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SI Model
Equations for Surfactant-Laden Flows. We consider a 2D microchan-
nel flow over a finite-length SHS, with the geometry presented
in Fig. 2A. Because we maintained a flat plastron in the experi-
ments, and the present focus is on Marangoni stresses, here we
assume that the air–water interface is flat.

The continuity and Navier–Stokes equations for the flow of
mass and momentum are coupled with the transport equation
for a surfactant. The 2D velocity field is u = (u,w) for the (x , z )
directions, and the surfactant concentration field is c. The fluid
has density ρ, as well as dynamic and kinematic viscosities µ and
ν, respectively. The surfactant has bulk diffusivity D . The trans-
port equations are, in dimensional form,

∇ · u = 0, [S1]

∂u
∂t

+∇ · (uu) = −∇p
ρ

+ ν∇2u, [S2]

∂c

∂t
+∇ · (uc) = D∇2c. [S3]

The inlet and outlet conditions at x = 0 and x = g+` respectively
consist of a Poiseuille flow with mean velocity U and maximum
velocity umax, such that

u(z ) = 6U
z

H

(
1− z

H

)
, [S4]

whereas the inlet has a specified bulk concentration c = c0, and
at the outlet we set

∂c

∂x
= 0. [S5]

On the solid surfaces at z = 0 (top boundary or SHS side in Fig.
2A) and z =−H (bottom boundary)

u = 0, [S6]

∂c

∂z
= 0. [S7]

At the plastron, an adsorption/desorption model is used to cou-
ple the surfactant transport between the bulk and the interface

D
∂c

∂z

∣∣∣∣
I

= −S(cI ,Γ), [S8]

∂Γ

∂t
+
∂(uI Γ)

∂x
= Ds

∂2Γ

∂x2
+ S(cI ,Γ), [S9]

where Γ is the interfacial concentration, Ds is the surface dif-
fusivity, the subscript I denotes quantities at the interface, and
S(cI ,Γ) encapsulates the adsorption model. In practice, the
choice of adsorption kinetics is of relatively weak importance,
because surfactant effects are already very strong at extremely
low surfactant concentrations (shown in Fig. 2 and Fig. S1).
For such low values of concentration, different kinetics mod-
els are essentially equivalent (40). For definiteness, here we use
Frumkin kinetics

S(cI ,Γ) = κacI (Γm − Γ)− κd Γ eAΓ/Γm , [S10]

where κa, κd are the adsorption and desorption coefficients,
Γm is the maximum packing interfacial concentration, and A is
the interaction coefficient (39). On the air–water interface, the
velocity field is coupled to the interfacial surfactant distribution
through a balance between viscous and Marangoni stresses (45)

w = 0, [S11]

µ
∂u

∂z
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I

= −nRT
(

Γm

Γm − Γ
+ A

Γ

Γm

)
∂Γ

∂x
, [S12]

where n is the surfactant style constant (40), R is the universal
gas constant, and T is the absolute temperature. The boundary
condition for Γ, where the interface meets each solid boundary at
a stagnation point on the top boundary z = 0 (i.e., upstream stag-
nation point, x = `/2, and downstream stagnation point, x = g +
`/2; Fig. 2A), is given by

∂Γ

∂x
= 0. [S13]

We can nondimensionalize Eqs. S1–S3, S9, and S10 and the
boundary conditions S4–S8 and S11–S13 to reveal nine charac-
teristic nondimensional numbers for this problem. Using g as a
characteristic length scale, U as a characteristic velocity scale,
g/U as a characteristic time scale, ρU 2 as a characteristic pres-
sure scale, c0 as a characteristic bulk concentration scale, and Γm

as a characteristic interfacial concentration scale, we obtain the
nondimensional conservation equations for mass, momentum,
bulk surfactant, and interfacial surfactant (where hats denote
nondimensional quantities),

∇ · û = 0, [S14]

∂û
∂ t̂

+∇ · (ûû) = −∇p̂ +
Ĥ

Re
∇2û, [S15]

∂ĉ

∂ t̂
+∇ · (ûĉ) =

1

Pe
∇2ĉ, [S16]

∂Γ̂

∂ t̂
+
∂(ûI Γ̂)

∂x̂
=

1

Pes

∂2Γ̂

∂x̂2
+ Ŝ(ĉI , Γ̂), [S17]

where the source–sink concentration flux at the interface is

Ŝ(ĉI , Γ̂) = Bi
[
k ĉI (1− Γ̂)− eAΓ̂Γ̂

]
. [S18]

At the inlet x̂ = 0, the boundary conditions are, in nondimen-
sional form,

û =
6ẑ

Ĥ

(
1− ẑ

Ĥ

)
, [S19]

ŵ = 0, [S20]

ĉ = 1. [S21]

At the outlet x̂ = 1 + ˆ̀,

û =
6ẑ

Ĥ

(
1− ẑ

Ĥ

)
, [S22]

ŵ = 0, [S23]

∂ĉ

∂x̂
= 0. [S24]

On the solid surfaces at ẑ = 0 and ẑ =−Ĥ ,

û = 0, [S25]

∂ĉ

∂ẑ
= 0. [S26]

On the air–water interface at ẑ = 0, ˆ̀/2≤ x̂ ≤ ˆ̀/2 + 1,

ŵ = 0, [S27]
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)
∂Γ̂

∂x̂
, [S29]

∂Γ̂

∂x̂
= 0 at x̂ = ˆ̀/2, 1 + ˆ̀/2. [S30]

The Reynolds number is Re =HU /ν, based on the transverse
length scale H instead of the longitudinal length scale g . For
the internal channel flow considered in this study, H is the
appropriate length scale to determine the flow regime, which is
Stokes flow (Re . 1) for all our experiments and numerical sim-
ulations. The bulk and surface Péclet numbers are Pe = gU /D
and Pes = gU /Ds. The nondimensional bulk concentration is
k =κac0/κd. The Biot number is Bi =κdg/U . The kinetics are
parameterized by χ=κdg/(κaΓm). The Marangoni number is
Ma =nRTΓm/(µU ). We note that there are also two geomet-
rical nondimensional numbers: the aspect ratio of the channel
Ĥ =H /g and the proportion of solid surface to free surface on
the SHS side ˆ̀= `/g . With nine nondimensional parameters,
of which six depend on the physical and kinetic properties of
the surfactant, the full transport problem related to surfactant-
contaminated SHSs is effectively very complex.

