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38th Giithrie LPctrrre, delivered 24th Septenzber 1954; MS. received 29th Septelnber 1951  

-4bstract. &-hen soluble matter is introduced into a solvent flowing slowly 
through a capillary tube it is dispersed longitudinally by a process which involves 
both the variation in fluid velocity over the cross section of the tube and radial 
diffusion by molecular agitation. Measurements of longitudinal dispersion 
provide a new means for measuring diffusion coefficients. Results obtained by 
this method will be given. 

T h e  stability of solutions contained in vertical tubes when the density increases 
upwards also depends on radial diffusion. Measurements of the equilibrium 
density gradient can he used as another new method for determining diffusion 
coefficients. 

The  mechanics of dispersion in turbulent flow through a pipe can be discussed 
by a method which is analogous to that used for streamline flow. The results 
of this calculation are compared with experiments in which brine was injected 
into water flowing in 3> 8 inch and 40 inch pipes, and the subsequent dispersion 
.along the pipe was measured. Similar comparisons are made with American 
measurements in long pipe lines. 

BOI 'T two years ago Dr. Mount of the Animal Physiology Laboratory at 
Babraham told me that he was measuring the rate of flow of blood in the A arteries of animals by injecting a highly conducting fluid at a point and 

observing the variation in conductivity at an electrode placed downstream. He 
asked me how the mean velocity could be deduced from his observations. If the 
injected material would remain concentrated in a small volume at the middle of 
the  artery it would move with the maximum velocity uo of the blood stream 
.and after a time xl'uo the conductivity at an electrode distant x downstream would 
suddenly rise. In  
fact the injected material does not remain concentrated; it spreads out along the 
artery and the conductivity downstream rises gradually, reaches a maximum and 
then decreases to its normal value. 

T h e  problem which confronts anyone who wants to use this method for 
measuring the rate of flow, or mean speed, is, therefore, to determine which point 
o n  the conductivity-time curve, obtained at a distance x downstream, corresponds 
with the arrival of a point which travels from the point of injection to the point 
of observation with the mean speed of flow. In practice everyone who has used 
the method, and it has been used by engineers and physicists as well as by 
physiologists, has calibrated his apparatus using an independent means of 
measuring flow rate. I n  complicated systems, like those dealt with by physiolo- 
gists, calibration is necessary, but in the simple case of flow through a straight 
pipe the mechanics of the dispersion of injected material can be analysed and 
understood. 

By measuring this time the value of uo would be obtained. 
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Some of these calculations are now published and some will soon appear 
in the Royal Society's Proceedings. Here I will attempt to explain their physical 
basis and compare them with the result of experiment rather than go into 
mathematical analysis. The  cause of dispersion in a pipe is the variation in 
velocity over its cross section. When the flow is not turbulent the dispersion 
produced by convection is modified by molecular diffusion. When it is turbulent 
the convective dispersion is modified by turbulent diffusion. 

The  first step in understanding these processes is to consider dispersion by 
convection alone. Imagine a straight pipe through which a viscous fluid is 
streaming in non-turbulent flow and suppose that at time t = 0 the colour of the 
stream entering at x = 0 is changed, say by letting in a dye instead of a pure water- 
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Figure 1. Figure 2. 

Figure 1 .  

Figure 2 .  

Dispersion by convection alone (a) and (c)  are initial distributions, (b)  and 

Distribution along tube of mean concentration over cross sections corresponding 
( d )  distributions at time t .  

with cases shown in figure 1. 
The values of x in figures 1 and 2 are -L at e ,  0 at f, 2Ut -L  at g and 2 U t  at h. 

The initial condition is indicated in figure 1 (a) .  The distribution of velocity 
is parabolic and the mean velocity U is half the maximum, so that after time t 
the forward edge of the colour lies in a paraboloid whose vertex is at x=2Ut .  
This condition is shown in figure 1 (b). Now suppose our measuring instrument 
measures the mean concentration, c, of the dye at any section. The areas of 
sections of a paraboloid are proportional to their distance from its vertex. If c, 
is the concentration of the dissolved dye asit enters the tube the mean concentration 
at anv section is 

