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Semiflexible polymers subject to hydrodynamic forcing play an important role in cytoskeletal
motions in the cell, particularly when filaments guide molecular motors whose motions create flows.
Near hyperbolic stagnation points filaments experience a competition between bending elasticity
and tension and are predicted to display suppressed thermal fluctuations in the extensional regime
and a buckling instability under compression. Using a microfluidic cross-flow geometry we verify
these predictions in detail, including a fluctuation-rounded stretch-coil transition of actin filaments.
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Recent work on the motion of elastic filaments subject
to hydrodynamic forces has revealed complex nonlinear
dynamics in the neighborhood of hyperbolic stagnation
points in the flow [1]. Unlike the simpler orbits of rigid
elongated objects in the presence of shear [2], these dy-
namics arise from the tension induced in the filament by
an extensional flow, which beyond a critical value can
induce an instability analogous to Euler buckling of a fil-
ament with thrust at its two ends [3]. This predicted
‘stretch-coil’ transition, which is complementary to the
‘coil-stretch’ transition of flexible polymers [4], has re-
cently been observed with macroscopic fibers in cellular
flows generated by electrodynamic forcing [5].

At the microscopic level, of the many contexts in which
semiflexible polymers experience flow-induced stresses is
cytoplasmic streaming [6], in which molecular motors
translating along filaments (e.g., actin) entrain fluid.
Complex flows occur when the filament network is disor-
dered, leading to a self-organization process in which fila-
ments rearrange in response to flows they create [7]. This
coupling is common to all systems in which elongated
particles produce and respond to flows, including con-
centrated motility assays in which filaments are moved
by surface-bound motors [8]; it is a hallmark of ‘active
matter’ [9]. Intrinsic to these phenomena is a competition
between bending energy and tension [10] in the presence
of thermal fluctuations, a situation well-known for elastic
surfaces through such phenomena as the pearling insta-
bility [11] and the wrinkling transition of vesicles [12].

In contrast to the well-developed study of equilibrium
fluctuations of free semiflexible polymers [13, 14], their
nonequilibrium dynamics under tension has only begun
to be examined [15], leaving unexplored many phenom-
ena: suppression of fluctuations and emergence of new
dynamical scaling laws, with predictions in the case of
uniform tension [16], and rounding of shape transitions
at finite temperature, as shown for Euler buckling [17].
Here we present the first comprehensive study of these
issues, using microfluidics [18] to subject actin filaments
to extensional flows. Throughout, we emphasize a de-

scription based on a low-dimensional dynamical system.

The extensional flow u = (u, v, w) = (γ̇x,−γ̇y, 0) was
produced in the mid-plane of a cross-slot microchannel
375 µm wide and 140 µm high (Fig. 1), manufactured in
PDMS by soft lithography [18]. Filaments were studied
near the stagnation point by epifluorescence microscopy
with a 100× oil-immersion objective (numerical aperture
1.4) on a Zeiss Axiovert 200M inverted microscope. An
observation area 80 × 80 µm2 was captured by an EM-
CCD camera (Evolve, Photometrics; 512 × 512 pixels).
A mechanical chopper (Thorlabs) synchronized with the
camera, in the beam path of a blue laser (473 nm, 144
mW, Extreme Lasers, Seabrook, TX), reduced exposure
time to ∼ 2 ms, minimized photobleaching and allowed
resolution of higher shape modes. The flow was driven by
a syringe pump (PHD2000, Harvard Instruments), with
strain rates 0.03 ≤ |γ̇| ≤ 1.5 s−1. Particle tracking ve-
locimetry showed deviations |δγ̇xyz/γ̇| across the observa-
tion window were < 5%. By changing the pressure differ-
ence ∆P between the channel outlets at rates of 0.1−1000
Pa/s we trapped single filaments at the stagnation point
for times sufficient to acquire up to 3000 images, lim-
ited by photobleaching. The fluid viscosity µ, measured
with a U-Tube Viscometer (Rheotek), was varied from
1.7× 10−3 to 18.5× 10−3 Pa-s by the amount of glycerol
in the buffer. All measurements were at 23.5 ± 0.5◦C.
Image acquisition and flow control used LabView; image
processing and data analysis were done in Matlab.