The nondimensional numbers of all our experiments and simu-
lations are presented in Tables S2, S4, and S7. We have also com-
puted two other useful nondimensional ratios (41): D=χ(1 +

k)/Pe1/2, the ratio of the diffusive flux of surfactants across the
diffusive boundary layer to the convective flux along the air–
water interface (which is based on [S16] at steady state), and
K=Bi(1 + k), the ratio of the adsorption/desorption kinetics
flux to the convective flux along the interface (which is based
on [S18]). A discussion of the scaling analysis of the equations
above and their characteristic nondimensional numbers is pro-
vided in SI Analysis and Discussion of Characteristic Nondimen-
sional Numbers.

SI Materials and Methods
Two-Dimensional Surfactant-Laden Simulations. The model pre-
sented above was implemented in COMSOL Multiphysics in a
2D finite-element numerical simulation. The geometry corre-
sponding to Fig. 2A was created using the values for the gap
length g , the ridge length `, the chamber height H , and the
maximum forcing speed of the Poiseuille flow umax presented
in Table S1. All other relevant physical and kinetic parameters
of the simulations are presented in Table S1 and correspond to
the well-characterized surfactant SDS. Note that in Supporting
Information, we use interchangeably mol·m−3 and mM as equal
units for surfactant bulk concentrations. The SDS properties are
well described by Frumkin kinetics (39). Nondimensional num-
bers associated with these 2D simulations are listed in Table S2.

When designing the mesh of the domain, we were particularly
careful about strong possible variations of some variables near
the stagnation points at the beginning and end of the gap. The
maximum size of elements near these points is equal to 0.01 µm.
For all simulations with g < 1 mm, the maximum element size
on the interface is 0.05 µm. For simulations with g = 1 mm and
2 mm, the maximum element size on the interface is 0.2 µm.
Finally, for g = 5 mm and 10 mm, a coarser mesh is used in the
central part of the interface, 1 mm away from the endpoints, with
a maximum element size of 2 µm. In the bulk, the maximum ele-
ment size is 10 µm for all simulations.

To implement the model, we combine the laminar flow mod-
ule with a dilute species transport module of COMSOL for the
transport equations in the bulk (Eqs. S1–S3). The equation for
the transport of surfactant on the interface (Eq. S9) is imple-

mented through a general form boundary partial differential
equation, with a source term corresponding to the kinetics flux
S . This flux also serves to implement the boundary condition
S8 at the interface for the dilute species transport module. The
Marangoni forces resulting from the nonuniform distribution of
surfactants at the interface modify the laminar flow, as stated in
[S12], through a weak contribution at the interface coupled to a
free-slip boundary condition.

The flow in the simulated chamber is forced by an inlet velocity
boundary condition corresponding to a Poiseuille velocity profile
u(z ) = 4umaxz (H−z )/H 2 (with umax = 3U /2). The initial guess
velocity profile for the stationary solver is set to this reference
Poiseuille profile in the entire chamber.

To increase the accuracy of the computation, we discretize the
fluid flow with quadratic elements for the velocity field and linear
elements for the pressure field and quadratic elements for the
concentration field in the bulk and the concentration field on the
interface.

We use the MUMPS solver of COMSOL to solve for the
steady state of the system, with a relative tolerance of 10−5.

To check how the results obtained would change for sur-
factants of different strengths, we also ran simulations for two
extreme sets of parameters values for the surfactant choice, using
the Frumkin kinetics framework (Fig. S1). The first set corre-
sponds to a model of strong surfactant with high affinity to the
interface and low diffusivity (κd = 1 s−1, κa = 106 m3·mol−1·s−1,
Γm = 10−5 mol·m−2, A=−3, D =Ds = 10−11 m2·s−1), the sec-
ond set corresponds to a model of weak surfactant with
weak affinity to the interface and high diffusivity that pro-
motes the smoothing of any interfacial gradients (κd = 100 s−1,
κa = 10−1 m3·mol−1·s−1, Γm = 10−6 mol·m−2, A= 3, D =Ds =
10−9 m2·s−1). These parameters were typically selected from the
extreme values of the data reported in tables 1 and 3 in ref.
40. We performed simulations with the rest of the parameters
as in the simulation for Fig. 2D, except for the bulk concentra-
tion c0 whose range was extended to cover the transitions for
the strong and weak surfactants, respectively (see Tables S1 and
S2 for all of the parameter values and associated nondimen-
sional numbers, respectively). For both cases, we observe pro-
gressive immobilization of the interface and increase of viscous
stress with increasing bulk concentration of surfactant (Fig. S1).
For the strong surfactant (plotted with blue symbols), the transi-
tion toward a no-slip boundary condition occurs at minute con-
centrations, below c0≈ 10−12 mM and well below the transition
value for SDS (c0≈ 10−4 mM). For the weak surfactant (plotted
with green symbols), the transition occurs at c0≈ 1 mM, which
is much higher than for SDS. In general, one cannot of course
guarantee that no traces of strong surfactants are present in a
given flow.

Three-Dimensional Surfactant-Free Simulations. To obtain a refer-
ence flow profile for long rectangular gratings located on one
side of a 3D microchannel, in the idealized case of pure water
(c0 = 0), we solved the Navier–Stokes equations using COMSOL
Multiphysics. The aim is to compare these clean-case or
surfactant-free simulations with the two steady-state forcing
experiments shown in Fig. 3 D and E with symbols (numerical
results are shown with solid lines). Our 3D numerical domain
corresponds to the portion of a microchannel below half of a
grating element, with plane of symmetry (x , y =w/2, z ) (Fig. 2
B and C). We use symmetry boundary conditions on each side
of the domain to solve for the flow on a large number of paral-
lel gratings as in the experiment. All of the parameters for these
two simulations, with g = 2 mm and 30 mm in Fig. 3 D and E,
respectively, are detailed in Table S5. The numerical parame-
ters are chosen to match the experimental conditions, assuming a
surfactant-free flow. No-slip boundary conditions are imposed on
the ridges, whereas free slip is imposed on the plastron. The flow
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was forced by a 2D Poiseuille profile u(z ) = 4umaxz (H − z )/H 2

with umax = 120µm·s−1. All of the experiments being conducted
at low Reynolds number in the Stokes regime, we note that the
normalized velocity profiles presented in Fig. 3 D and E do not
depend on umax or U . This same velocity profile was also cho-
sen as an initial guess for the steady-state solution. Water vis-
cosity was µ= 9.3 × 10−4 N·s·m−2, corresponding to the water
temperature of 23 ◦C measured in the laboratory during the
steady-state forcing experiments. We use a Physics-controlled
mesh with finer to extrafine element size, with a linear discretiza-
tion of elements and further local refinement of meshing around
the areas of interest if required.