area of cross section of tube 
area of section of paraboloid 

c=co 

Thus the concentration decreases linearly from c = co at x = 0 to c = 0 at x = 2Ut. 
The initial distribution of c is shown in figure 2 (a ) ,  and the distribution at time t 
in figure 2 (b) .  Next consider the case when the dye is initially confined to a short 
length of the tube from x = - L to x = 0, the fluid in front and behind being pure 
solvent. The condition is represented in figure 1 (c) .  After the time t both the 
front and back surfaces of separation are paraboloids (figure l ( d ) ) .  The dye 
has penetrated to x = 2Ut and from x = 2 Ut - L to x = 2 Ut. c decreases exactly 
as in figure 2 (6) .  c is constant from x=  0 to x=  2Ut - L, and from x=  - L to 
x=O increases uniformly. The distributions of c at times 0 and t are shown in 
figures 2 ( b )  and 2 (d ) .  
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To obtain these distributions of concentration experimentally it is necessary 
.O carry out the experiment so quickly that transverse diffusion does not have 
;ime to modify the dispersion produced by pure convection. We found no 
difficulty in doing this, using apparatus constructed for use also at slow speeds of 
,)peration. This apparatus is shown diagrammatically in figure 3. Here A and E 

Figure 3.  Apparatus for observing dispersion in a tube. 

are two receptacles. A is filled with a soluble substance whose dispersion is to be  
measured. B is filled with the solute, in our case distilled water. A and B are 
connected with the capillary tube D through a 3-way glass tap C. T o  measure 
the concentration of a dissolved substance in a capillary tube is not always easy. 
In our experiments a strongly coloured salt, such as potassium permanganate, 
was used and the distribution of concentration was measured by cutting off 
a piece of the capillary and filling it successively with solutions of known con- 
centration. The  points on the main tube at which the colour matched that of 
the comparison tube were observed. In  this way the concentration c was 
measured as a function of x, the distance along the tube from the 3-way tap. T u  
operate the apparatus A was first connected with D so that the full concentration 
c,, of the solution in A was in contact with the tap C. Tap  C was then turned so as  
to flush out the tube D with water from B. T o  perform the experiment tap C 
mas again turned so as to connect A with D. After a measured interval of time 

x (cm) 
Figure 4. Measurements of c when dispersion occurred in 14 seconds. 

the flow was stopped, usually by closing a tap E at the far end of D. It was found 
that the longitudinal molecular diffusion is so slow that the distribution of con- 
centration did not change by a measurable amount in several hours SO that there 
was plenty of time to make the measurements. 

Figure 4 shows the results of two experiments in which total duration of the 
flow was only 1) seconds. T h e  points numbered A2 represent measurements 

3 L-2 
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i n  which the apparatus was operated in the manner already described. I have 
already shown that according to the simple theory which considers only convection 
the distribution of concentration should in this case decrease linearly, and A2 
in figure 4 shows that this is in fact the case, a straight line passes very close to the 
observed points. 

T o  observe the dispersion of an initially concentrated volume of solute the 
apparatus was operated by connecting A and C and allowing a little of the solute 
to flow into D. The  flow was then stopped by turning tap E. Tap C was then 
connected with B and the experiment performed by opening tap E for a known 
time and then closing it. It 
will be seen that they confirm the predicted uniformity of the concentration along 
most of its extent. 

When the flow is slowed down so that the effect of diffusion is not negligible 
the simple convection theory breaks down and the solute is not dispersed along 
the tube nearly so quickly. The  reason for this can be understood by considering 
figure 1 (b ) .  The vertex of the paraboloid at ZI is carried by convection into the 
pure solvent. The  solute then diffuses radially from it so that the front of the 
patch of solute is continually getting less concentrated than the simple convection 
theory would predict. On the other hand the portion near the well at the rear 
end of the patch is continually being left behind. The solute therefore diffuses 
into the middle of the tube and is then convected forward into the patch of solute 
again. It is difficult to analyse this process mathematically except in the case 
when the solute has spread so far along the tube that it occupies a length which 
is many times its bore. For this reason I have limited my studies to that case. 
Without going into the details of this calculation, which have already been published 
(Taylor 1953, 1954a), I can explain the physical ideas behind it. First one 
notices that if the bore of the experiment tube is small the time taken for radial 
diffusion to  equalize any radial variation in concentration is also small, in fact 
the most persistent radial variation dies to lie or 0.37 of its value in time a2/14-4D, 
where 2a is the bore of the tube and D the coefficient of molecular diffusion. 
I n  a tube of mm bore this amounts to about 6 seconds for potassium perman- 
ganate. When making observations a few seconds after stopping the flow one is 
therefore sure of attaining uniformity in concentration over the cross section. 
When the experiment is made in a time which is short compared with 6 seconds, 
as it was in those which I have alreadydescribed, diffusion has no time to modify 
the effect of convection and the simple theory in which this was neglected was 
jn  fact verified (figure 4). 

