear in a diverse range of densely-packed cell types and inert matter. Instead, AR conforms approximately to a
beta-prime distribution, which naturally arises as the ratio of independent gamma random variables. Figure S2(d2-e2)
shows that the major and minor axis lengths are approximate gamma-distributed; while we do not in general expect
the major and minor axis to be independent random variables, the beta-prime distribution governs the aspect ratio
in the event that they are, with shape parameter k1/k2.
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FIG. S2. Poisson-Voronoi tessellation on the periodic unit square. Panels (a1) - (e1) show the Voronoi cells colored by four
geometric quantities defined from the nth moments of area and perimeter. Panels (a2) - (e2) show empirical and maximum-
likelihood estimations of gamma (denoted Y ), lognormal (denoted exp(W )), and beta prime (denoted Z′) distributions where
applicable. Poisson-Voronoi tessellations do not have gamma-distributed aspect ratios, instead following an approximate beta-
prime law.

A. Validating Poisson-Voronoi simulations

Let Vi be the measure (area, volume, etc.) of the typical Poisson-Voronoi cell. While the distribution of Vi is
presently unknown, numerically integrated second moments of Vi in R2 and R3 have been reported [S16], facili-
tating comparison with numerical study. Large simulations [S17, S18] with n > 106 cells have found that gamma
distributions, and in particular a 3-parameter generalization [S17]

fY;k,λ,a
(v) =

aλk/avk−1e−λva

Γ(k/a)
(S69)

achieve good maximum-likelihood fit to data with < 1% error relative to the analytical second moment. In Fig. S3,
the estimated second moment ⟨V 2

i ⟩, shape parameter k, and CDF root mean square error are displayed for 500 trials

of N
pdf∼ Poisson(103) points. The average empirical, gamma, and beta second moments show good agreement with

Gilbert’s [S16] numerically integrated value of 1.280 and are within 1% relative error, validating the numerical method.
The estimated value of k ≈ 3.7 for gamma on the torus T is consistent with prior results finding k ≈ 3.6 [S19] in the
plane R2. On the other hand, the estimated value of k ≈ 3.2 for beta is lower than gamma and closer to Tanemura’s
[S17] generalized-gamma (S69) fit finding k = 3.315, suggesting that a beta hypothesis is a good substitute for the
generalized gamma distribution. Lastly, we observe that the beta RMSE is slightly decreased compared to gamma.

B. A conjecture for the distribution of Poisson-Voronoi areas

In dimension d ≥ 2, exact distributions for the cell measures (areas, volumes, and so on) of Delaunay triangulations
(denoted Di) of a Poisson point process are known [S20], with the distribution in R2 given by a modified Bessel
function of the second kind,

fDi
(v) = c1v

α1Kn(c2v
α2), (S70)

with parameters ci, αj , n. On the other hand, exact distributions for their vertex-cell duals—the Voronoi tessella-
tions—are presently unknown. We conjecture, however, that (S70) should also govern the Voronoi areas Vi based on
the following heuristic argument. Conditional independence of the volume of the fundamental region (a particular
set containing the vertices of a Voronoi cell and the origin) and its shape (see [S13]) suggests that one may assume a
particular approximate shape for the typical Voronoi cell, say, an approximately elliptical region. If, as seen in Fig.
S2, the principal axes are gamma-distributed, and additionally they are independent, then Vi is proportional to their
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FIG. S3. Gamma- and Beta-maximum likelihood fits for Poisson-Voronoi tessellations of the flat torus T2. The numerically
integrated value of the second moment E[V 2

i ] = 1.280 found by [S16] is plotted as a dashed line in the left plot, indicating
good agreement with our numerical simulations. The experimentally determined shape parameter k = 3.315 of the generalized-
gamma fit found by [S17] is plotted as a dashed line in the middle plot.

product and has a distribution precisely of the form (S70) (see [S21]). A possible route to proving this claim is to
show that the desired independence holds in a thermodynamic limit.

V. THE VORONOI LIQUID

Let Ω ⊂ Rd be a compact connected measurable set with positive d-dimensional Lebesgue measure |Ω| > 0 as in
the main text. For a finite set of points {xi}ni=1 = X ⊂ Ωd and associated partitions {Di}ni=1 = D with Di ∩Dj = ∅,⋃

iDi = Td, the quantization problem is to minimize the cost

E(X ,D) =

n∑
i=1

Ei, Ei =

∫
Di

∥xi − y∥22 dy, (S71)

which is the approximation error of points y ∈ Ωd, and therefore the domain Ωd itself, by the partitions {xi, Di}.
This illustrates the origin of (S71) in meshing problems [S22].