SI Experimental Protocols
Cleaning Protocols. Two different cleaning protocols were fol-
lowed in the preparation of the experiments. For both cleaning
protocols, as well as all of the experiments conducted, only puri-
fied water (using the Milli Q water purification system; EMD
Millipore) at 23 ◦C with resistivity 18.2 MΩ·cm and less than 5
parts per billion of total organic content was used.

A strict 10-d cleaning protocol was designed in an attempt
to avoid any contamination of the microchannel, which could
induce surfactant Marangoni stresses. The cleaning and experi-
mental preparation were performed using laboratory coats and
thoroughly washed nitrile gloves (Fisherbrand) (we note that
standard laboratory gloves have traces of chemicals on their sur-
face, which induce surfactant Marangoni stresses). The prepa-
ration of the PDMS (Sylgard 184) microchannels was done in a
clean room. In this protocol, apart from the PDMS, only materi-
als that could be cleaned thoroughly were used for the surfaces
that were in contact with water during the experiments. In par-
ticular, all common plastic materials were avoided as they tend
to release chemical traces with a surfactant effect when in con-
tact with water. All tubings were made of fluorinated ethylene
propylene (FEP) (0.5 mm internal diameter; The Dolomite Cen-
ter Ltd.), connectors were made of stainless steel, the syringes
(Gastight Hamilton) used to handle water and the microbead
suspension were made of glass and polytetrafluoroethylene and
fitted with stainless steel needles (24-gauge injection needles;
Carl Roth GmbH), and the inlet and outlet reservoirs were made
of glass. All of the tubings, connectors, needles, and reservoirs
underwent five washing, rinsing, and curing cycles over a 10-d
period before the experiments. The curing containers were large
glass beakers that had been cleaned in an acid rinse dishwasher
and further rinsed for 5 min with purified water. During the
curing process, all of the beakers were covered to reduce con-
tamination from the air. On the day of the experiments, all
of the tubings and reservoirs were washed again with purified
water. Washed metal tweezers were used to handle tubings and
connectors to avoid touching surfaces that could be in con-
tact with the water flowing through the microchannel. The fluo-
rescent microbeads (LifeTechnologies FluoSphere carboxylate
0.5-µm diameter yellow/green 505/515) used to perform µ-PIV
were washed and rinsed 10 times with purified water to dilute
significantly any potential surfactant contamination traces. The
coverslip forming the base of the microchannel was washed with
abundant purified water and then air dried.

This strict cleaning protocol was followed only when con-
ducting some steady-forcing experiments. The results, similar
to those presented in Fig. 3D (conducted following the nor-
mal cleaning protocol described below), showed no or little slip
in comparison with theoretical and numerical predictions with
surfactant-free flows. As we show in Fig. 2D, the level of con-
tamination necessary to induce surfactant Marangoni stresses is
extremely small, of the order of 10−4 mM for the SDS surfactant.
Moreover, as we show in Fig. S1, SDS is not the strongest surfac-
tant and can be considered as inducing mild Marangoni stresses
(see tables 1 and 3 in ref. 40, for a comparison of a broad range

of surfactants). Therefore, it is very likely that, even following
this strict cleaning protocol, sufficient traces of chemicals with a
surfactant effect contaminated our experiments. We believe that
the most likely source of contamination in our experiments is
the PDMS and its associated impurities. Un–cross-linked PDMS
chains or impurities trapped in the PDMS could have a surfac-
tant effect as has been observed in ref. 46. Contamination could
also come from other sources, which might simply be unavoid-
able in normal laboratory conditions.

As surfactant contaminations were simply unavoidable in our
experiments, a less time-consuming cleaning protocol was used
for all of the experimental results presented in this study. We
used flexible tubing (Tygon ND-100-80) instead of the FEP tub-
ing, which was more difficult to handle due to its rigidity. The
outlet and inlet reservoirs were replaced by polypropylene tubes
(Eppendorf) or plastic syringes (BD Plastipack). All of the other
elements of the apparatus, preparation tools, and materials were
the same. Furthermore, cleaning of the tools, materials, tub-
ings, connectors, and reservoirs was performed on the day of the
experiment. They were all washed with plenty of purified water:
typically with at least 10 times the volume they can contain. The
fluorescent microbeads were washed at least 3 times.

Steady-Forcing Experiments. For steady-forcing experiments, the
chamber was first filled with the suspension of microbeads, tak-
ing great care to avoid trapping any air bubble in the tub-
ing or in the chamber. To obtain a low level of flow rate in
the chamber while allowing accurate positioning of the inlet
reservoir with respect to the outlet reservoir, a constriction was
introduced on the hydraulic line by mounting a 30-gauge
polypropylene syringe tip (Adhesive Dispensing Ltd.) on the
inlet reservoir (syringe from BD Plastipack). Using a manual lin-
ear stage, the inlet reservoir was moved vertically after initial fill-
ing of the chamber until no flow could be observed in the middle
of the chamber. This corresponded to the level of zero pressure
gradient along the microfluidic line. The inlet position was then
shifted by 5 mm ± 10µm, using the linear manual stage. Imag-
ing was then performed in the central longitudinal portion of the
gratings. Stacks of 30 successive images were taken at ≈10 fps at
different z positions in the chamber and at different time points
for each experiment. Once a microchannel was successfully pre-
pared to conduct a series of experiments, most of the plastrons
of the SHS gratings remained stable for ≈2 h.

