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Abstract

The motion of amoeboid cells is characterized by cytoplasmic streaming and by

membrane protrusions and retractions which occur even in the absence of interactions

with a substratum. Cell translocation requires, in addition, a transmission mechanism

wherein the power produced by the cytoplasmic engine is applied to the substratum in a

highly controlled fashion through speci®c adhesion proteins. Here we present a simple

mechano-chemical model that tries to capture the physical essence of these complex

biomolecular processes. Our model is based on the continuum equations for a viscous

and reactive two-phase ¯uid model with moving boundaries, and on force balance

equations that average the stochastic interactions between actin polymers and mem-

brane proteins. In this paper we present a new derivation and analysis of these equations

based on minimization of a power functional. This derivation also leads to a clear

formulation and classi®cation of the kinds of boundary conditions that should be

speci®ed at free surfaces and at the sites of interaction of the cell and the substratum.

Numerical simulations of a one-dimensional lamella reveal that even this extremely

simpli®ed model is capable of producing several typical features of cell motility. These

include periodic `ru�e' formation, protrusion±retraction cycles, centripetal ¯ow and

cell-substratum traction forces. Ó 1999 Elsevier Science Inc. All rights reserved.
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1. Cell division and cell locomotion: modelling of cytoplasmic interactions

For most biological cells functionality and survival ultimately depend on
motion. This requirement is quite obvious in the case of cell division and cell
locomotion. In the case of division, during the later stages of cytokinesis, eu-
karyotic cells have to divide into two halves precisely at the `equatorial plane',
where cleavage furrows are intensi®ed and successively deepened to form the
constriction ring, which ®nally splits the cell. Responsible for this accurate
dynamical event are actin ®laments which preferably assemble near the cell
cortex and induce there a quasi-steady cortical ¯ow in the region of the furrow
(see Fig. 1 in Ref. [7]).

The molecular systems that produce these motions have been highly con-
served in evolution and for the most part are close relatives of the proteins that
constitute the sarcomeres of muscle cells. In particular, in both muscle cells and
amoeboid cells, polymeric actin is present in abundance and forms a meshwork
of overlapping ®laments in the cytoplasm. In both cell types the actin ®laments
are linked to membrane structures and are cross-linked to each other by ho-
mologous actin binding proteins. Finally, polymers of myosin are interspersed
among the actin ®laments. These molecular motor proteins exert contractile
forces on the actin network and they provide the major source of mechanical
power in muscle cells. It is clear that the myosin molecules also function to
produce mechanical power for motility in the non-muscle cells, however, one
cannot discount the possibility that these cells also employ additional mecha-
nisms (see further discussion below).

Typical motions of non-muscle cells are much slower than muscle twitches
and the rates for polymerization and depolymerization of the cytoskeleton are
much faster. As a result the time scale for a complete chemical cycle of for-
mation and breakdown of the cytoskeleton in a typical amoeboid cell is similar
to, or even faster than, the functional time scale. Thus, for example, it has been
estimated that the cytoskeleton of a crawling cell can undergo several complete
chemical cycles during the time it takes to move one cell diameter [26].
Moreover, the transient nature of the linkages that interconnect the various
components of the amoeboid cytoskeleton imply that the overall structure is
programmed to easily relax and adapt itself completely even in the face of very
large deformations. This conclusion is consistent with those few cases where
detailed studies of the passive deformation of amoeboid cells have been carried
out. In other words, the cytoskeleton is found to behave very much like a
viscous polymeric `¯uid' (reviewed in Ref. [10]).

