
Swirling Instability of the Microtubule Cytoskeleton

David B. Stein,1, ∗ Gabriele De Canio,2, ∗ Eric Lauga,2, † Michael J. Shelley,1, 3, ‡ and Raymond E. Goldstein2, §

1Center for Computational Biology, Flatiron Institute, 162 5th Ave., New York, NY 10010
2Department of Applied Mathematics and Theoretical Physics, Centre for Mathematical Sciences,

University of Cambridge, Cambridge CB3 0WA, United Kingdom
3Courant Institute, New York University, 251 Mercer St., New York, NY 10012

(Dated: October 19, 2020)

In the cellular phenomena of cytoplasmic streaming, molecular motors carrying cargo along a net-
work of microtubules entrain the surrounding fluid. The piconewton forces produced by individual
motors are sufficient to deform long microtubules, as are the collective fluid flows generated by many
moving motors. Studies of streaming during oocyte development in the fruit fly D. melanogaster
have shown a transition from a spatially-disordered cytoskeleton, supporting flows with only short-
ranged correlations, to an ordered state with a cell-spanning vortical flow. To test the hypothesis
that this transition is driven by fluid-structure interactions we study a discrete-filament model and
a coarse-grained continuum theory for motors moving on a deformable cytoskeleton, both of which
are shown to exhibit a swirling instability to spontaneous large-scale rotational motion, as observed.

A striking example of fluid-structure interactions
within cells [1] occurs in oocytes of the fruit fly Drosophila
melanogaster [2]. These develop over a week from a single
cell through repeated rounds of cell division, differentia-
tion and growth, ultimately reaching hundreds of microns
across. This pathway has been divided into 14 stages,
and it is in stages 9−11, at days 6.5−7 [3], that fluid mo-
tion is most noticeable. In stage 9 (Fig. 1), microtubules
(MTs) reach inward from the periphery, forming a dense
assembly along which molecular motors (kinesins) move
at tens of nm/sec, carrying messenger RNAs and other
nanometric particles. This motion entrains the surround-
ing fluid, producing cytoplasmic streaming [4, 5] that
can be visualized several ways: in brightfield by the mo-
tion of endogenous particles [6–8], via their autofluores-
cence [9, 10], and through a combination of particle image
velocimetry and fluorescently labelled microtubules [11–
13]. Previous work [7, 11] revealed initial flows exhibit
transient, recurring vortices and jets whose correlation
length is a fraction of the cell scale, with no long-range
order. But by stage 11, a dramatic reconfiguration of the
cytoskeleton occurs, coincident with the appearance of a
cell-spanning vortex [6, 7, 10, 14].

Kinesin move from minus ends of microtubules (at-
tached to the oocyte periphery) to plus ends (free in
the interior). Transport of cargo through the network
depends on motor-microtubule binding [15, 16] and the
mesh architecture [17, 18]. As a motor pulls cargo to-
ward the plus end the filament experiences a localized
minus-end-directed compressive force, as in Euler buck-
ling. For a filament of length L and bending modulus A
[19], the buckling force is π2A/4L2 ∼ 50 pN/L2, where L
is measured in microns. Thus, a kinesin’s force of several
pN [20] can buckle MTs 10− 40µm long.

The coupled filament-motor problem is richer than Eu-
ler buckling because a motor exerts a “follower force” [21]

that is aligned with the filament. This feature breaks the
variational structure of the problem and induces a fila-
ment pinned at its minus end to oscillate at zero Reynolds
number [22–24]. By exerting a force on the fluid a mo-
tor induces long-range flows which, if compressive, can
further deform filaments [25, 26].