The details of the parameters for the experiments presented
in Fig. 3 D and E are described in Table S3. All of the nondi-
mensional numbers associated with these experiments are pre-
sented in Table S4. As the type of surfactant that contaminated
these experiments is unknown, we have assumed the same prop-
erties as the weak and strong surfactants whose physical and
kinetics properties are described in Table S1. We have also
assumed a broad concentration range for both surfactants, from
10−12 mol·m−3 to 1 mol·m−3. This gives us a broad range of val-
ues for the different nondimensional numbers. The mean forcing
speed U was calculated from the experimental velocity profile by
fitting a parabolic profile u(z ) = 6Uz (H − z )/H 2 to the data.

Pressure-Relaxation Experiments. The protocol for each experi-
ment had two phases: an initial loading phase with strong back-
ground flow and then a second phase without background flow
to measure the surfactant Marangoni-driven backflow. During
the initial loading phase the flow was driven at a very high back-
ground pressure gradient, to transport any surfactant along the
air–water interface to the downstream stagnation end of a grat-
ing. This phase lasts for 4 min, during which images of the flow
field were taken at different heights in the channel to obtain the
vertical distribution of the stream-wise velocity profile. A typical
velocity profile measured during the loading phase of the exper-
iment shown in Fig. 4A is presented in Fig. S2. As the exposure
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time on the camera was smaller but of the same order of magni-
tude as the typical time for the fluorescent particles to cross the
field of view, particles were seen as streaks of dots on each image.
The dots forming the streaks originate from the imaging by the
spinning disk used with the microscope. The velocity profile was
obtained by measuring the mean length of the fluorescent parti-
cle streaks on the image and dividing by the exposure time. As we
can see in Fig. S2, the velocity profile measured in a vertical plane
centered in the middle of a grating does not show any significant
slip velocity at the air–water interface. We note that the spatial
resolution and the technique to measure the velocity were not
designed to measure accurately the velocity close to the plastron,
as was done in the steady-forcing experiments (previous section
and Fig. 3). The aim here was to obtain an estimate of the mean
flow field in the microchannel. The profile follows a classical 2D
Poiseuille profile, from which we computed the mean load speed
U plotted in Fig. 4C.

In the second phase, the background pressure gradient was
suppressed to stop the flow. Images of the flow field were
recorded at a distance of z =−4µm ± 1µm from the air–water
interface. Images were recorded for 1 min or 2 min starting ≈5 s
before the background pressure gradient was suppressed (this
corresponds to t = 0 in Fig. 4 A, B, and D), at a frame rate of
around 24 frames per second. See the snapshot corresponding to
Movie S1 as an example. These images were then analyzed with
µ-PIV, as explained in Materials and Methods, to produce the
velocity fields, such as the one displayed in Fig. 4A. Then, the
experiment was repeated but with imposing a negative back-
ground pressure gradient in the microchannel to produce an
opposite flow. We could thus verify that the effect observed was
independent of the flow direction in the initial loading phase.

The apparatus and the microchannels were prepared following
the initial steps of the protocol described in the previous section.
Then, to control the background pressure gradient imposed in
the microchannel during the loading phase and ensure a rapid
and smooth transition between the two phases, the inlet reser-
voir was attached at midheight onto a 150-mm motorized stage
(Thorlabs NRT150/M) driven by a precision controller (Thor-
labs APT BSC201, with 2 µm precision; maximum acceleration,
50 mm·s−2; maximum speed, 50 mm·s−1). This midheight con-
stituted our zero elevation reference. The outlet reservoir was
attached onto the fixed part of the motorized stage, which was
itself attached onto a millimetric precision vertical ramp. Adjust-
ing the height of the motorized stage effectively controlled the
hydrostatic pressure in the microchannel and thus the interfa-
cial deflection of the plastron. An initial upward loading phase
was conducted, without recording any images, to determine accu-
rately the level of zero background pressure gradient required
for the second phase. Indeed, during this first loading phase
where the inlet reservoir was raised to a given height (∆Hr > 0)
compared with the outlet reservoir, water transferred from the
inlet reservoir to the outlet reservoir. This led to a slight increase
in the neutral elevation of the inlet reservoir corresponding to a
zero background pressure required for the second phase. Then,
to avoid complete depletion of the inlet reservoir by having flow
in one direction only for all of the experiments, the next load-
ing phase was conducted with a flow in the opposite direction,
by lowering the inlet reservoir to a negative or opposite ele-
vation (∆Hr < 0) of the exact same distance as in the upward
loading phase. At the end of this first downward loading phase,
which also lasts exactly 4 min, the inlet reservoir could simply be
returned to the original zero reference elevation, having trans-
ferred back to the inlet reservoir the same amount of water
that was depleted during the upward loading phase. The neu-
tral elevations at the end of the upward and downward load-
ing phases were found with an accuracy of 2–3 µm, which pro-
duced a very small flow below the level of detection of the
µ-PIV system. This cycle was then repeated four times, with

images recorded during the loading phase to measure the veloc-
ity of the backflow.

The experimental parameters of all of the pressure-relaxation
experiments are presented in Table S6. All of the nondimen-
sional numbers associated with these experiments are presented
in Table S7. Similar to the steady experiments, as the type of
surfactant that contaminated these experiments is unknown, we
have assumed the same properties as the weak and strong sur-
factants whose kinetics properties are described in Table S1. We
have also assumed a broad concentration range for both surfac-
tants, from 10−12 mol·m−3 to 1 mol·m−3. This gives us a broad
range of values for the different nondimensional numbers. Note
that by convention the background flow mean speed U is always
considered positive, independently of the flow direction in the
microchannel, so that the backflow is always negative, as shown
in Fig. 4 A and B. To indicate whether the loading phase was con-
ducted upward or downward, ∆Hr is shown as positive or nega-
tive, respectively. As can be noted, there is a small asymmetry
of ∼±5% between the mean flow speeds of an upward loading
phase and a downward loading phase. This is due to a differ-
ent spatial arrangement of the tubings between the two loading
phases. We also note that not all experiments could be exploited
quantitatively. Due to the strong pressure change at the end of
the loading phase, the plastron of some gratings failed and led
to their wetting. Wetting could affect either the grating under
study or an adjacent grating (notes in Table S6). With adjacent
grating failure, the backflow was still observed on the remaining
plastron, with qualitatively similar magnitude and time scale, but
the backflow velocity was affected through viscous stresses in the
water. These data were therefore not quantitatively accurate and
have not been included in the graphs presented in Fig. 4 C and
D. The contrast between the flow field of a nonwetted grating
and that of a wetted grating is also very clear when stopping the
background pressure gradient. Similar to the flow above a ridge,
the flow in the wetted grating stops immediately at the end of
the loading phase, showing no backflow (Movie S2, which corre-
sponds to Experiments 2-4 in Table S6).