The isotropy, ¯uidity and reactivity of the amoeboid cytoskeleton has been
the basis for a simple continuum model using the ideas of two-phase ¯ow. The
basic idea is that actin polymers can be regarded as a highly viscous polymeric
¯uid and that the aqueous portion of the cytoplasm can be regarded as another
`interpenetrating' ¯uid. Mathematical simulations with such models [13] have
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revealed that without boundary interactions an isotropic reactive the polymer
¯uid tends to generate irregular streaming patterns. These bear some similarity
to the chaotic `¯ares' observed in isolated cytoplasmic extracts of Amoeba

Fig. 1. Evaluation of phase-contrast video-images showing the protrusion±retraction dynamics at

the periphery of an adherent (human epidermal) keratinocyte. (A) Steep edges of the 3-dimen-

sionally extended cell body (cb) containing the nucleus (nu), are characterized by a bright halo (cb-

arrows) which at two places coincide with the cell margin appearing stretched there, whereas

elsewhere it is surrounded by a broad and ¯at lamella (1). At their tips there may extend ®lopods

(®l) or lamellipods (lam), and often so-called `ru�es' (ruf). bar: 10 lm. (B) Ru�es are detected as

dark structures of relatively low luminance as seen in the 1-dimensional plot along a section line

drawn over the picture in (A), starting with x� 0 outside the cell and crossing cell edge and lamella

until reaching the cell body near x� 40 sample points. (C) Composite plot of luminance pro®les as

in (B) for increasing times t over 6 min. Moving valleys of low luminance, whose topographical

lines below a certain threshold are plotted in (D), describe the more or less regular appearance of

`ru�es' at the retracting cell edge (lamella tip, whose motion in time is drawn as a bold line). Their

centripetal movement has quite a constant speed (of about 5 lm/min), continuing even when the

lamella tip extends again. (From Ref. [2].)
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proteus [22]. In contrast, by including boundary interactions it is possible to
produce models in which the cytoplasm undergoes predictable and sustained
motions. This was shown in the case of the regular `fountain streaming' found
in amoeboid motion [9] and in modeling studies of the precise cytoplasmic ¯ow
and cortical deformation during the ®rst cleavage division of the sea urchin egg
[17,18].

In the case of adherent cells, for example keratinocytes, an essential new
feature is introduced due to contact with the substratum and the production of
traction [2,25]. In particular, cells that are almost radially symmetric are best
suited for a detailed analysis of cell motility, see Fig. 1. The cell has a `fried egg'
morphology and the center is essentially stationary but the outer periphery of
the lamella undergoes continuous cycles of stereotypical motility. Time series
analysis of long video records of such keratinocytes reveal that lamellipodial
protrusions at the cell periphery are quite periodic with period of T � 2.5 min.
In addition, one-dimensional spatio-temporal correlation analysis along rays
passing through the cell border yields a similar periodicity for so-called `ru�e
waves', see Fig. 1(B)±(D). These waves originate during the retracting phase of
the cell margin along broad fronts (typically the wave front is 10 or 20 lm
wide). The ru�e waves have a wavelength that is only a micron. The front
propagates normal to its long dimension towards the nucleus at a fairly uni-
form rate of about 5 lm/min. The wave speed seems to be independent of the
extension retraction cycle of the tip of the lamella. In other words, the ru�e
continues to go centripitally even after the tip has stopped retracting and is
again extending. Side-view electron micrographs of active lamellipods indicate
that ru�e waves represent thickenings of the lamella which are ®lled with high
concentrations of F-actin.

Further studies of the keratinocyte and other similar tissue cells have
demonstrated a general and preexisting steady motion of cytoplasmic ®laments
directed from the outer periphery towards the cell body (this is the so called
centripetal ¯ow). The speed of this ¯ow is very close to the speed of moving
ru�es [15,16,2], and as a result one may presume that propagation of ru�es is
simply another manifestation of this general cytoskeletal current. Hydrody-
namic shear between the centripetal current and adhesive sites on the ventral
surface of the cell could be su�cient to provide the traction stresses necessary
for extension and ¯attening of the lamella. On the other hand one should re-
member that such a continuum viewpoint is simply a way of reformulating the
average e�ects of large numbers of highly speci®c adhesive interactions be-
tween the cell and the substratum.