A t  the other extreme when the flow is very slow the concentration must be 
nearly uniform over a cross section. To a first approximation therefore dissolved 
matter is convected across any fixed section of the pipe at the mean speed of flow. 
Since this speed is constant at all sections of a tube of uniform bore, this means 
that the distribution of mean concentration is convected along the pipe at the mean 
speed of flow without change of form. T o  me this seemed a remarkable con- 
clusion because the solvent in the centre of the tube moves twice as fast as the mean 
speed, so that pure solvent situated on the centre line must catch up the solute 
and first absorbs and then rejects the dissolved substance, to pass on as un- 
contaminated as it was before entering the contaminated zone. On mentioning 
this, to  me surprising, result to Professor George Temple, he exhibited no surprise 
at all and told me that when he was working as a research student a t  Birkbeck 

I n  this way the measurements A3 were obtained. 
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college with Dr. A. Griffiths on the viscosity of water at very slow rates of flow 
the mean velocities were measured by injecting a spot of dye into the water as an 
mdex. This index was found to remain coherent and was assumed to move 
at the mean speed of flow. Dr. Griffiths' argument (Griffiths 1911) on this 
point is a little obscure, but I think it runs on the lines given above. 

When the transverse diffusion is not sufficiently great to wipe out altogether 
che effect of longitudinal convection the transverse distribution of concentration 
will not be uniform unless the longitudinal distribution is also un$orm. This 
remark contains the key to the solution of the problem, for we see that if the 
fongitudinal distribution is uniform the rate at which the dissolved substance 
passes a section which moves with the mean speed of flow is zero. On the other 
hand, if there is a small longitudinal gradient of concentration along the tube 
convection will give rise to a small transverse variation of concentration which 
in turn will give rise to a small transport of the solute across a section which moves 
with the mean speed. It is not a long step then to see that this small transport 
and the small longitudinal concentration gradient must be proportional to one 
another. Thus the combined effect of longitudinal convection and transverse 
diffusion is to disperse the solute longitudlnally relative to a frame moving at  the  
mean speed of flow by a mechanism which obeys the same law as ordinary one- 
dimensional diffusion relative to a fluid at rest. The virtual coefficient of diffusion, 
K,  for this process is calculated to be (Taylor 1953) 

......( 1) 

Thus all the calculations which have been made in the past about diffusion in, 
say, a diffusion cell can be applied directly to longitudinal dispersion in fluid 
flowing through a tube. In  particular we can predict that if a mass M of a soluble 
material of constant diffusibility K is initially concentrated at x=O in a small 
length of tube of radius a the concentration after time t at distance x will be 

where A- is given by (1)  and U is the mean speed of flow. Similarly, if solution of 
concentration co is started at time t = 0 to flow into a tube initially containing pure 
solvent the concentration is 

c = ~ M u - ~ T - ~  zK-l exp [ - (x - U t ) 2 / 4 K t ]  ......( 2) 

c = $co(l - erf ( $x1K-li2t-1'2)) ......( 3 )  
2 ' 2  where x1 =x-  Ut and erf (2) = -J e-z'dz. 

.\,'7r 0 

EXPERIMENTAL VERIFICATION 
To realize experimentally the conditions assumed in the analysis the time 

necessary for a finite change in concentration to occur owing to convection alone 
must be long compared with the time necessary for radial variations in con- 
centration to die away under the action of radial diffusion alone. This means 
that with a tube 4 mm diameter the speed of flow must be of order 1 to 10 cm 
per minute. .4t such low speeds it is necessary to devise methods for controlling 
the flow at a constant rate. 