Impact of Thermal Marangoni Effects in Experiments. We assess
the potential impact of thermal Marangoni effects in our experi-
ments to examine whether the backflow observed in the pressure-
relaxation experiments could be due to thermal Marangoni
effects. We distinguish steady temperature gradients from flow-
dependent gradients.

Steady temperature gradients can arise due to spatial tempera-
ture variations in the setup close to the microchannel. As the back-
flow was observed in both flow directions through the microchan-
nel, within a few minutes’ interval, this implies that a steady spatial
temperature gradient did not affect the experiments.

Temperature gradients could also arise due to heat being
advected by the flow during the loading phase. This heat could
come from the laser, although we note that its power was already
very small, less than 155 µW, and only a small fraction would
have been absorbed as heat by water. As the microchannel
height is only H ≈ 0.1 mm, the time scale for thermal dif-
fusion across H is of the order of H 2/DT ≈ 0.1 s, where
DT ≈ 1.4 × 10−7 m2·s−1 is the thermal diffusivity of water.
Because the bottom of the microchannel is maintained at a fixed
temperature by a Peltier element, as soon as the loading phase
ends the temperature variations in the microchannel should van-
ish within ∼0.1 s. However, the time scales for the backflow are
typically of the order of 1 min. Therefore, thermal Marangoni
effects had negligible impact in our experiments.

SI Analysis and Discussion of Characteristic Nondimensional
Numbers
The problem of surfactant-contaminated SHSs is a complex
transport problem involving several coupled nonlinear partial
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differential equations (Eqs. S14–S17). In addition, at the air–
water interface a flux continuity condition S28 couples the bulk
concentration and the interfacial concentration, and a stress con-
tinuity condition S29 couples the viscous force and the interfacial
concentration gradient (i.e., Marangoni effect). To understand
the effects of geometry, surfactant concentration or changes in
surfactant properties on the drag reduction performance of the
SHS through the scaling analysis of these equations is therefore
a nontrivial exercise. Nevertheless, a few remarks can be made to
explain, at least qualitatively, the main results of our study. The
key results are that (i) only very small amounts of surfactants are
needed to drastically reduce the drag reduction performance of
SHSs (shown numerically and suggested by our careful exper-
imental trial) and (ii) free slip at the air–water interface can be
recovered when increasing the length of the gap g (shown numer-
ically and experimentally).

From [S29], the air–water interface becomes a no-slip bound-
ary if the velocity gradient at the interface scales as ∂û/∂ẑ ∼1/Ĥ

(with Ĥ =H /g). Assuming that the interfacial concentration
gradient scales as ∂Γ̂/∂x̂ ∼〈Γ̂〉 (with 〈Γ̂〉 the average concentra-
tion over the gap), we find that

〈Γ̂〉 ∼ g

HMa
. [S31]

Even when assuming extremely weak surfactant properties, the
Marangoni number is very large in all our experiments and
numerical simulations, Ma ∼ 103–106. We note that Ma is based
on the maximum packing concentration Γm instead of a mea-
sure of the actual interfacial concentration, which is unknown.
Hence, Ma represents the maximum possible value in the limit
Γ̂→ 1. Large Ma values imply that no slip at the interface can be
achieved for 〈Γ̂〉� 1. Although the relationship between the c0

and Γ is rather complex through the diffusive boundary layer,
the kinetics flux, and various couplings, this suggests that the
threshold for the bulk surfactant contaminant c0 is also very
small. This is in agreement with our key finding i. Also, [S29]
and [S31] show that increasing the gap length g , while main-
taining all other parameters constant, will eventually lead to an
increase in slip at the SHS. This is in agreement with our key
finding ii.

Eqs. S29 and S31 suggest a linear relationship between the slip
velocity at the interface and the interfacial concentration, at least
for low 〈Γ̂〉. However, we have found in Fig. 2D and [S1] that the
transition from no slip to free slip at the SHS is strongly nonlin-
ear, regardless of the type of surfactant. Similarly, the transition
due to changes in gap length shown in Fig. 2E is also nonlinear.
This is characteristic of the strong nonlinear couplings between
the velocity field, the bulk concentration, and the interfacial con-
centration in this problem. It also shows the limits of our scaling
analysis, where we assumed a simple linear profile for Γ. The
authors of ref. 41 describe the different regimes for the surfac-
tant concentration distribution at the interface of air bubbles ris-
ing in surfactant-contaminated water. Their axisymmetric prob-
lem is similar to our 2D problem, considering the top and bottom
of the bubble as the upstream and downstream stagnation points
of our SHS. The regimes they describe, based on the surfactant-
related nondimensional parameters, relate the interfacial surfac-
tant distribution with the flow at the macroscopic scale. If D∼ 1

and K∼ 1 [where D=χ(1 + k)/Pe1/2 is the ratio of the diffu-
sive flux of surfactants across the diffusive boundary layer to the
convective flux along the interface, andK=Bi(1 + k)is the ratio
of the adsorption/desorption kinetics flux to the convective flux
along the interface], then the interfacial concentration gradient
is approximately uniform (i.e., the concentration profile is lin-
ear) along most of the interface. This is known as the “uniformly
retarded regime.” If D� 1 or K� 1 and Pes� 1, the interface
is in the stagnant cap regime, characterized by a depletion of sur-

factant in the upstream part of the interface, a sharp nonlinear
increase of the interfacial concentration, and an accumulation of
surfactant near the downstream stagnation point.