It has been hypothesized [10, 14] that the transition
from disordered flows to a single vortex in stage 11 is a
consequence of fluid-structure interactions, facilitated by
a decrease in cytoplasmic viscosity that accompanies the
disappearance of a coexisting network of the biopolymer
f-actin. Here, through a combination of direct computa-
tions on the coupled filament-flow problem [23] and stud-
ies of a continuum theory for dense filament suspensions
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FIG. 1. Cytoplasmic streaming in the Drosophila oocyte. The
3D oocyte shape is approximately given by rotating the cross-
section about its anterior-posterior axis. (a) Experimental
flow field [28] and schematic of the disordered swirling flows
and microtubule organization in early stages of development.
(b) Later flows organize into a single vortex as MTs lie parallel
to the cell periphery.
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FIG. 2. Discrete filament computations. (a) N equally spaced filaments clamped at their attachment points, reach inward
from a no-slip spherical shell. Each has a continuous distribution of tangential point forces (red) that (b) exert a force Γ on
the fluid and an equal and opposite compressive force on the filament. Synchronous oscillations (N = 7, σ = 1700), (d) steady,
bent configuration (N = 9, σ = 500) and swirling flow field.

[27], we confirm this hypothesis by showing the existence
of a swirling instability of the cytoskeleton.

Swirling can be understood in a simplified model of
the oocyte: a rigid sphere of radius R containing a fluid
of viscosity µ, with N elastic filaments reaching inwards
from clamped attachment points equally spaced around
the equator. A slice in the filament plane (Fig. 2(a))
appears like the confocal slice in Fig. 1. The filaments
have a radius r, a constant length L, bending modulus A
and a uniform line density f of follower forces (Fig. 2(b)).

Some comments are in order. Although free MTs have
a complex dynamics of growth and decay, recent evidence
[29] for ‘superstable’ cortically-bound MTs in stages dis-
playing unidirectional streaming justifies the constant-
length approximation. As the exact nature of cortical
MT binding is unclear, we make the simplest assumption
of orthogonal clamping to a rigid cortex. Finally, the
model is agnostic regarding the transported cargo, pro-
vided the resultant forces on the fluid and fiber are equal
and opposite, and aligned with the fiber [29].

Microtubules are the quintessential slender bodies [30]
of biophysics, with aspect ratios ε = r/L of O(10−3). As
their self-interactions are weak, we use local slender-body
theory [31, 32] to obtain the dynamics. In an arclength
parameterization s, the jth filament rj(s, t) evolves as

η
(
rjt −Uj

)
= (I+rjsr

j
s)
(
−Arj4s + (Λjrjs)s − frjs

)
, (1)

where rjs is the unit tangent, η = 8πµ/c, with c =
| ln(eε2)|, and the Lagrange multiplier Λj enforcing inex-
tensibility obeys a second-order PDE [33]. In the back-
ground flow Uj = uj +ui→j +vi→j , uj is that produced
by the motors on j, ui→j is due to the motors on i 6= j,
and vi→j is due to motion of filaments i 6= j. For exam-
ple, the flow induced at x by motors dragging cargo along

the jth fiber is
∫ L

0
dsfrjs(s) · G(x − rj(s)) (see Supple-

mental Material [34, 35]), with G the Greens function for
the interior of a no-slip sphere [36]. Filament clamping at
the sphere implies that rj(0, t) remains fixed and rjs(0, t)
is the local inward sphere normal. The free end is torque-

and force-free: rjss(L, t) = rjsss(L, t) = Λ(L, t) = 0.

A single fiber clamped at a flat wall displays a su-
percritical Hopf bifurcation which, expressed in terms
of the dimensionless motor force σ ≡ fL3/A, occurs at
σ∗ ' 124.2, beyond which the filament exhibits steady
oscillations with amplitude ∼√σ − σ∗ [23]. When sev-
eral filaments interact within the sphere (2c) they also
oscillate, but with their motions synchronized in phase
like eukaryotic flagella [37]. The dynamical model (1)
contains two ingredients often found necessary for such
synchronization [38, 39]: hydrodynamic interactions and
the ability of a filament to change shape and thereby
adjust its phase in response to those flows.