The protocol for actin polymerization involves three
solutions. The first, 10 × AB− (10 times concentrated
AB−), was composed of 250 mM imidazole-HCl, 250
mM KCl, 10 mM EGTA, and 40 mM MgCl2, at pH 7.4;
10 × AB+ differs by addition of 20 mM MgATP. These
buffers were stored at −20◦C. Globular actin (G-actin)
stocks (4.5 mg/ml ∼ 100 µM) were stored at −80◦C.
Polymerization to form filamentous actin (F-actin) was
achieved by addition of 1/10th volume of 10×AB+, then
stabilized by the addition of an equimolar amount (to
G-actin monomers) of Alexa Fluor 488 phalloidin (In-
vitrogen), dissolved to a final concentration of ∼10µM
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FIG. 1: (color online). Experimental setup. (a) Microfluidic cross-flow geometry controlled by a pressure difference ∆P between
inlet and outlet branches. (b) Close-up of velocity field near the stagnation point, showing a typical actin filament. (c) Raw
contour (red) of an actin filament and definition of geometric quantities used in the analysis.

of G-actin, then stored in the dark at 4◦C for up to 3
months. For an experiment, an aliquot of 10 × AB−

stock was thawed and mixed with 9 parts of deionized
water/glycerol mixture and degassed to reduce dissolved
oxygen. Photobleaching was reduced by adding to the
final buffer (termed AG) an oxygen scavenger consisting
of 20 mM DTT, 0.2 mg/ml glucose oxidase, 0.5 mg/ml
of catalase, and 3 mg/ml of glucose. The concentration
of F-actin suitable for the experiments was ∼ 2 nM, and
yielded filaments with lengths from 3 to 18 µm.

Consider an elastic filament of contour length L, diam-
eter a, with ε ≡ a/L� 1, bending modulus A = kBT`p,
where `p is the persistence length, lying in the xy-plane
between x = ±L/2. For small-amplitude fluctuations in
the position h(x) from y = 0, its energy is

E =
1

2

∫ L/2

−L/2
dx
{
Ah2

xx + σ(x)h2
x

}
. (1)

The nonuniform tension induced by the flow [19],

σ(x) =
2πµγ̇

ln(1/ε2e)

(
L2/4− x2

)
, (2)

which peaks at the center and vanishes at the filament
ends, is positive (extensional) for γ̇ > 0 and compres-
sional otherwise [20]. We first focus on extensional sup-
pression of fluctuations. The often-used Fourier decom-
position of h(x) [13, 16] is incompatible with the force-
and torque-free boundary conditions at the filament ends.
Instead, the Euler-Lagrange equation of (1) defines a set
of eigenfunctions W (n) (and eigenvalues λn) with bound-
ary conditions Wxx(±L/2) = Wxxx(±L/2) = 0 [3, 21].
Under the convenient rescaling ξ = πx/L these obey

W
(n)
4ξ − Σ∂ξ

((
π2/4− ξ2

)
W

(n)
ξ

)
= ΛnW

(n) . (3)

The eigenvalues Λn = L4λn/π
4A are functions of [22]

Σ =
2µγ̇L4

π3A ln(1/ε2e)
. (4)

When Σ = 0, the W (n) are eigenfunctions of the one-
dimensional biharmonic equation,

WΣ=0 = A sin kx+B sinh kx+D cos kx+E cosh kx . (5)