According to the results displayed in Table S2, all our numer-
ical simulations (Fig. 2 and Fig. S1) are in a transition regime
between the uniformly retarded regime and the stagnant cap
regime, except for the strong model surfactant (Fig. S1) that is in
the stagnant cap regime. This means that the surfactant distribu-
tion is neither constant nor linear along the interface. Marangoni
stresses can therefore develop due to concentration gradients
along the interface in all our experiments.

Although the type of surfactants and their concentration are
unknown in all our experiments (Figs. 3 and 4), we have esti-
mated ranges for all of the nondimensional numbers in Tables
S4 and S7, using the physical and kinetics properties of the weak
and strong model surfactants described in Table S1 and assuming
a broad range of concentration from c0 = 10−12 to 1 mol·m−3.
The dimensional numbers show that all our experiments are most
likely in a transition regime, similar to the results found for our
numerical simulations. Only if the contaminant present in our
experiments had the same properties as the strong model surfac-
tant and its concentration was less than≈0.1 mol·m−3 would the
experiments be in the stagnant cap regime. Thus, the numerical
simulations with SDS as contaminant appear to be an appropri-
ate model for this problem.

Therefore, the analysis of the nondimensional characteristic
numbers confirms the main conclusions of our study. Surfactant
contaminants at very small concentrations can induce Marangoni
stresses at the air–water interface of the SHS through a nonuni-
form concentration distribution established by the flow. The sur-
factant distribution is most likely in a nonlinear transition regime
between the uniformly retarded regime and the stagnant cap
regime. Marangoni stresses at the SHS can be reduced if the dis-
tance between the two stagnation points is larger than a critical
value, which appears to be a nonlinear function of the interfa-
cial concentration distribution, the Marangoni number, and the
channel height.

SI Model for Pressure-Relaxation Experiments
We develop a model that predicts the temporal scale for the
rapid backflow that we observed in the pressure-relaxation exper-
iments (Fig. 4). We consider the geometry described in Fig. 2A,
with the flow in the loading phase in the positive direction. We
assume that the backflow observed at the end of the loading
phase and developing in the negative direction is dominated by
advection and thus neglect diffusion along the interface and the
adsorption–diffusion flux between the interface and the bulk.
These assumptions correspond to the stagnant cap regime where
Pes� 1 and D� 1 or K� 1, which is possible in our exper-
iments if the surfactant contaminants are strong and in rela-
tively low concentrations. This is possible if contaminants are
only hydrophobic PDMS chains. We solve the one-dimensional
time-dependent advection equation for the transport of sur-
factants at the interface. Eq. S17 simplifies to, in nondimen-
sional form,

∂Γ̂

∂ t̂
+
∂(ûI Γ̂)

∂x̂
= 0. [S32]

In addition, because Re =UH /ν� 1, viscous spreading across
the channel height occurs very quickly compared with surfactant
advection, and we approximate (∂û/∂ẑ )I as ûI /Ĥ in the left-
hand side of [S29]. Given that the surfactant concentration is
very small, Γ̂� 1, the right-hand side of [S29] can be linearized
to give

ûI

Ĥ
= −Ma

∂Γ̂

∂x̂
. [S33]
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Substituting ûI from [S33] into [S32], we find the conservation
equation for Γ̂:

∂Γ̂

∂ t̂
−MaĤ

∂

∂x̂

(
Γ̂
∂Γ̂

∂x̂

)
= 0. [S34]

We introduce the similarity variables

η =
1 + ˆ̀/2− x̂(
t̂MaĤ

)1/3
, [S35]

Γ̂(x , t) =
(
t̂MaĤ

)−1/3

f (η). [S36]

Substituting into [S34], integrating twice, and using the boundary
condition S30, the solution is

Γ̂(x , t) =
C(

t̂MaĤ
)1/3

−

(
1 + ˆ̀/2− x̂

)2

6t̂MaĤ
, [S37]

which is valid for t̂ larger than diffusion time (i.e., at very small
t̂ diffusion plays a role) and for time small enough that the front
of the advection x̂f (t̂) is still between the two stagnation points,
ˆ̀/2≤ x̂f ≤ 1 + ˆ̀/2. For the initial condition, if we assume that
the loading phase had a strong positive background flow (such
as in the pressure-relaxation experiments), then surfactants have
accumulated near the downstream stagnation point x̂ = 1 + ˆ̀/2
for t̂ ≤ 0. The exact distribution of the surfactants at t̂ = 0 is
unknown, but in the stagnant cap regime, we can assume that
it is steep near x̂ = 1 + ˆ̀/2. The constant of integration C is
effectively a measure of the total amount of surfactant on the
interface, which is constant at all times under our assumption of
negligible exchanges with the bulk. This is effectively the main
unknown in our experiments. We find

Fig. S1. Simulations of surfactant-laden flows in the 2D model SHS chamber shown in Fig. 2A. We compare the averaged normalized drag vs. the surfactant
concentration for varying surfactant properties, using Frumkin kinetics. The SDS properties and the properties of the weak and strong model surfactants
(defined using the extreme property values reported in ref. 40) are presented in Table S1. The associated characteristic nondimensional numbers of the SDS
and the strong and weak model surfactants are presented in Table S2. The behavior of the transition is similar for all three surfactants, but it occurs at
different concentration thresholds. The threshold is particularly low for the strong surfactant, c0≤ 10−10 mM.