A. The intensive energy

Define U to be the energy per unit measure

U(X ) =
n2/d

|Ω|1+2/d
E(X ,Vor(X )). (S72)

We argue (S72) is an intensive quantity as follows. First, consider the “tiling” (frozen) phase in which X ,D is a tiling
of Ω with xi the centroids of congruent cells D0

∼= Di and |Ω| = n |D0|. Then (S72) becomes

Utiling(X ) =
ρ2/d

|Ω|
n∑

i=1

∫
Di

∥xi − y∥2 dy =
ρ2/d

d |D0|
tr(Si(µi)) =

1

|D0|1+2/d
tr(Si(µi)), (S73)

which is simply the cell’s second moment Si, nondimensionalized by the cell measure. Recall that in 2D, for example,
tr(Si) has units length

4. More generally, if ⟨Ei⟩ is the average partition energy, then U is expressible as

U(X ) = ρ1+2/d⟨Ei⟩. (S74)

Now we note that U is scale-invariant as follows. Let x 7→ αx with α > 0, so that |Ω| 7→ αd |Ω| and Ei 7→ α2+dEi.
Then,

U(X ) 7→ n1+2/d

αd+2 |Ω|1+2/d
· αd+2⟨Ei⟩ = U(X ) (S75)
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Lastly, let us make an informal argument for U being a dimensionless quantity independent of n in the general-X ,D
case. Let a ∼ b indicate that a is of the same units and scale as b, such that |Ω| ∼ V is the scale of the system
measure. Then,

U(X ) =
ρ2/d

|Ω|
∑
i

Ei ∼
( n
V

)2/d
· 1

V
· n · Ei. (S76)

Let ∥xi − y∥ ∼ ℓ be the length scale of the typical partition and note that Ei ∼ ℓ2+d. Assuming further the
decomposition ℓd ∼ V/n, the generalization from the tiling case, we have

∼ (ℓ−d)2/d · ℓ−d · ℓ2+d ∼ 1, (S77)

so that U is dimensionless.

B. Interpreting E as a strain energy

Eq. (S71) is expressible in terms of the second area moment Si(xi) about xi as

E(X ,D) =
∑
i

trSi(xi). (S78)

Since for affine transforms Tx(y) = F (y − x) + x about the point x for some F with det(F ) > 0, we have that the

second moment maps as S(x)
y 7→T (y)7→ FS(x)F ⊺ detF , and (S78) is further equal to

=
∑
i

mi trFiF
⊺
i detFi (S79)

where mi

p I is the second area moment of an isotropic natural configuration (e.g. a circle or regular p-gon) from which

Fi is a strain tensor. It was already shown in the main text that the optimal D for fixed X is the Voronoi tessellation,
hence for convex Ω, Di are convex polygonal. Then, as argued in [S23] (SM), tr(FF ⊺) is the bulk strain energy, in
the small-strain limit, of a deformation from a regular n-gon, for any isotropic frame-indifferent constitutive relation
(which therefore depends only on the principal tensor invariants of F ). Note that, for dilatations Ω 7→ αΩ with α > 0,

E[{αxi, αDi}] 7→ α2+dE[{xi, Di}]. (S80)

C. Gradient flow is a nonlinear diffusion in 1D

When d = 1, for positions x = (x1, . . . , xn) ∈ O where O ⊂ Rn are the ordered vectors (also called Weyl chamber)

O = {y ∈ Rn | 0 ≤ y1 ≤ . . . ≤ yn < 1 ≤ y1 + 1}, (S81)

we have the Voronoi centroids and lengths

µi =
xi−1 + 2xi + xi+1

4
, vi =

xi+1 − xi−1

2
, (S82)

with xn+1 = x1. Thus the energy (S78) becomes the nearest-neighbors cubic potential

V (X ) =
∑
i

∫ xi+1−xi
2

xi−1−xi
2

y2dy =
1

24

∑
i

[
(xi+1 − xi)

3 + (xi − xi−1)
3
]
. (S83)

Moreover, its gradient descent, as we see to be consistent with (S89), is

ẋi = − ∂U

∂xi
= 2 |Di| (µi − xi) (S84)

= (xi+1 − xi−1)

(
xi−1 + 2xi + xi+1

4
− xi

)
(S85)

=
1

4

(
(xi+1 − xi)