A constant small pressure difference between the end of a tube is difficult to 
obtain, and in cases where the solution has a different viscosity from the solvent, 
constancy of pressure difference between the ends of a tube would not ensure 
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constancy of rate of flow. In  later experiments constancy of flow was obtained 
b y  fixing apparatus which removed fluid from the downstream end of the tube 
at  a constant rate. One obvious way to  do this is to fix to the downstream end 
of the experiment tube a capillary of much smaller bore. Another is to connect 
it with a cylinder whose volume is altered at a constant rate by a piston operated 
by a micrometer screw. Figure 5 shows the measured distribution of potassium 

x (em) 
Figure 5. Distribution of c for KMnO, after 11 minutes In tube 0.0504 cm diameter. 

permanganate in a tube 0.0504cm diameter after the flow had been going for 
11 minutes. Initially the colourwas concentrated in the first few centimetresof the 
tube. It will be seen that the distribution is very close to the error curve which is 
marked. The  dispersion is therefore as predicted and, comparing the parameter 
of the error curve in figure 5 with the formula (2), it was found that 
K =  0.0459 cm2 sec- l .  Since U = g  = 0.167 cm sec-l, the diffusion coefficient D, 
found from (l), is 

Though this value lies within the range of previous measurements of D for 
potassium permanganate, these vary through a large range, in fact for nearly 
all strongly coloured solutions D is very dependent on concentration. In  figure 6 

Figure 6 .  Value of 
broken lines. 
circles. 

c x l O ' ( g  cm-J) 
D=a2U2/48K. Range of values of c in measurements 

Fiirth and Ullmann's measurements using diffusion 
of K shown 
cells shown 
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-:.he range of concentrations covered by each experiment and the value obtained 
by applying equations (2) or (3) together with (1) are shown. The experimental 
results of Furth and Ullman (1927), who used diffusion cells, are also shown. 

It is clear from the comparison shown in figure 6 that the measurement of 
dispersion might provide a much simpler technique for measuring c than the use 
of diffusion cells with all their attendant practical difficulties, but when D is not 
independent of c the formulae (2) and (3) are not accurate. In  such cases the only 
practical methods for measuring c are, either to measure diffusion between pairs of 
solutions of slightly different concentrations, a method which cannot be used when 
concentrations are estimated colorimetrically, or to use only the type of experiment 
envisaged in (3), i.e. to introduce the solution at one end of the tube, which is 
initially filled with pure solvent, and maintain a constant flow of the solution. 

The reason why this type of experiment can be analysed, and experiments 
in which the diffusion of an initially concentrated mass is measured cannot be 
interpreted, was originally pointed out by Boltzmann. He showed that when 
diffusion depends on concentration there is one case in which successive distribu- 
tions of concentration are all similar to one another, namely that in which the 
solution and solvent are each initially uniform and are separated by a plane surface. 
Boltzmann showed that at time t after diffusion started the concentration is 
a function of 5 = x t-1’2 only, and that 

. . . . . (5) 

Thus D can be determined €or the whole range of concentrations which occur 
in the experiments if c can be measured accurately as a function of 5 .  

I tried applying this formula to my measurements of dispersion to obtain 
K instead of D as a function of 5,  but when I calculated D from the values of K so 
obtained I found considerable differences between my values and those given in 
Landolt and BBrnstein’s tables. Such is my respect for these famous tables 
that I thought I must be wrong, but on looking up the original authors quoted 
I found that without exception all the measurements of diffusion of dyes and 
strongly coloured substances-covering many pages of the tables-are based 
on the equation (3), which is only correct when D is independent of e.? To get 
a n  idea of how big the error might be I calculated the distribution of concentration 
for an ideal case in which D varies as e-Bc. I found that when ,!I is chosen so that 
this ideal variation is near the variation given in Landolt and Bornstein over the 
range used in the experiment, the error which the authors quoted in those tables 
could have made was in some cases greater than 50%. 

It seems, therefore, that it is worth while to develop the dispersion apparatus 
so that it can make measurements of concentration accurately enough for use in 
deducing K from Boltzmann’s integral and then finding D from (1). I am now 
-engaged on this work. 

DISPERSION IN TURBULENT FLOW 
The success of the method I have described in predicting the dispersion of 

a dissolved salt along a pipe through which a non-turbulent stream is flowing 
-encouraged me to try whether the same physical principles could not be applied 
t o  turbulent flow. The part played by radial diffusion in the former case must 

t This criticism does not apply to all the diffusion measurements reported in Landolt 
and BBrnstein’s tables. In other cases Boltzmann’s method was used. 
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be replaced by turbulent radial transport in the latter. Few measurements of 
radial transport of matter in pipe flow seem to exist, but every measurement 0:' 
pipe friction is automatically a measurement of radial transport of momentum, 
and there are vast numbers of these. Though it is not possible to prove an exac: 
connection between the transport of matter and the transport of momentum in 
turbulent flow, Osborne Reynolds pointed out the consequences which would 
arise if they were exactly analogous. Reynolds' analogy states that the virtual 
coefficient of diffusion for momentum is identical with that for heat or for any 
other transferable property of the fluid. In  the case of radial transfer in a pipe 
this is expressed by the equation 