C =

( √
3

2
√

2

∫ 1+ˆ̀/2

x̂f

Γ̂ dx̂

)2/3

, [S38]

where x̂f (t̂) is the front of the surfactant; i.e., where Γ vanishes,

x̂f = 1 + ˆ̀/2−
√

6C
(
t̂MaĤ

)1/3

, [S39]

which is effectively valid in our finite-length geometry until the
front reaches the stagnation point at x̂ = ˆ̀/2, as the model
assumes a semi-infinite lane x̂ ≤ 1 + ˆ̀/2. From [S33] and [S37],
the interfacial speed due to surfactant gradients is therefore

ûI = −1 + ˆ̀/2− x̂

3t̂
. [S40]

Thus, ûI is negative, corresponding to the backflow observed
in our experiments (Fig. 4 A and B) for t̂ > 0. Once the load-
ing phase ends and the background flow stops, the surfactants
travel back along the interface, driving a Marangoni backflow, to
eventually redistribute uniformly along the air–water interface,
ˆ̀/2≤ x̂ ≤ 1 + ˆ̀/2. This result also shows that the backflow veloc-
ity should decrease in time as 1/t̂ . We compare this scaling pre-
diction with our experimental results in Fig. 4D. As mentioned
previously, this result is not valid at very small time, where dif-
fusion processes and the unknown initial distribution of the sur-
factant have a strong influence on the Marangoni-driven flow.
Hence, it cannot inform us about the dependence of the peak
backflow velocity, measured at t̂ ≈ 0, with U (Fig. 4C). It informs
us only about the trend of the backflow at intermediate times, as
shown in Fig. 4D, until the opposite stagnation point at x̂ = ˆ̀/2
starts playing a role. We also note that the interfacial velocity
estimated in [S40] does not depend on the Marangoni number
or on any other parameters. It depends only on the local gradi-
ent of the interfacial surfactant distribution, which depends on
time and the spatial coordinate.
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Fig. S2. Vertical distribution of the stream-wise velocity profile during the loading phase of the experiment presented in Fig. 4A. The dashed line shows the
result of a parabolic fit of the velocity profile. The mean speed of the flow extracted from this fit is U≈ 3.9 mm·s−1.

Table S1. Parameters for 2D surfactant-laden simulations (Fig. 2 and Fig. S1)

Parameter Symbol Value Unit Use

Grating length g 1× 102 µm Fig. 2 B–D and Fig. S1
20–104 µm Fig. 2E

Bulk concentration c0 1× 10−6 mol·m−3 Fig. 2B
1× 10−2 mol·m−3 Fig. 2 C and E
10−6–1 mol·m−3 Fig. 2D

10−12–10−3 mol·m−3 Fig. S1, strong surfactant (blue symbols)
10−6–10 mol·m−3 Fig. S1, weak surfactant (green symbols)

Chamber height H 1× 102 µm
Ridge length ` 5× 101 µm
Maximum forcing speed umax 5× 101 µm·s−1

Mean forcing speed U 3.3× 101 µm·s−1

Water viscosity µ 8.9× 10−4 N·s·m−2

Water surface tension σ0 72× 10−3 N·m−1

Bulk diffusivity D 7× 10−10 m2·s−1 Fig. 2 B–E
1× 10−11 m2·s−1 Fig. S1, strong surfactant (blue symbols)
1× 10−9 m2·s−1 Fig. S1, weak surfactant (green symbols)

Surface diffusivity Ds 7× 10−10 m2·s−1 Fig. 2 B–E
1× 10−11 m2·s−1 Fig. S1, strong surfactant (blue symbols)
1× 10−9 m2·s−1 Fig. S1, weak surfactant (green symbols)

Desorption coefficient κd 500 s−1 Fig. 2 B–E
1 s−1 Fig. S1, strong surfactant (blue symbols)

100 s−1 Fig. S1, weak surfactant (green symbols)
Adsorption coefficient κa 89.5 m3·mol−1·s−1 Fig. 2 B–E

1× 106 m3·mol−1·s−1 Fig. S1, strong surfactant (blue symbols)
1× 10−1 m3·mol−1·s−1 Fig. S1, weak surfactant (green symbols)

Maximum packing concentration Γm 3.9× 10−6 mol·m−2 Fig. 2 B–E
1× 10−5 mol·m−2 Fig. S1, strong surfactant (blue symbols)
1× 10−6 mol·m−2 Fig. S1, weak surfactant (green symbols)

Interaction coefficient A −2.4 — Fig. 2 B–E
−3 — Fig. S1, strong surfactant (blue symbols)
3 — Fig. S1, weak surfactant (green symbols)

Surfactant style constant n 2 —
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Table S2. Nondimensional parameters associated with Table S1 for 2D surfactant-laden simulations (Fig. 2 and Fig. S1)

Parameter Fig. 2B Fig. 2C Fig. 2D Fig. 2E Fig. S1, strong surfactant Fig. S1, weak surfactant

Re = HU/ν 3.7× 10−3 3.7× 10−3 3.7× 10−3 3.7× 10−3 3.7× 10−3 3.7× 10−3

Pe = gU/D 4.7 4.7 4.7 0.9–470 330 3.3
Pes = gU/Ds 4.7 4.7 4.7 0.9–470 330 3.3
k = κac0/κd 1.8× 10−7 1.8× 10−3 1.8× 10−7–0.18 1.8× 10−3 10−6–103 10−9–10−2

Bi = gκd/U 1.5× 103 1.5× 103 1.5× 103 300–1.5× 105 3 300
χ = gκd/(κaΓm) 140 140 140 30–1.4× 104 10−5 105

Ma = nRTΓm/(µU) 6.6× 105 6.6× 105 6.6× 105 6.6× 105 1.7× 106 1.7× 105

Ĥ = H/g 1 1 1 5–0.01 1 1
ˆ̀= `/g 0.5 0.5 0.5 2.5–5× 10−3 0.5 0.5
D = χ(1 + k)/Pe1/2 66 66 66–77 30–660 6× 10−7–5× 10−4 5.5× 104–5.6× 104

K = Bi(1 + k) 1.5× 103 1.5× 103 1.5× 103–1.8× 103 300–1.5× 105 3–3× 103 300†

†The variation of this parameter across the range of concentrations is not significant.