In this paper we present a new, simple derivation of our two-phase ¯ow
model, which we already have used for several applications [13,11,9,
10,23,6,19,4]. The new derivation has the advantage of reducing the required
hypotheses to a minimal set of rules for the mechanics and kinetics of the
F-actin polymer system. Indeed, a general minimization principle for the loss
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of `kinematic energy' is proposed which, in addition, allows to compute and
visualize, in which parts of the cell lamella kinematic energy is gained or dis-
sipated, and how the resulting cell translocation force depends on the mec-
hano-chemical parameters. More details can be found in a further general
article by the authors [3].

2. General two-phase ¯ow model for the cytoplasm: model derivation

In accordance with previous model derivations [12,8,1], the actomyosin
polymer network is thought to constitute the so-called ®lament phase which, in
the continuum limit, has a volume fraction h � h�t; x� at time t and at location
x, and a corresponding mean velocity v � v�t; x�. Assuming a disassembly of
®laments with rate g and a constant assembly rate b < g, we obtain heq � b=g
as the `chemical ®lament equilibrium' and the following hyperbolic mass bal-
ance equation

oth�r � �hv� � g�heq ÿ h�: �1�
Here we assume that the dissolved ®laments units (e.g. G-actin monomers) are
rapidly and uniformly distributed in the other, so-called, solvent phase with
volume fraction (1ÿ h) and mean velocity w � w�t; x�. Then, if no net mass is
produced in the system, the total ¯ux of the two-phase ¯uid is divergence free:

r � �hv� �1ÿ h�w� � 0: �2�
Thus, for given time t and ®lament distribution h � h�t; x� over x 2 X � X�t�, a
possibly time-dependent spatial domain, this divergence relation is the neces-
sary incompressibility side condition for determining the two-phase ¯ow ve-
locities v and w, which in the assumed case of negligible inertia is most easily
performed by just minimizing the following `power functional' J. As usual, it is
an integral over X computing the net loss rate of kinematic energy in the
creeping ¯ow as the di�erence between energy dissipation rate and energy gain
rate:

J �v;w; p� : � 1

2

Z
X

rv ~Mrv� Uhjvj2 � uh�1ÿ h�jvÿ wj2 �rw ~M srw �3�

ÿ
Z
X

hpfr � v� �1ÿ h�psr � w� pfs�vÿ w� � rh: �4�

where we used the tensor notation (e.g. for the 2-dimensional case)
rv ~Mrv :� ljrvj2 � k�r � v�2 � mjrotvj2.

The positive terms (3) describe energy dissipation due to internal viscosity
(M) or external friction (U) of the ®lament phase and due to an interphase
frictional drag (u), as well as (a relatively small) viscosity (Ms) of the solvent
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phase. Substracted from these terms are the other integral terms (4) that des-
cribe the net rate of energy gain due to stresses or pressures deforming the two-
phase con®guration. Here we model the so-called static contractile stress (a
negative pressure) in the ®lament phase as

ÿpf � ÿPf�h� � W�h� :� w
2

hexp�ÿh=hsat�; �5�

the static swelling pressure in the solvent phase as

ps � Ps�h� :� r
j ln�1ÿ h�j

1ÿ h
�6�

and the static interphase pressure as

pfs � Pfs�h� :� ÿ r
1ÿ h

: �7�
Places where the integrands in Eq. (4) are positive indicate local energy gain,
e.g. for the ®rst term, if the ®lament network contracts and induces a negative
divergence r � v. For further interpretation of these terms see Ref. [3].

However, as soon as the two-phase ¯uid starts to ¯ow, we have to account
for an e�ective hydrostatic pressure p � p�t; x� which is added as a free variable
to all the static pressures, i.e. pf � p � Pf�h�; ps � p � Ps�h� and so on. This
yields an additional Lagrange multiplier term ÿ RX pr � �hv� �1ÿ h�w� in
Eqs. (3) and (4), thus becoming a functional ~J � ~J �v;w; p� also depending on
the free pressure variable p. Standard arguments reveal that the augmented
functional ~J is of `saddle point' type, at least for variations of test functions
v;w; p 2 L2�X�, and that the stationary saddle point (v, w, p) satis®es the di-
vergence relation Eq. (2). Moreover, assuming negligably small solvent vis-
cosity (Ms� 0) the e�ective hydrostatic pressure p obeys Darcy's law for the
two-phase ¯ow,