The wave vectors kn satisfy cos knL cosh knL = 1, with
k0 = 0 (the constant solution W (0) = 1), and knL '
(n+1/2)π for n ≥ 1. Even if the W s can not be found an-
alytically [23], a numerical solution for Σ 6= 0 is straight-
forward. Figure 2a shows the first four W (n) for Σ = 0
and W (1) for Σ = 100; remarkably, the shape of the fun-
damental bending mode is nearly independent of Σ, a
result to which we return below. A point not previously
recognized [13] is that if h(x) =

∑
n anW

(n)(x) then for
any Σ the energy decomposes into a sum of contributions
from independent modes, E = (1/2)

∑
n λna

2
n. This fol-

lows from integrations by parts, Eq. (3), and boundary
conditions that render the operator self-adjoint and the
W (n) orthogonal (and we assume they are normalized).
Equipartition then yields 〈aman〉 = δmnL

4/π4`pΛn, and
the local variance V (x) = 〈(h(x)− h̄)2〉 is

V (x; Σ) =
L3

`pπ4

∞∑
n=1

W (n)(x)2

Λn(Σ)
. (6)

As the contribution to Λn from the bending energy,
grows like (n+ 1/2)4, the fundamental mode W (1) dom-
inates. This is seen in Fig. 2b, where we plot the
measured variance V (x)/Ve along the filament, where
Ve = [V (−L/2)+V (L/2)]/2 is the mean endpoint fluctu-
ation, averaged over all available data (some 106 points),
spanning nearly 5 orders of magnitude in Σ. Although
the “W” shape is at first sight surprising, it simply
reflects the presence of two nodes in the fundamen-
tal mode; it is well-approximated by the Σ = 0 func-
tion [W (1)(x)/W (1)(L/2)]2, a comparison justified by the
aforementioned insensitivity of the mode shape to Σ.
Then, a simple proxy for the filament-averaged variance
is Ve, shown in Figure 2c to be suppressed by tension for
Σ & 1. It suffices to take only the first two terms in the
expansion (6) to achieve excellent agreement both to the
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FIG. 2: (color online) Filament modes, fluctuations, and dynamics in the extensional regime, γ̇ > 0. (a) First four orthonormal

eigenfunctions W (n) (solid) obtained from (3) for Σ = 0, and W (1) for Σ = 100 (red dashed), illustrating the insensitivity of
the fundamental bending mode shape to the tension. (b) Experimentally measured local variance as a function of position
along actin filaments (symbols), and theoretical contribution from the fundamental mode (solid red line). (c) Filament-end
fluctuation variance (raw data (open circles) and binned (red circles) and scaled full relaxation time (raw data (open squares)
and binned (green squares) as a function of tension. Theoretical results are solid red and green curves, respectively.

zero-tension limit and the large-Σ behavior Ve ∼ Σ−1,
with `p as the only free parameter. We obtain `p = 10±3
µm, a value consistent with the known range [13, 14, 24].

Starting from an arbitrary initial configuration, the
variance in h grows with time, ultimately reaching the
steady-state value discussed above. The characteristic
time to achieve saturation can be computed from the lin-
earized mode dynamics of h(x, t) [16], which also yields
(below) a criterion for the onset of the stretch-coil tran-
sition in the compressional regime. Using the scalings
employed in (3) and a rescaled time T = |γ̇|t we find [1]

4|Σ|(hT + sgn(γ̇)h) = −h4ξ

+Σ
[(
π2/4− ξ2

)
hξξ − 4ξhξ

]
. (7)