..... . (6 )  

where E is called the coefficient of turbulent transport, T is the turbulent stress a t  
radius Y ,  U is the velocity and nz the rate of transfer of matter in a radial direction. 
If T~ is the surface friction on the pipe the equation connecting T and 

Since T~ is measured in pipe friction experiments, equations ( 6 )  and (7 )  provide 
a connection between m and ac/ar in terms of quantities previously measured. 
Though Reynolds' analogy is not demonstrably true, and in fact is demonstrably 
untrue in the case of free turbulence, it is found to be very nearly true in the case 
of turbulence near solid boundaries and in pipes, so that there is some justification 
for assuming it to be true in the present case. 

The  equation of continuity, that is the equation which expresses the fact 
that none of the dispersing material is lost during the process of dispersion, can 
be used in a way which is analogous to its use in the case of molecular diffusion. 
Considering as before only cases where the dispersing material is spread over- 
a length which is great compared with the diameter of the pipe, it is found as 
before that, relative to axes which move with the mean speed of flow, material is 
dispersed along the pipe as though by a virtual coefficient of diffusion 

Here e, is the ' friction velocity ', which is defined by'the equation 

A more familiar method for expressing the results of pipe friction experiments is 

where y is a non-dimensional friction coefficient, U the mean speed of flow and p 
the density of the fluid. 

so that (8) can be expressed in the form 

is 
7 = ToY/a. ......( 7 )  

K= lO.lav,. ...... (8) 

T0=/3V'a2. ..... . (9)  

7 0  = Y(4P UZ> ...... (10) 

v d U =  V Y Y P ) ,  ..... . ( 1 1 )  

K =  l O . l a U ( v , / U ) = 7 ~ 1 4 a U ~ y .  . . . . . .  (12) 

Comparing (9) with (10) 

This result (Taylor 1954 b) looks very simple, but the ideas behind it and the 
mechanism it envisages are not so simple. However, the problem of the dispersion 
of material injected into pipes is one of practical importance, and several ex- 
perimental investigations have been made which can be compared with the 
theoretical formula. The  earliest was that of Allen and Taylor (1923), who 
wanted to measure the speed of flow in large pipes conveying water to pouer 
plants. They injected salt into a stream flowing through a straight 40-inch pipe 
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:,55 feet long and measured the conductivity at the far end. Their object was 
rot to measure the dispersion but to find out what point on the conductivity-time 
curve corresponds with the time taken by points travelling with the mean speed 
t 3  cover 355 feet. They measured the mean flow also by other methods and 
f m n d  that the required point on the conductivity-time curve was that at which 
the concentration was a maximum, as the present theory predicts. They did 
r.ot discuss the dispersion, but their published conductivity-time curves look 
Lke error curves. This is in accordance with the theory which predicts that the 
ciistribution of concentration about a point which moves with the mean speed is 

where s1 is the distance from the centre of the concentration. By fitting the best 
error curve to one of Allen and Taylor’s observed distributions a value 
K =  2.18 x lo3 cm2 sec-l was found. In  this experiment U =  105 cm sec-’ and 
U =  20 x 2.540 = 50.8 cm, so that, taking theviscosityofwateras 0.01 1, the Reynolds 
number of the flow was R = 105 x SO.SjO.Oll= 9.7 x lo5. At this Reynolds 
number the resistance coefficient is such that Ulvz=26. T o  compare theory 
with observation it is convenient to calculate the measured value of (K/aU)(  U/v,), 
which according to (12) should be 10.1. In  the experiment just described this is 

c = (const)t-1’2 exp ( - x,2/4Kt) . . . . . . (13) 

. . . . (14) 

‘The agreement between this and the theoretical value 10 1 is better than one 
would be justified in expecting from the nature of the experiment, and in fact 
another of Allen and Taylor’s experiments yielded K/cI‘L‘.= 11.7 when subjected 
to the same analysis. 