rp � uh�vÿ w� �8�
with drag coe�cient u. For a full derivation and further explanations cf. [3].
Proceeding as in compressible ¯uid dynamics, namely solving for w and re-
placing it in Eq. (2), together with the variational equation for v provides the
following linear elliptic system (generalized Stokes equations):

r � �gMrv� ÿ r� �P �h� � p� � Uhv �9�

r � 1ÿ h
uh
rp

�
ÿ v
�
� 0; �10�

where the `averaged two-phase pressure' is de®ned as

�P �h� � h � Pf�h� � �1ÿ h� � Ps�h� � ÿh �W�h� � r � j ln�1ÿ h�j �11�
Here we again used the tensor notation (e.g. for the 2-dimensional case)
�gMrv� :� lrv� k�r � v�I � m rotv I? with I denoting the unit tensor.
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So far, this model constitutes a viscous, reactive and contractile two-phase
¯uid satisfying the hyperbolic±elliptic system of di�erential equations (1), (9)
and (10) in a possibly time-varying domain X(t) that might represent, for ex-
ample, the projected 2-dimensional cytoplasmic region of a cell. It describes
only intracellular microscopic interactions between ®laments within the acto-
myosin network as well as between these ®laments and solvent molecules. The
only exception concerns the friction term U which is supposed to model in-
teractions of actin ®laments with transmembrane proteins that might adhere to
the substratum underneath the domain X(t). Though, in general, the adhesion
bonds follow a time dependent kinetics, we assume here, for simplicity, a
constant adhesive friction coe�cient U.

However, we also have to consider mechano-chemical interactions of the
two ¯uid phases at di�erent parts of the boundary oX. Now, let X � X�t�
represent the ¯at lamella region that extends from a resting but active cell, see
Fig. 2. This region could have three di�erent types of boundaries, CC, CB and
C, where we suppose, with n denoting the outer normal vector:

Fig. 2. Sketch of a 2-dimensional cross-sectional model for the two-phase ¯ow dynamics of a

cellular (pseudopod or) lamella. It is represented by a time variable domain X(t) with three

boundaries: a ®xed boundary CC, where the lamella touches a substratum expressing adhesion

proteins; another ®xed but semi-permeable boundary CB, where the actin ®laments are connected to

the stable cytoskeletal cortex of the cell body, while the solvent can pour through with velocity w;

®nally, a free boundary C�C(t) constituting the cortical membrane±protein complex surrounding

the lamella. The dynamics at the free boundary is determined by a force balance between hydro-

static pressure p and tension s of the actin ®lament network that might be pulled with inward

velocity v.
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· at an `obstacle', i.e. a ®xed impermeable boundary CC, the conditions n � w �
0 for the solvent ¯ow and n � v � 0 resp. n � v6 0 for the ®lament ¯ow, de-
pending on whether the ®laments sticks to the boundary or not;

· at the `cell body boundary', i.e. a ®xed permeable boundary CB that allows
solvent molecules to pass with a certain drag resistance uB (but the ®laments
to stick), the condition n � v � 0 and an additional boundary integral term
for energy dissipation in the power functional J, Eqs. (3) and (4), namelyR