The tension term on the r.h.s. of (7), unlike the related
force term on the l.h.s. of (3), is not a total derivative
with respect to ξ. This can be traced to a combination of
the anisotropic drag coefficient of a slender body and the
fact that the background flow that enters the drag force
in (7) through the relative velocity of the filament and
the fluid is the source of the tension itself. If we assume a
solution to (7) of the form h(ξ, T ) = exp(ωT )F (ξ), with
boundary conditions Fξξ(±π/2) = F3ξ(±π/2) = 0, then
we have an eigenvalue problem for the relaxation time
−1/ω nearly identical to (3). The scaling of ω with mode
number indicates that the slowest relaxation time of the
system will be τ1 ≡ −1/ω1. Along with the equilibrium
fluctuations discussed above, we have also measured the
temporal relaxation to that variance, identifying a time τ
for ∼ 95% equilibration. This would correspond to three
exponential relaxation times, and a comparison between
3τ1 and the data is shown in Fig. 2c, using the fitted value
of `p determined in equilibrium. Taken together, these
equilibrium and dynamical results indicate the validity
of a one-dimensional dynamical systems description of
these semiflexible filaments under tension.

In the compressional regime Σ < 0, the tension induces
a stretch-coil transition beyond a critical value Σ∗, cor-

responding to the eigenvalue ω = 0, where the thrusting
force from tension ∼ µγ̇L2/ ln(1/ε2e) balances the restor-
ing force ∼ A/L2 from the filament bending stiffness.
This instability bears the same relation to Euler buck-
ling (with uniform end thrust) as the twirling-to-whirling
transition [25] of an elastic filament rotated at one end
(with spatially-varying twist) does to the writhing insta-
bility of a filament under uniform twist [26]. Observed
filament shapes for various values of Σ are shown in Fig.
3a-c, illustrating that as the buckling amplitude initially
grows the mean filament orientation θ rotates toward the
extensional direction, and the deformation subsequently
relaxes as the (now positive) tension extends the filament.
A convenient measure of the extent of buckling is the min-
imum filament end-to-end distance L during this process,
made dimensionless as the order parameter P = 1−L/L.
Stochastic reorientation of the filament during buckling
sometimes moves its ends out of the focal plane, lead-
ing to a noise floor Pnoise ' 0.15. Figure 3d shows the
variation with |Σ| of P during buckling events compared
to the theoretical bifurcation point |Σ|∗ = 0.3932 ob-
tained numerically from Eq. 7. While the transition is
strongly rounded by thermal fluctuations, the threshold
is quite consistent with the analytical prediction. The
buckling eigenfunction shown in Fig. 3d has a shape
strikingly close to that of the first biharmonic eigenfunc-
tion, W (1). Subsequent instabilities of higher modes oc-
cur at Σ∗2 = −1.9876 and Σ∗3 = −4.955. At the large
value Σ = −47 in Fig. 3c the shape is a superposition of
modes 3 and 4.

We have quantified the fluctuations, dynamics, and
buckling of single actin filaments under flow-induced ten-
sion, and thereby established that strain rates γ̇ in the
range 0.1 − 1 s−1 are sufficient to induce buckling of fil-
aments with L ∼ `p. Intriguingly, these are of the same
order as found in cytoplasmic streaming in large eukary-
otic cells, particularly those of plants [6, 27]. This raises
the possibility that significant filament rearrangements



4

FIG. 3: (color online) The stretch-coil transition of single actin filaments. (a)-(c) snapshots of buckling filaments beyond the
instability, Σ = −0.55 (a), −1.9 (b) and −47 (c). Scale bars are 3 µm, indicated times since first frame are rescaled by γ̇ and
− (+) denotes a flow with compression along x (y). The fundamental mode is seen in (a) and (b), a higher-order mode in
(c) during compression along x followed by y. (d) Fractional compression measured by the end-to-end displacement L, as a
function of |Σ|. Dashed lines indicate instability thresholds for modes whose shapes are shown. Gray band indicates noise floor.

can occur through the action of streaming. A quantita-
tive treatment of the finite-temperature rounding of the
stretch-coil transition, along the lines of approaches to
the Euler buckling problem [17] or more general stochas-
tic supercritical bifurcations [28], and a low-dimensional
description of the coupled rotation and deformation of
filaments will be discussed elsewhere. Generalization of
these issues to concentrated suspensions of flexible fila-
ments is a challenging open problem.
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