As the filament density and motor strength are in-
creased we find the swirling instability: transition to a
steady state of bent filaments whose free ends are nearly
parallel to the wall (Fig. 2(d)). This bending is main-
tained by motor-induced azimuthal flows that generate
drag along the distal ends of filaments, and thus a torque
countering bending torques nearer the base. As with any
such spontaneous symmetry-breaking, initial conditions
dictate the choice between equivalent left- and right-
handed configurations. This transition is reminiscent of
self-organized rotation of cytoplasmic droplets extracted
from plants [40] and the spiral vortex state of confined
bacterial suspensions [41], both modeled as force dipole
suspensions [42–44]. A “locked-curvature” regime of free,
axially driven filaments, reminiscent of the bent MTs in
the swirling state, has also been observed [45].

While direct computations on denser arrays of dis-
crete filaments are possible [46], cortically bound oocyte
MTs are so tightly packed, with an inter-fiber spacing
δ � L [10–13], that a continuum approach is justi-
fied. The description we use [27], in which microtubules
form an anisotropic porous medium, is based on the map
X = r(α), where the Lagrangian coordinate α = (α, s)
encodes the location α of the minus ends of the micro-
tubules and arclength s. In a system of units made di-
mensionless by L and elastic relaxation time ηL4/A, we
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FIG. 3. Continuum model in planar geometry. (a) Bi-infinite
array of MTs, clamped vertically at a no-slip boundary. Re-
sults of computations at (b) ρ = 4.65, σ = 70 and (c) σ = 39.
Colors denote time, from cyan (early) to pink (late).

obtain a continuum version of (1),

rt − u|r(α) = (I + rsrs) · (−rssss + (Λrs)s − σrs) . (2)

The fluid velocity u arises from the force distribution
along the filaments and is evaluated at the Eulerian po-
sition x according to an inhomogeneous Stokes equation,

−∇2u+∇p = χmtρ
[
J−1(−rssss + (Λrs)s)

]
|r−1(x) , (3)

subject to the incompressibility constraint ∇ · u = 0.
The indicator function χmt is supported where the MT
array is present (Fig. 3a). Here, ρ = 8πρ0L

2/c is the
rescaled areal number density of microtubules, express-
ible as ρ = φ(L/δ)2, where the constant φ depends only
on the MT slenderness and packing geometry at the wall;
φ ≈ 4 when c ≈ 10 and the MTs are hexagonally packed.
The quantity J = det[∂r/∂α] measures the change in
microtubule density due to deformations of the array;
J−1 increases as fibers move closer together.

The simplest geometry is an infinite planar array of
MTs with the same boundary conditions as in the dis-
crete model (Fig. 3(a)), and with no-penetration and
zero-tangential stress conditions on the fluid a distance H
above the wall. For dynamics homogeneous along x, the
fluid flow is unidirectional and constant above the MTs,
so H plays no role. Nonlinear computations [47] reveal
both oscillatory dynamics and the emergence of steady
streaming. Fig. 3(b) shows the dynamics when ρ = 4.65
and σ = 70: self-sustaining oscillations of the MT array
are observed, similar to those in Fig. 2(c). Note that
while Fig. 3(b) shows only a single filament, it represents
the common dynamics of all of the collectively beating
filaments in the array. When σ is decreased to ≈ 39, the
MT array deforms and stabilizes into a steady bent state
(Fig. 3(c)). This is the continuum version of the swirling
transition, with dynamics similar to the discrete case.