2 − (xi − xi−1)
2
)
, (S86)
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FIG. S4. Gradient flow of the quantization energy from Poisson initial conditions on the unit circle have Voronoi lengths which
are well-approximated by beta and gamma distributions with increasing shape parameter k.

whose fixed point is the 1D lattice satisfying (xi+1 − xi)
2 = (xi − xi−1)

2 for all i. The dynamics of the spacings
ℓi = xi+1 − xi are then given by

ℓ̇i =
d

dt
(xi+1 − xi) =

1

4
(ℓ2i+1 − 2ℓ2i + ℓ2i−1) =

1

4

∑
j=i±1

(ℓ2j − ℓ2i ). (S87)

We recognize from the final expression that (S87) is a centered-differences discretization of the porous medium equation
∂tu = ∂xxu

2. Moreover, from (S83), we see that the equivalent energy over lengths (ℓ1, . . . , ℓn) = L is

V (L) = 1

24

∑
i

(ℓ3i + ℓ3i−1), (S88)

with ℓi nonnegative and subject to total length constraint
∑

i ℓi = L. For uniformly distributed (Poisson) initial
conditions xi on [0, 1] with periodic boundary conditions, the resulting Voronoi lengths under the dynamics (S87) are
well-approximated by beta random variables as shown in Figure S4.

D. Stochastic gradient flow on the torus

Fix now Ω = Td. It is shown in [S22] that E is C2 and

∂U

∂xi
=

2 |Di|
|Td| (xi − µi) = 2 |Di| (xi − µi),

where µi is the centroid of Di. This suggests the continuous-time gradient flow

ẋi = 2 |Di| (µi − xi). (S89)

Consider now the Itô process

dRi(t) =
∂U

∂xi

∣∣∣∣
Ri(t)

dt+ σdWi(t), (S90)

where Wi(t) are independent standard Brownian motions. In the limit σ → ∞, (X (t),D(t)) converges in distribution
(in large t) to a Poisson-Voronoi tessellation, while in the limit σ → 0 it converges to a centroidal Voronoi tessellation
[S22, S24]. The corresponding Fokker-Planck equation for the joint probability density p(R1, . . . , Rn) =: p(R) of (S90)
is

∂p

∂t
= −∇ · p∇U +

σ2

2
∆p. (S91)
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Since U is C2 and now compactly supported, obeying growth conditions required [S25], a Gibbs measure µβ at
temperature β−1 exists and is the stationary solution of (S91), given by

dµβ(x)

dx
= fβ(x) =

1

Zβ
exp (−βU(x)) , (S92)

with Zβ the normalizing constant and β−1 = σ2/2 the diffusion constant. Then (S92) minimizes the Gibbs free energy
functional

Gβ = Efβ [U ]− β−1H[fβ ], (S93)

with Efβ denoting the expectation with respect to fβ andH the differential entropy of fβ . The previous limits—Poisson-
Voronoi and centroidal Voronoi tessellations—correspond to the infinite- (β → 0) and zero- (β → ∞) temperature
limits respectively.

E. Specifics of the Langevin simulation

Let us now sample from the Gibbs measure (S92) using Markov Chain Monte Carlo (MCMC). We take Ω = Td to
be the unit d-cube with periodic boundary conditions. Euler-Maruyama integration of (8) with discrete steps ε > 0
is performed by

Ri(t+ ε) = −ε ∂V
∂xi

∣∣
Ri(t)

+
√
2εβ−1η, η

pdf∼ N (0, 1). (S94)

As (S94) no longer necessarily satisfies detailed balance with respect to (7), we add a Metropolis-Hastings step, a
procedure known as the Metropolis-adjusted Langevin algorithm (MALA) [S26]. That is, the transition Ri(t) 7→
Ri(t+ ε) occurs with probability min(1, α), where

α = exp

(
−V∆ − β

∥ε∇Vt+ε −R∆∥22 − ∥ε∇Vt +R∆∥22
4ε

)
(S95)

and V∆ = Vt+ε−Vt and R∆ = (Ri(t+ε)−Ri(t))
n
i=1. We iterate (S94), (S95) for n = 1000 particles in the unit square

with periodic boundary conditions. For non-Poisson configurations (β > 0, Fig. 2(b)-(d)), we use the “frozen” initial
condition (Fig. 2(d)), computed using a gradient descent of (5), which has a faster mixing time than starting with
the infinite-temperature (Poisson) initial condition.

We use the following simulation conditions to produce Fig. 2 in the main text.