In .Wen and Taylor’s experiments the measurements from which dispersion 
can be derived were only incidental to their main purpose. More recently 
dispersion in pipes has become important because very long pipes are used to  
convey fluids to great distances. Different grades of oil, say gasoline and 
Diesel oil, are transported successively in the same pipe. The  pipe is not emptied 
between successive periods of use, so that there is a zone of mixture in which the 
surface of separation between two miscible fluids is dispersed along the pipe. 
It is of economic importance to know how much of each fluid is contaminated 
by mixture with the other. Hull and Kent (1952) have investigated this question 
by injecting a radioactive substance into a 10-inch pipe 152 miles long and 
measuring its dispersion at various points along its course when U = 81 7 cm sec-l. 
Figure 7 shows the concentration-time curves at stations 13.8, 43.1 and 108.5 
miles from the point of injection. Error curves have been superimposed on the 
observed points, and these have been shifted so that their axes lie on the centre 
line of the figure. It will be seen 
that the dispersion is very closely gaussian, but when K is deduced from them it is 
found that K/az. ,  is larger than 10.1. It varies from 12.4 for the station nearest 
to the point of injection to 22.5 at 182 miles. The theoretical formula applies 
to a straight pipe, so that it is hardly to be expected that it would apply accurately 
to a pipe which accommodates itself to the hills and valleys over which it passes, 
but the discrepancy is more than I should have expected in view of the good 
agreement which was found in  other large-scale experiments. 

Smith and Schulze (1948) describe measurements with pipes 440 miles long 
in which two products A and B followed one another. At various points along 

The  ordinates therefore represent t--x U. 
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the pipe samples were drawn off, and from these the length, S, of pipe in which 
the mixture changes from 1% A and 992, B to 99% A and 1% B as found. 
Using the theoretical formula ( 3 )  with (12) to calculate S I found that 

where x is the length of the pipe between the entry and the point of measurement 
The comparison displayed in table 1 between the values of S measured in a 12-inch 
pipe and those calculated using (15) shows very good agreement. 

S2 = 437ax(v,/ U )  . . . ...( 15) 

t -x /U (sec) 

Figure 7. Dispersion in a 10-inch pipe (Hull and Kent 1952). 

When I made the theoretical analysis I did not know of the existence of these 
large-scale experiments, so, with the help of Dr. T. H. Ellison, I set up apparatus 
in the Cavendish Laboratory to measure dispersion in a pipe 0.9 cm diameter 
Table 1. Comparison between Calculated Values of S and those observed by 

Smith and Schulze (1948) in a Long Pipe Line 

x (feet) 

322186 
661109 

1018301 
1402896 
1526085 
2033803 
2279538 

1 0 - 4 ~  

5.9 
5.76 
5.84 
5.91 
5.79 
5.79 
4.50 

Utv, 
25.4 
25 4 
25 4 
25 4 
25.4 
25 4 
24 6 

S (feet) 
equation (15) 

1670 
2390 
2970 
3480 
3870 
4190 
4340 

(feet) x (miles) observed 
1770 61 
2425 12.T 
2890 193 
3505 265 
3895 327 
4360 385 
4670 132 

and 16 metres long. Salt was injected by a spring gun at one point and the 
conductivity at a point 16 metres downstream was recorded on a rotating 
drum camera. The conductivity-time curve so found was nearly gaussian in 
the middle but was not quite symmetrical particularly when the Reynolds number 
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of the  flow was low. This, I think, was due to the fact that in that case an appreciable 
amount of the  brine was in the  laminar boundary layer close to the wall where 
the Reynolds analogy does not hold. 

It will be seen that at 
Reynolds number 1.2 x lo4, where the conductivity-time curve deviates consider- 
ably from the  gaussian form, K/ao, is 12.8, which is well above the theoretical 
value., bu t  at  R = 1.9 x IO4 K / m ,  is 10.0, which is very close to the calculated value. 

T h e  results of these experiments are given in table 2. 

Note. The values of U/vL for the curved pipe and for the rough pipe were nicasured. 
T h e  values for the straight smooth pipe were taken from a curve representing previous 
experimental results at the appropriate value of R. 
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'rable 2 
Pipe Ucmjsec R Ulv, Kl(w, 

40-inch (Allen and Taylor) 105 9.7 \ 10' 26.0 10.0 

!:inch smooth x=1631 cm 222 1.9>(10' 17.5 104 

$-inch rough x=245 cm 146 1.3  X 1 0 4  6.73 1 0 . 5  
:-inch curved x=250 cm 113 0 . 9 ~ 1 0 ~  15.0 21.9 

9 inch smooth x=322 cm 222 1 . 9 ~ 1 0 4  17.5 11.6 

:-inch smooth x=1631 cm 136 I .2x104 16.1 f2.X 

{-inch curved x=250 cm 202 1 . 7 ~ 1 0 ~  16.1 15.0 

Note. The values of U/vL for the curved pipe and for the rough pipe were nicasured. 
T h e  values for the straight smooth pipe were taken from a curve representing previous 
experimental results at the appropriate value of R. 