Table S3. Parameters for steady-forcing experiments (Fig. 3)

Value

Parameter Symbol Fig. 3D Fig. 3E Unit

Grating length g 2 30 mm
Grating width w 4× 101 4× 101 µm
Chamber height H 1.3× 102 1.0× 102 µm
Ridge length ` 2× 101 2× 101 µm
Ridge width r 2× 101 2× 101 µm
Max. forcing speed umax 1.1× 102 1.3× 102 µm·s−1

Mean forcing speed U 7.3× 101 8.7× 101 µm·s−1

Temperature T 23 23 ◦C

Table S4. Nondimensional parameters associated with Table 4 for steady-forcing experiments (Fig. 3)

Fig. 3D, Fig. 3D, Fig. 3E, Fig. 3E,
Parameter assuming weak surfactant assuming strong surfactant assuming weak surfactant assuming strong surfactant

Re = HU/ν 0.01 0.01 9× 10−3 9× 10−3

Pe = gU/D 150 1.5× 104 2.6× 103 2.6× 105

Pes = gU/Ds 150 1.5× 104 2.6× 103 2.6× 105

k = κac0/κd 10−15–10−3 10−6–106 10−15–10−3 10−6–106

Bi = gκd/U 2.7× 103 27 3.4× 104 340
χ = gκd/(κaΓm) 2× 106 2× 10−4 3× 107 3× 10−3

Ma = nRTΓm/(µU) 7.3× 104 7.3× 105 6.1× 104 6.1× 105

Ĥ = H/g 6.5× 10−2 6.5× 10−2 3.3× 10−3 3.3× 10−3

ˆ̀= `/g 2.5× 10−2 2.5× 10−2 1.7× 10−3 1.7× 10−3

D = χ(1 + k)/Pe1/2 1.7× 105† 1.7× 10−6–1.7 5.9× 105† 5.9× 10−6–5.9
K = Bi(1 + k) 2.7× 103† 27–2.7× 107 3.4× 104–3.5× 104 340–3.4× 108

Note that we assume the kinetics properties of the weak and strong surfactants described in Table 1, with a range of concentrations from
c0 = 10−12 to 1 mol·m−3.
†The variation of this parameter across the range of concentrations is not significant.

Table S5. Parameters for 3D surfactant-free simulations (Fig. 3)

Parameter Symbol Value Unit Use

Bulk concentration c0 0 mol·m−3

Grating length g 2 mm Fig. 3D
30 mm Fig. 3E

Grating width w 4× 101 µm
Chamber height H 1.3× 102 µm Fig. 3D

1.0× 102 µm Fig. 3E
Ridge length ` 2× 101 µm
Ridge width r 2× 101 µm
Maximum forcing speed umax 1.2× 102 µm·s−1

Mean forcing speed U 8× 101 µm·s−1

Water viscosity µ 9.3× 10−4 N·s·m−2
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Table S6. Experimental parameters of all of the
pressure-relaxation experiments

Experiment ∆Hr , mm U, mm/s Note

1-1 70 4.4
1-2 −70 3.9
1-3 70 4.3
1-4 −70 3.9
1-5 70 4.3
1-6 −70 3.8
1-7 70 4.3
1-8 −70 3.8
2-1 100 5.4 Adjacent grating failed
2-2 100 4.8 Adjacent grating failed
2-3 100 5.3 Adjacent grating failed
2-4 100 4.4 Adjacent grating failed
3-1 −40 2.3
3-2 40 2.5
3-3 −40 2.3
3-4 40 2.5
3-5 −40 2.3
3-6 40 2.5
3-7 −40 2.3
3-8 40 2.4 Adjacent grating failed
3-9 −40 2.2 Adjacent grating failed
3-10 40 2.4 Adjacent grating failed
3-11 −40 2.2 Grating under study failed
3-12 40 2.5 Adjacent grating failed
4-1 130 7.4 Adjacent grating failed

Table S7. Nondimensional parameters for pressure-relaxation experiments in the loading phase (Fig. 4)

U = 2.3 mm · s−1, U = 2.3 mm · s−1, U = 4.1 mm · s−1, U = 4.1 mm · s−1,
Parameter assuming weak surfactant assuming strong surfactant assuming weak surfactant assuming strong surfactant

Re = HU/ν 0.25 0.25 0.44 0.44
Pe = gU/D 6.9× 104 6.9× 106 1.2× 105 1.2× 107

Pes = gU/Ds 6.9× 104 6.9× 106 1.2× 105 1.2× 107

k = κac0/κd 10−15–10−3 10−6–106 10−15–10−3 10−6–106

Bi = gκd/U 1.3× 103 13 730 7
χ = gκd/(κaΓm) 3× 107 3× 10−3 3× 107 3× 10−3

Ma = nRTΓm/(µU) 2.3× 103 2.3× 104 1.3× 103 1.3× 104

Ĥ = H/g 3.3× 10−3 3.3× 10−3 3.3× 10−3 3.3× 10−3

ˆ̀= `/g 1.7× 10−3 1.7× 10−3 1.7× 10−3 1.7× 10−3

D = χ(1 + k)/Pe1/2 1.1× 105† 1.1× 10−6–1.1 8.6× 104† 8.6× 10−7–0.9
K = Bi(1 + k) 1.3× 103† 13–1.3× 107 730† 7.3–7.3× 106

Note that we assume the kinetic properties of the weak and strong surfactants described in Table S1, with a range of concentrations from c0 = 10−12 to
1 mol·m−3.
†The variation of this parameter across the range of concentrations is not significant.
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Movie S1. Flow over an SHS revealed by fluorescent microbeads in water imaged by spinning-disk confocal microscopy during a pressure-relaxation exper-
iment. We record the flow ≈3 µm away from the plastron. The SHS consists of equispaced gratings, which are 30 mm long, 40 µm wide, separated by
20-µm wide ridges, and aligned with the flow direction (see Fig. 3 A–C and Tables S3, S4, and S6 for a detailed definition of the geometry and experimental
parameters). The experiments begin with a loading phase, during which the flow (indicated by green arrows) is driven by a strong fixed pressure gradient
and allowed to reach steady state (SI Experimental Protocols and Tables S6 and S7). The driving pressure is then rapidly decreased to zero while keeping
the hydrostatic pressure approximately constant. A clear backflow, indicated by red arrows, in the direction opposite to the loading phase can be observed,
thereby demonstrating the presence of Marangoni stresses.

Movie S1

Movie S2. The flow over an SHS with conditions almost identical to those in Movie S1 (see Movie S1 legend for details), except that the right-hand side
grating here is flooded, to contrast the different behavior observed when stopping the background pressure gradient. Similar to the flow above a ridge, the
flow in the wetted grating stops immediately at the end of the loading phase, showing no backflow (this corresponds to experiments 2-4 in Table S6).

Movie S2
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