CB
�1ÿ h��1

2
uB�n � w�2 � PB�n � w��, where PB denotes a given `outer pres-

sure' inside the cell body;
· at a free impermeable moving boundary C � C�t� the condition

n � �vÿ w�6 0, meaning that the normal ®lament velocity might be less than
the moving boundary speed _C � n � �hv� �1ÿ h�w� (i.e. n � v < _C de®ning
the case of ®lament disruption from the lamella tip) or equal (n � v � _C, the
case of ®lament attachment), plus a further boundary integral term in the
functional J, namely ÿ RC sCn � �vÿ w�, where sC models the maximal tension
under which ®laments can sustain their sticky bonds to membrane proteins.
Given this model framework for interactions at the boundaries, we then

have to solve the following variational inequality problem, namely to ®nd
functions v;wH 1�X� and p 2 L2�X� satisfying these boundary conditions such
that local variations lead to non-negative di�erential increase of the Lagrange
functional ~J , i.e. D ~J P 0. It can be shown, for su�ciently smooth boundaries,
that this problem has a unique weak solution, at which the original energy
loss functional J attains its global minimum in the above de®ned function
subspace, for more details see Ref. [3]. Again, standard variational principles
can be applied to obtain, in addition to the derived di�erential equations
in the interior of the domain X, a set of (natural) boundary conditions for
the ¯ow velocities v and w as well as for the hydrostatic pressure p, provided
the solutions are smooth enough. Besides the usual tangential Neumann
conditions we get the following normal force balances, again for vanishing
Ms,
· on CB the porous ¯ow law for the solvent yielding a boundary condition for

the solvent pressure ÿ�uB=uh��n � rp� � p � Ps�h� ÿ PB;
· on the free boundary C an equilibrium between the normal component of

®lament tension s :� n �gMrv � nÿ h�p � Pf�h�� � �1ÿ h��p � Ps�h�� and
the solvent pressure, as well as the (envisaged) inequality condition s6 sC

and the Neumann inequality �1=uh�n � rp6 0.
Altogether we can show that this linear elliptic (free) boundary value

problem for determining v and p is well-posed, depending, for ®xed time t, on
the ®lament distribution h�t; x� > 0 in the interior X and smoothly approaching
the boundaries. Notice that the hyperbolic equation (1) for h requires the
boundary condition h� 0 at boundary points of `disruption'. Moreover, in a
point of `attachment' at the free boundary, we have _C � n � v and n � rp � 0,
whereas a point of `disruption' is characterized by the conditions h � 0; s �
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sC � 0; p � 0 and _C � n � vÿ �1=uh�n � rp > n � v. The boundary conditions
for �1=h�n � rp have to be understood in a suitable limit from the interior of X.

3. Periodic and chaotic waves for a one-dimensional ®xed domain

3.1. Assumptions

For exploring the dynamical properties of the presented two-phase ¯ow
model let us restrict our analysis and numerical simulations to the one-di-
mensional case. Then, viscosity of the ®lament phase can be simply charac-
terized by a scalar coe�cient M�h� � l � h, and the interior ¯ow dynamics of
the hyperbolic±elliptic system equations (1), (9) and (10) is mainly determined
by the following two `state functions' of the actin polymer ¯uid, namely the
linear chemical assembly rate R�h� � g � �heq ÿ h� and the non-linear mechanical
stress rate S�h� � ÿ �P �h�=l � h �W�h�=l� �r=l� ln�1ÿ h�.

As depicted in Fig. 3, for small as well as for higher ®lament concentrations
h, we observe a decreasing stress rate, S0�h� < 0, and the mechanical system is
in its swelling regime. For intermediate concentrations, h� < h < h�, we have

Fig. 3. Plot of the two rate functions (over ®lament concentration h) determining the two-phase

¯ow dynamics, namely the linear chemical assembly rate R(h) and the mechanical stress rate S(h),

see de®nitions in the text. At lower concentrations (h < heq � 0:1) ATP-dependent energy is con-

sumed for assembly of actin ®laments. The relatively sparse network tends to swell and dissipate

energy (S0�h� < 0 for h < h�) de®ning a swelling `sol' state; whereas for intermediate concentrations

(S 0�h� > 0 for h� < h < h�) de®ning the contraction regime, energy is consumed for mutual at-

traction of actin ®laments by APT-dependent action of myosin polymers. For even higher con-

centrations (S0�h� > 0 for h > h�) contractility is inhibited and dominated by dissipative swelling of

the condensed `gel'.
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S0�h� > 0 meaning that an increasing ®lament concentration would induce
more net contractile stress thus de®ning the contractile regime.