Pipe 
40-inch (Allen and Taylor) 

9 inch smooth x=322 cm 
!:inch smooth x=1631 cm 
:-inch smooth x=1631 cm 
$-inch rough x=245 cm 
:-inch curved x=250 cm 
{-inch curved x=250 cm 

'rable 2 
U cmjsec 

105 
222 
222 
136 
146 
113 
202 

R Ulv, Kl(w, 
9.7 \ 10' 26.0 10.0 

1.9>(10' 17.5 104 
1 . 2 ~ 1 0 4  16.1 f2.X 
1.3  X 1 0 4  6.73 1 0 . 5  
0 . 9 ~  lo4 15.0 21.9 
1 . 7 ~ 1 0 ~  16.1 15.0 

1 . 9 ~ 1 0 4  17.5 11.6 

Figure 9. Dispersion in a very rough #-inch pipe. Figure 9. Dispersion in a very rough #-inch pipe. 
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The theory should apply to a rough pipe though not to a curved pipe. A pipe 
24 metres long was artificially roughened by first wetting the inner wall with an 
adhesive and then pouring sand down it. Figures 8 and 9 show the record obtained 
and figure 9 the corresponding conductivity-time curve. Though the resistance 
coefficient was increased 6; times, the value of K/av,, namely 10.5, was still 
close to the theoretical value 10.1. When the 0.9 cm pipe was bent into a circle 
about 3 feet diameter, Klav ,  was increased about 50% at R= 1.7 x lo4. These 
results are also given in table 2. 

EFFECTS OF GRAVITY 
(a)  Tube horizontal. 

In  the preceding pages it has been tacitly assumed that the effect of gravity 
on the dispersion is negligible. To estimate the error involved in this erroneous 
assumption I calculated the dispersive power of gravity when the small variation 
of density due to dissolved material of concentration c can be represented by the 
expression 

p=po(l t-ac).  
Here p and p o  are the densities of the solution and the pure solvent, o! has a value 
which can easily be measured and is found in most cases to be of order 1. When 
the tube is horizontal the effect of gravity is to give rise to a current from high 
density to low along the lower half of the tube and a counter current along the top. 
This produces a dispersion which turns out to be negligible compared with that 
due to convection under the conditions of my experiments. 

. . . . . . (16) 

(b) Tube vertical. 

If there is no 
mean flow the solute will merely be transported upwards by molecular diffusion 
when the solution is below a lighter solvent, but when the heavier solution is 
above the solvent the equilibrium might be expected to be unstable. The 
heavier solution would fall down into the solvent producing a downward current 
and the solvent so displaced would form a rising counter current. The  solute 
in the downward current would then diffuse into the rising current of solvent 
and so lose the excess of density over that of the fluid at the same level which 
drives the current. The analysis of this process leads to the condition that 
equilibrium becomes stable and vertical currents stop when the vertical gradient 
of concentration, dcldz, becomes less than 67.94Dp/gpaa4. Here D is the 
coefficient of diffusion, 2a the diameter of the tube, g the acceleration of gravity 
and p the viscosity. In an experiment where a solution is in contact with a 
lighter solvent contained in a vertical tube below it, dc/dz is initially very large, 
so that vertical currents will be set up. Gradually, however, the critical value 
will be approached and the currents will stop. The only means of vertical 
transport is then molecular diffusion which is very slow. If, therefore, the 
vertical gradient of concentration is measured after the currents have stopped, 
a measure of Dp/gpaa4 is obtained. Since p, g ,  p ,  a and a can be measured, 
the experiment provides a method for measuring D. If variations of D,  /I and 0: 

with c are disregarded a very simple method for measuring D is to observe how 

The case when the tube is vertical is much more interesting. 
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far down the tube the solute penetrates. If this is represented by 2, the value 
Qf D isgpaa4co/67.94pZ. Using this method I have obtained values of D which 
lie within the ranges of previous measurements. 
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