• n = 1000 particles

• k = 1000 samples at each temperature β−1 in distinct Markov chains

• β ∈ [10−3, 1] at 13 logarithmically spaced intervals and β ∈ [1, 40] at 21 linearly spaced values

• nmix = 1000 mixing steps for each chain prior to sampling

• ε = 1.0 time step size

• nfreeze = 2000 gradient steps of size εfreeze = 0.1 to produce the frozen initial condition

The sufficiency of the mixing time nmix is validated by running the same procedure again with double the time 2nmix,
which produced no measurable differences in the resulting distributions except at high β = 100, k ≈ 2000.

F. Enforcing hard-sphere constraints

We now apply a hard-sphere constraint to samples of the fixed-N , V ensemble (7). One of the simplest methods
is the Matérn thinning rule (S68), which filters points from a particular configuration X to X ′ such that a minimum
user-specified spacing dmin is satisfied. Fig. S5 shows several such samples at fixed β = 104 and dmin a multiple
α ∈ {0, 0.25, 0.5, 1} of the minimum spacing in the frozen phase (Fig 2(d) in the main text). As seen in Fig. S5(e),
the hard-sphere thinning shows a transition to gamma-distributed aspect ratios.
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FIG. S5. Transition to gamma-distributed aspect ratios under Matérn thinning of the Voronoi liquid at fixed β = 104. Panels
(a-c, f) show samples thinned by the Matérn rule (S68) at various distances dmin. Panel (d) shows that partition areas are
well-described by k-gamma distributions at all dmin, with k monotone decreasing. Panel (e) shows that partition aspect ratios,
calculated from the second area moment, transition from an approximate beta-prime distribution to a gamma distribution with
k ≈ 2.4.

A second method is to add a divergent term to E (5) for invalid configurations for which fβ (7) is vanishing. The
Langevin diffusion (8) is of course no longer interpretable due to the loss of derivatives. However, we can interpret
its discretization (S94) at valid configurations as an arbitrary sequence of proposals (still outperforming the random
walk) for which the Metropolis-Hastings step (S95) rejects invalid configurations (V∆ = ∞) and ensures detailed
balance with respect to fβ . We mention this approach for completeness; however, additional modifications to MALA
need to be made to improve the sampling efficiency, as we find this procedure to be computationally intractable at
even moderate hard-sphere radii. One possible approach is to use Hamiltonian Monte Carlo [S26] with constraints.

VI. APPROXIMATE VORONOI TESSELLATION OF THE SURFACE OF V. CARTERI

Below are standard data processing procedures recalled for a self-contained reference, which we compose in a pipeline
to produce a simplicial Voronoi tessellation about the somatic cells on the surface of Volvox.

A. Fitting ellipsoids in d dimensions

Let x, v be vectors in some d-dimensional basis. The equation of a (d− 1)-sphere S centered at v is

∥x− v∥22 = 1 ∀x ∈ S. (S96)

Applying a rotation P (an orthogonal matrix) of the sphere onto a set of principal axes and stretching along those
axes by Λ (a positive diagonal matrix), one generalizes (S96) to an ellipsoid E via a symmetric positive-definite matrix
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M = PΛP ⊺ defining a generalized inner product in which x satisfies

(x− v)⊺M(x− v) = 1 ∀x ∈ E. (S97)

The elliptic radii ri are then ri = Λ
− 1

2
ii and the elliptic axes are the columns of P .

1. The minimum volume bounding ellipsoid

Given the volume

V =
πd/2

Γ(d/2 + 1)

d∏
i=1

ri ∝
√
det(M−1), (S98)

it follows that maximizing log det(M) minimizes V . Hence for a given dataset {xi}ni=1, the following convex program
computes the minimum-volume bounding ellipsoid:

sup
M,v

log det(M) (S99)

subject to (xi − v)⊺M(x− vi) ≤ 1 ∀i (S100)

M > 0. (S101)

Here, M > 0 in the sense of linear matrix inequality (LMI), i.e. M is constrained to lie in the positive-definite cone.
However, the offset xi−v produces a variable-product constraint which is not disciplined convex (DCP). The following
reparametrization uses the invertibility of M to convert the constraint to linear least squares:

sup
A,b

log det(A) (S102)

subject to ∥Axi − b∥22 ≤ 1 ∀i (S103)

A > 0 (S104)

M = A2 = A⊺A (S105)

v = A−1b. (S106)

DCP solvers such as CVXOPT [S27] solve this problem. We further reduce the problem size by considering the subset
of X lying on the convex hull, computed in O(n log n).