An equilibrium of the system occurs when filaments are
aligned straight along z, with u = 0 and Λ = −σ(1− z).
For σ > 0, the motor-force is compressive and buck-
ling may occur. A small transverse perturbation in fiber
shape of the form rs = ẑ + εg(z)x̂ (ε� 1) evolves as

gt = −gzzzz − σ [(1− z)gz]z + ρ [σ(1− z)g + gzz] . (4)

The first two terms are like those of an elastic filament un-
der an aligned gravitational field, with a linearly varying
tension [48, 49]. The third is fiber forces filtered through
the non-local Stokes operator, capturing hydrodynamic
interactions within the fiber array (hence the ρ prefac-
tor). Here, the simplicity of the flow is such that in-
verting the Stokes equations does not lead to the typical
global coupling. The term ρgzz captures the additional
resistance to bending from flow: if a MT bends, it moves
the nearby fluid, bending other MTs; the term ρσ(1−z)g
is destabilizing: if a MT remains straight, it must resist
fluid motions generated by surrounding MTs.

The coarse-grained model in planar geometry repro-
duces the behavior of the discrete filament model. To
capture features of the oocyte geometry — its convex
shape and confined hydrodynamic interactions — we ex-
tend the analysis to a cylindrical domain, where the no-
flow steady state is an array of MTs pointing straight
inwards. Fig. 4 shows the results of a linear stability
analysis for an experimentally relevant ratio of cylinder
diameter to MT length of 10 : 1. For ρ � 1, the con-
tinuum model behaves like isolated fibers with negligible
collective fluid entrainment. For small σ, straight fiber
arrays are stable (regions I & II, with region II having
oscillatory decay to equilibrium), but with increasing σ
there is a Hopf bifurcation to a state that nonlinear sim-
ulations show has oscillations (cf. Fig. 2(c)). For ρ & 2.8
(δ . 1.2L), a new region of instability (IV) appears, with
real, positive eigenvalues; nonlinear simulations show this
leads to collective MT bending and swirling flows. The
structure of these transitions is independent of the degree
of confinement [34].

Figure 4(b) shows a nonlinear computation of the tran-
sition to swirling in region IV. The upper inset shows
the development of the instability, with successive MTs
bending over to form a dense canopy above their highly
curved bases. Once steady, the concentrated motor forces
within the canopy are azimuthally aligned, almost a δ-
function a distance ∼ L/4 above the wall, and drive the
large-scale streaming flow. The ooplasmic flow beneath
the MT canopy is nearly a linear shear flow, transitioning
above to solid body rotation, the solution to Stokes flow
forced at a cylindrical boundary.

We now estimate ranges of density and force that are
consistent with observed streaming speeds u ≈ 100 −
400 nm/s (Fig. 1 and [14, 29]). Taking L = 20µm,
µ = 1 Pa s [11] and A = 20 pNµm2, we obtain a ve-
locity scale A/ηL3 ≈ 1 nm/s and a force-density scale
A/L3 ≈ 2.5 fN/µm. Figure 4c shows the speeds com-
puted in region IV. Those with maximum speeds falling
in the experimental range lie in the hatched area. In-
creasing ρ only marginally increases streaming speeds,
and so to increase flow speed while remaining in region
IV requires increasing both ρ and σ. The minimum value
of ρ ≈ 20 that is consistent with observed streaming ve-
locities corresponds to δ . 0.4L, a more stringent con-
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FIG. 4. Continuum model in cylindrical geometry. (a) Results of linear stability analysis about the radially aligned state, with
R = 5L. (b) Steady-state fiber deformations and velocity field for σ = 150 and ρ = 80. Density of visualized fibers corresponds
to the physical density. Top inset shows deformed MTs and the dynamics of a representative one (see also supplemental video
[34]). Bottom inset shows the azimuthal velocity field as a function of r. (c) Dimensional streaming velocities in parameter
space; hatched region is consistent with in vivo estimates of 100 − 400 nm/s. Yellow dot denotes simulation shown in (b).

straint than that required for the streaming transition.
The force densities consistent with streaming speeds are
f ∼ 0.1 − 0.6 pN/µm. Speeds on the higher end of the
range approach the ≈ 700 nm/s of kinesin-1 under neg-
ligible load [20], while cargo speeds on oocyte MTs are
200 − 500 nm/s [14, 29, 50]. Assuming a linear force-
velocity relation and a stall force of 6 pN [20] gives a sin-
gle motor force of ≈2 pN; approximately 1−6 kinesins are
needed per 20µm MT to generate these force densities.

