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This file contains calculational details for computations of discrete filaments and the continuum
model, further results from linear stability analyses in the latter, and quantitative analysis of stream-
ing speeds in the swirling state.

I. CALCULATIONAL DETAILS FOR DISCRETE
FILAMENTS

A. Image system inside a sphere

By modelling the motor-cargo ensemble with fluid-
entraining follower forces and approximating the system
geometry by a spherical container, we take advantage of
the analytical solution [S1] for the velocity field of a point
force inside a sphere with a no-slip wall. These simplifica-
tions allow us to compute the background flow directly,
instead of numerically solving the Stokes equations for
the fluid flow. For a point force of magnitude F located

at x0 inside a sphere of unit radius, the mth component
of the velocity is

um(x) =
Fj

8πµ

[
Gjm (x− x0) + Ḡjm (x)

]
, (S1)

where µ is the dynamic viscosity of the fluid, Gjm is the
Green’s function

Gjm (x− x0) =
δjm
r

+
(xj − x0j) (xm − x0m)

r3
, (S2)

and
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, (S3)

with

ϕk = −3(R2
0 − 1)

2R3
0

xk
r̄

R− R̄0 cosα+ r̄ cosα

RR̄2
0 sin2 α

. (S4)

Here, R0 and R̄0 are the norms of x0 and its image x̄0,
respectively, â = x0/R0 is the unit vector in the axial
direction, r = |x− x0|, r̄ = |x− x̄0|, R is the norm of x,
and α is the angle between x and â.

B. Geometrical formulation

For both the discrete-filament computations and the
self-consistent model, we use the tangent angle represen-

tation of the filament. For a filament of length L, pa-
rameterized by arclength s, anchored at wall in the x− y
plane, with z orthogonal to the plane, into the fluid, the
position vector is r(s) = (x(s), z(s)), and the unit tan-
gent and normal vectors t̂(s) = rs and n̂(s) are

t̂(s) = cos θ(s)êx + sin θ(s)êz (S5)

n̂(s) = sin θ(s)êx − cos θ(s)êz , (S6)

where θ(s) is the angle the tangent vector makes with re-
spect to the x-axis. The curve is obtained by integration
of t̂, and assuming (x(0), z(0)) = (0, 0), we have

x(s) =

∫ s

0

ds′ cos θ(s′) , z(s) =

∫ s

0

ds′ sin θ(s′) . (S7)
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It follows from the above that

∂t̂

∂t
= −θtn̂ , (S8)

from which we can obtain the equation of motion for θ
given that for r.

The equation of motion is that of elastohydrodynamics
within resistive force theory,(

ζ‖t̂t̂ + ζ⊥n̂n̂
)
· (rt −U) = −Arssss − (Λrs)s , (S9)

where A is the filament bending modulus, Λ is the La-
grange multiplier, and U = U êx+V êz is the background

flow experienced by the filament. We express the deriva-
tives in (S9) in terms of the curvature κ = θs, using
the Frenet-Serret equations t̂s = −κn̂ and n̂s = κt̂, and
rescale the equation of motion via

r = Lr′ , z = Lz′ , s = Ls′ , κ =
1

L
κ′ ,

Λ =
A

L2
Λ′ , t =

ζ⊥L
4

A
t′ , U =

ζ⊥L
3

A
U ′. (S10)

If we let ζ⊥/ζ‖ ' 2, and use êx = cos θt̂ + sin θn̂ and

êz = sin θt̂−cos θn̂, and then drop the primes, we obtain

rt = (U cos θ + V sin θ) t̂ + (U sin θ − V cos θ) n̂ +
(
κss − κ3 + κΛ

)
n̂ + 2 (3κκs − Λs) t̂ . (S11)

Differentiating (S11) with respect to s to obtain the equation of motion of the tangent angle θ and that for Λ:

θt = −θssss − (Λ− 9θ2s)θss − 3Λsθs − Us sin θ + Vs cos θ , (S12)

while enforcing inextensibility leads to the equation for Λ,(
∂ss −

1

2
θ2s

)
Λ = −1

2
θ4s + 3θ2ss +

7

2
θsθsss +

M

2
sin(θ) cos(θ) . (S13)

The boundary conditions at the attachment point are
those of a clamped filament,

θ(0) =
π

2
, θsss(0)− θs(0)3 + θs(0)Λ(0) = 0 , (S14)

Λs(0)− 3θs(0)θss(0) = 0 .

whereas at the free end we have

θs(1) = 0 , θss(1) = 0 , Λ(1) = 0 . (S15)

C. Self-consistent model

If we take the typical bent filament shape in the
streaming regime (Fig. 2(d) of main text) and place it
near a flat no-slip wall, we can understand in the sim-
plest situation the flow it produces. As shown in the
streamlines and velocity colormap of Figure S1 there is
a singular phenomenon near the wall that arises from
the combination of tangential forcing of the flow by the
motors and the no-slip condition at the wall. The most
prominent part of the flow is a lobe of high speeds em-
anating from the bent portion of the filament, directed
downstream. This feature forms the basis of the self-
consistent model for the swirling transition.