2. ℓ2-minimal projection to ellipsoids

Given a representation of an ellipsoid as (M, v) in the same basis as x, define the following convex program:

inf
Y

∥Y −X∥22 (S107)

subject to ∥A(xi − v)∥22 = 1 ∀i (S108)

A⊺A = A2 =M, (S109)

with A computed by (Hermitian) eigendecomposition ofM . Then Y is the minimum-ℓ2-distance projection of X onto
(M, v). This problem is not DCP; however, since there are no matrix cone constraints, we can simply use non-DCP
solvers compatible with nonlinear constraints, such as SLSQP [S28]. The constraint Jacobian for (S108) is 2M(xi−v).

B. Fitting hyperplanes in d dimensions

The equation of a hyperplane H in d dimensions is

n · (x− v) = 0 ∀x ∈ H (S110)
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(a) (b) (c) (d)

FIG. S6. Computational pipeline for tessellating the surface of V. carteri. (a) The somatic cell positions, available from [S29],
displayed in three-dimensional space. (b) The minimum-volume bounding ellipsoid containing the somatic cells is computed.
This establishes the approximate anterior-posterior axis of the spheroid. (c) The ℓ2-optimal projection of the somatic cell

positions X to this ellipsoid are computed, and the Delaunay tetrahedralization of this projected point cloud X̂ is computed.
As X̂ is now its own convex hull, the index triplets corresponding to the triangular faces lying on the convex hull of the
tetrahedral complex are taken to be an approximate Delaunay triangulation of the original point cloud X. (d) A quasi-2D
Voronoi tessellation of the surface is computed by taking the ℓ2-optimal planar embedding of the simplicial ring around any
vertex, and constructing a planar Voronoi face in that embedding using the usual circumcenter rule. If invalid (self-intersecting)
polygons are produced by the planar embedding, they are corrected by taking the 2D convex hull, which in the limit of zero
curvature is a no-op. This procedure introduces overlapping artifacts near gonidia (as seen) but is otherwise unaffected by the
global radius of curvature which is large compared to the size of individual polygons.

for n, v ∈ Rd. Without loss of generality, we may assume that ∥n∥ = 1, so that n is a unit normal to H; expressing
H in the form

n · x− b = 0, (S111)

we see that b = n · v is the distance from the origin to H. It further follows that the distance from an arbitrary point
y ∈ Rd to the plane is

d(y,H) = |n · (y − v)| = |n · y − b| . (S112)

Now, let {xi}Ni=1 = X ∈ RN×d be a set of data points with N ≥ 3. The best-fit hyperplane (in the ℓ2 sense) is

inf
n,v

∥(X − v)n∥22 (S113)

subject to ∥n∥2 = 1. (S114)

The cost is bi-convex in the parameters v and n. For fixed n, the critical point of the cost in v is given by

0 =
∂

∂v
∥(X − v)n∥22 = 2

N∑
i=1

(xi − v). (S115)

Then v = 1
N

∑N
i=1 xi is the centroid. Letting X = X − v, the critical point of the cost in n is

0 =
∂

∂n

∥∥Xn∥∥2
2
= 2X

⊺
Xn. (S116)

A common method to estimate n in this LSQ problem is the singular vector of X corresponding to the smallest
singular value, which of course is 0 if {xi} are coplanar. By (S112) it follows that the ℓ2-orthogonal projection of X
onto H is

Y = X − (X − v)nn⊺. (S117)

Let u ∈ Rd be a random vector such that u × n ̸= 0 (e.g. a Gaussian vector, for which this is almost surely true);
then an invertible planar embedding YH of a point Y lying in H is defined by the random orthonormal plane basis B:

B =
1

∥v∥
[
v v × n

]
, v = u× n, (S118)

YH = Y B. (S119)
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C. 3D reconstruction & analysis of Volvox

First, 3D meshes and an ellipsoidal approximation of the organism’s surface are constructed using the procedure
detailed in Figure S6. Then, all Voronoi polygon areas (including those near gonidia, which typically introduce
high-aspect-ratio polygons) are converted to solid-angles (4π times the area fraction of total) and are filtered by the
cutoff vc = 0.007 specified in [S29]. The empirical area distribution for each organism is shifted by this cutoff and
nondimensionalized to empirical mean 1, at which point they are combined across all 6 organisms and shown as a
combined histogram in Figure 1.
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