A heuristic argument for the weak dependence of flow
speeds on ρ views the cytoskeleton as a porous medium of
permeability k ∼ δ2, in which speed u ∼ (k/µ)∇p, where
the pressure gradient (force/volume) from motors is f/δ2,
yielding u ∼ f/µ ∼ (A/ηL3)(8π/c)σ, independent of ρ.
This relationship is surprisingly accurate [34].

When the density ρ is sufficiently high, the swirling in-
stability first appears for force densities σ substantially
smaller than those that induce instabilities in a single
filament; this transition is driven by additional hydrody-
namic destabilization imparted by neighboring fibers (in
planar geometry, the term ρσ(1 − z)g in Eq. 4). This
observation motivates a heuristic argument for the insta-
bility, in which a filament is bent by the flow produced
by its upstream neighbor, whose distal half is nearly par-
allel to the wall. Seen from a distance, that bent portion
acts on the fluid like a point force [51] F ∼ (fL/2)rs(L)
oriented along its tangent vector (Fig. 5), displaced a dis-
tance h ∼ L/2 from the surface. Near a no-slip wall, the
far-field flow along x due to a force F ‖ x̂ a distance δ
upstream is simple shear [52, 53],

U(x, z) = γ̇zêx , (5)

where γ̇ = 3hF/2πµδ3. Self-consistency requires the
magnitude of the force driving the shear be given by the
projection of F along x, so γ̇ → γ̇ sin(θ(L)).

The simplest model to illustrate the self-consistency
condition is a rigid MT with a torsional spring at its

base that provides a restoring torque −kθ (Fig. 5(i)).
With z(s) = s cos θ and ηn̂n̂ ·U the local normal force
on a segment, the local torque about the point s = 0
is ηγ̇s2 cos2θ which, when integrated along the filament
and balanced against the spring torque, yields the self-
consistency condition

θ = B sin θ cos2θ , (6)

where B = ηγ̇L3/k. For B < 1 (slow flow or a stiff
spring) θ = 0 is the only fixed point, while for B & 1
two mirror-image swirling solutions appear through a
pitchfork bifurcation, θ± ' (6(B − 1)/7)1/2. A struc-
turally similar model has been used to explain cytoplas-
mic streaming in the C. elegans zygote [54].

To study the interplay between filament oscillations
and swirling we use (5) in the dynamics (1), where the
control parameter for the shear flow is [25, 26]

M =
ηγ̇L4

A
∼ 3σ

c

(
ρ

φ

)3/2

, (7)

t(L)θ

x

z

F

h

θ

(i) (ii)

δ

^

FIG. 5. Self-consistent model. An upstream point force F
parallel to the distal filament end produces shear flow that
deflects the filament. Two variants: (i) rigid rod with a tor-
sional spring at its base, (ii) a clamped elastic filament.
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and the second relation uses the estimates above for F
and h. Since a clamped elastic filament behaves like a
torsional spring with spring constant k = A/L, we see
consistency with the parameter B above. A numeri-
cal self-consistent calculation confirms the existence of
a swirling instability [34].

Through discrete and continuum models we elucidated
a novel swirling instability of arrays of elastic filaments,
lending support to the hypothesis [14] that cytoplasmic
streaming flows in Drosophila oocytes are tied to self-
organization of the microtubule cytoskeleton. Further
evidence for this hypothesis may come from genetic or
other perturbations that explore the parameter space in
Fig. 4(a). Future studies could shed light on the detailed
mechanism involved in the untangling of the Drosophila
oocyte cytoskeleton when it transitions to the vortical
state, and the possibility of reproducing this transition
in vitro. Lastly, this study highlights the role of active
force dipoles in the self-organization of fluid-biopolymer
systems [42–44].
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