As Fig. S1 shows, the flow downstream from a bent
filament is approximately simple shear. This can be seen
directly in Blake’s analysis [S2] of the flow due to a point

force near a no-slip wall. For the purposes of a simple self-
consistent model, we consider only the asymptotic form
of that flow evaluated at x = (x, y, z) due to a point force
F at (0, 0, h):

ui '
Fk

8πµ

[
12hxixαx3δkα

|x|5
(S16)

+ h2δk3

(
− (12 + 6δi3)xix3

|x|5
+

30xix
3
3

|x|7

)]
.

Taking the leading-order term, and F along x, we obtain

u(x, z) = γ̇(x)zêx (S17)

FIG. S1: Flow field near a filament in the swirling regime. A
filament in the bent shape found in the spherical geometry
of the main text was placed near a flat, no-slip wall and the
resulting flow field computed numerically. Note the shear flow
downstream.
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FIG. S2: Results of the self-consistent calculation. Relaxation
of a filament to steady bent configuration, at σ = 45 and
ρ = 5, with colors interpolating between highly bent initial
condition (cyan) to final state (magenta) over a (dimension-
less) time of 0.05.

where the shear rate is

γ̇(x) =
3Fh

2πµx3
. (S18)

In the notation used in the tangent angle dynamics (S12),
we have U = Mz(s) and V = 0, where

M =
ηγ̇L4

A
∼ 3σ

c

(
ρ

φ

)3/2

. (S19)

a control parameter that appears also in the dynam-
ics elastic filaments in extensional flows [S3, S4]. Here,
the second relation uses the definitions of the dimen-
sionless control parameters σ and ρ from the main text.
To complete the self-consistency calculation, we set the
x-component of the force F to be proportional to the
projection of the tangent vector at the distal tip, so
M →M sin(θ(L))

The tangent angle dynamics (S12) and (S13) were
solved by a Crank-Nicholson method via a pentadiagonal
matrix for the fourth derivative, treating all the nonlin-
earities explicitly, and discretizing the Λ problem as a
tridiagonal matrix in which the diagonal term involving
θ2s was updated after each time step. The initial condi-
tion was θ(0, s) = π/2 − a sin(πs/2)2, with a = 2.5 and
the time step dt = 0.1ds4, with ds = 1/(N −1), where N
is the total number of grid points (N = 41 is sufficient).

Figure S2 shows a typical result of the self-consistent
calculation in the regime of stable streaming, illustrating
how a highly bent initial condition relaxes to a confor-
mation like that seen in the calculations described in the
main text (compare Figs. 3(c) from discrete filament cal-
culations and 4(b) from continuum model).

II. FURTHER RESULTS FROM CONTINUUM
MODEL

A. Dynamics of the transition to swirling

In Supplemental Video 1, we show the dynamics of
the transition from the unstable equilibrium of radially
oriented filaments to stable streaming flow, correspond-
ing to Fig. 4b (main text). In this parameter regime,
the filament array initially buckles, and large azimuthal
flows are generated by rapid deformation of the array.
As the filament motion slows, the filaments become ori-
ented parallel to the cylinder walls. Azimuthal flows are
continuously generated by the streaming mechanism, and
the drag from these flows moving past the stationary fil-
aments is sufficient to pin them into the observed confor-
mation.

B. Effect of cylindrical confinement

In the main text, we present the evolution equation
for a small perturbation to the equilibrium solution in a
planar geometry. This equation:

gt = −gzzzz−σ [(1− z)gz]z+ρ [σ(1− z)g + gzz] , (S20)

remains local due to the simplicity of the Stokes flow
near weakly-bent slender filaments, allowing the individ-
ual terms to be easily identified and interpreted. The
geometry of the Dropsophila oocyte is considerably more
complex than this idealized half-space. Even the spheri-
cal geometry (used for the discrete filament simulations)
is a highly simplified approximation; although it does
capture both the convexity and confinement of the true
geometry. In the main text, we present the results of the
linear stability analysis in a cylindrical geometry (Fig
4a, main text). Here, we present similar analyses for the
open half-space and a range of confinement ratios.
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FIG. S3: Results of the stability analysis in the planar geom-
etry. Regions are colored and coded as in the main text.
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FIG. S4: Results of the stability analysis in the confined geometry. The confinement ratios are 2.2:1 (Panel a), 4:1 (Panel b),
and 20:1 (Panel c). See Fig. S3 for a description of the different regions.

All phase portraits presented in this section of the SI
are computed over the same range of effective densities
(ρ) and effective motor force-densities (σ) as used to com-
pute Fig 4a in the main text. Results for the planar geom-
etry are shown in Fig. S3, and in Fig. S4 we show results
for a range of different confinement ratios — 2.2:1 (Fig
S4a), 4:1 (Fig S4b), and 20:1, (Fig S4c). Note that the
ratio 2.2:1 indicates a cylinder diameter of 2.2L, which
is extremely confined, with filaments reaching ≈ 91% of
the way to the center of the cylinder.

Even under strong confinement, the qualitative struc-
ture remains, although the quantitative value at which
the bifurcations occur changes significantly. The effect
of strong confinement is to suppress the appearance of
streaming at larger forcing values. This is intuitive: when
forcing is large, the tendency of lone fibers is to oscillate.
In the planar system, when fibers are sufficiently dense,
the strong flows caused by motors walking on neighbor-
ing fibers is sufficient to pin the fiber into a stable de-
formed state, suppressing oscillations (in fact, the drag
from these flows produces extensile forces on the fibers,
reducing the net contractile forcing generated by the mo-
tors). Under high confinement, the strength of such flows
near the fiber tips is reduced, and the flow can no longer
suppress the tendency of the fiber to oscillate. When the
confinement is not so extreme, even the quantitative val-
ues change little, from 10:1 (Fig 4a, main text), to 20:1
(Fig S4c), to the flat geometry (Fig S3).

The results presented in both the text (Fig 4a), as well
as those in the flat geometry (Fig S3) or weak confine-
ment (Fig S4c) in this SM, are all qualitatively (and very
nearly quantitatively) the same, indicating that the es-
sential structure of the swirling transition is due to the
interactions between nearby filaments in the fiber bed,
and does not depend in a critical way on the specific
geometry of the oocyte.

It may surprise the reader that when ρ → 0, the be-
havior (as a function of σ) at all confinement ratios con-
verges to exactly the same thing. This is because the
continuum model imposes boundary conditions on the
coarse-grained flow only; as ρ → 0 this flow goes to 0
with it and the dynamics are those of a fiber moving in
a quiescent background.

C. Streaming Speeds in Dense Arrays

By solving for −rssss + (Λrs)s in Eq. 2 (main text),
substituting into Eq. 3 (main text), defining ξ ≡
χMTρJ−1, and ignoring frame transformations for the
sake of simplicity, we find that:

−∇2u +∇p+ ξ(I− rsrs/2)(u− rt) = ξσrs. (S21)

This is a forced Brinkman equation with an anisotropic
permeability. When ξ is large, the skeletal drag term
dominates the left-hand side, and at steady state rt = 0.
We may thus approximate the steady streaming velocity
as simply u ≈ σ(I + rsrs)rs = 2σrs. For homogeneous
flows in the planar geometry, and axisymmetric flows in

the cylindrical geometry, the flow is purely in the x̂ or θ̂
(azimuthal) direction, respectively. Since rs is not purely

coincident with x̂ or θ̂, some of the forcing generated by
the molecular motors must be absorbed into the pres-
sure gradient, and so we take this estimate to be an
upper bound: vstreaming ≤ 2σ. The maximum steady-
state streaming speed as a function of σ, as computed
by the continuum model in 10:1 confinement, is shown
in Fig. S5, for ρ = 10, 20, . . . , 50. For smaller values of
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FIG. S5: Dependence of streaming speed on the force den-
sity (σ) generated by kinesin-1 motors. When ρ is large, the
streaming speed approaches the estimate vstreaming = 2σ.
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ρ, the fiber is less deformed and drag contributes less to
the balance in Eq. S21, leading to a relationship closer to
vstreaming = σ. When ρ is larger, drag dominates Eq. S21,
the fiber is nearly azimuthally aligned, and the streaming
speed approaches the bound vstreaming = 2σ.

In dimensional units, this bound is vstreaming ≤
2σA/ηL3. In the main text, we used a simple argu-
ment based on Darcy’s law to estimate vstreaming =
(σA/ηL3)(8π/c). The leading factor of two in the more

refined estimate presented in this SI comes from taking
into account fiber anisotropy and the nearly azimuthal
alignment of the fibers, while the disappearance of the
factor of 8π/c arises from properly accounting for the
fibers aspect ratio. In either case, the disappearance of
the MT density from the estimate of streaming velocity
arises due to the fact that both the forcing (ξσrs) and
the skeletal drag (ξ(I− rsrs/2)) scale with the density ρ.
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