Therefore, the condition S0�heq� > 0 at chemical equilibrium implies that,
when initially starting with a homogeneous ®lament distribution, i.e. h � heq

and v� 0, a spontaneous instability arises in the linearization of the hyperbolic
system. For instance, let us consider a ®xed interval X � �0; L�, which could, as
a one-dimensional model, describe the in vitro situation of cytoplasm extracts
in a cuvette [14], with sticky boundary at x� 0 and non-sticky boundary at
x�L, both impermeable for the solvent.

3.2. Results

The mechanical instability leads, for t > 0, to a sudden disruption of the
actin ®laments from the boundary x�L and subsequent formation of a re-
tracting wave moving towards the sticky boundary x� 0.

For positive drag u > 0 or adhesive friction U > 0 this wave develops an
increasing peak of higher ®lament concentration moving as a growing travel-
ling wave, eventually being absorbed into the (already present) peak at x� 0.
For quite a large range of parameters a completely periodic solution results by
repetitive disruption and wave formation with period T in the order of minutes,
see Fig. 4. This reproduces the experimental observations mentioned above,
[14,21], and supports as its underlying mechanism a chemo-mechanical cycle of
disruption±contraction±relaxation±reassembly. Also, these repetitive contrac-
tion waves resemble the observed `ru�es' arising at the lamellipodial tip and
being retracted towards the cell body, compare Fig. 1. This in vivo modelling
situation with moving boundary is treated in the next section.

Even for the simpler case of ®xed boundaries, our numerical simulations
con®rm earlier results of two-dimensional computations which had produced
spatio-temporally irregular or chaotic solutions [13].

First, when increasing the interphase drag, u > 0, or the adhesive friction,
U > 0, or when decreasing contractility, W, the waves intensify in amplitude
but simultaneously slow down (their period increasing T � 2.0), until they do
not reach the left hand boundary any more, rather attain an oscillating location
in-between (see Fig. 5(a)). However, as the disruption±contraction±relaxation
cycle from the right hand boundary continues, we again observe periodic so-
lutions but with double period T� 4.0 (see Fig. 5(b)) or, sometimes, quasipe-
riodic behavior with an obvious spatial coupling of two periodic oscillators
near both boundaries.

Second, when increasing the swelling rate, r/l, in comparison to the con-
traction rate, w/l, so much that the swelling actin network pushes against the
non-sticky boundary x� 1, then we observe quasi-steady solutions with con-
tracting ®lament peaks at both boundaries, see Fig. 6. Apparently, this
non-symmetric con®guration is unstable as it happens that a growing local
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instability arises in the central region with lowest ®lament concentration,
forming a slowly varying wave eventually moving in one or the other direction
and ®nally being attracted by one of the boundary peaks (Fig. 6(a) and (b)).
Longer simulations reveal irregular behavior with no apparent periodicities, so
that we conjecture to observe chaotic wave behavior (Fig. 6(c)).

4. One-dimensional dynamics of lamellipodial protrusion and retraction

4.1. Assumptions

In order to model the in vivo situation of lamella formation and its dy-
namics around the periphery of adhering cells, let us again restrict the analysis
to the one-dimensional case, thereby trying to match the experimental data
evaluation along transversal rays (see Fig. 1(C) and (D)). For this purpose let
X�t� � �0; L�t�� describe the cross-sectional region of a lamella, with x� 0
corresponding to the ®xed cell body boundary CB, permeable only to solvent
molecules, and with x�L(t) denoting the tip of the lamella as a free imper-
meable moving boundary C. Since the cortical cytoskeleton of the cell body is

Fig. 4. Simulations of repetitive contraction waves in a 1-dimensional two-phase ¯ow model on a

®xed domain X� [0,1] with sticky boundary at x� 0 and non-sticky boundary at x� 1. Plot of

actin ®lament concentration h� h(x,t) for t from 0 to 4 min (drawn from back to front) showing

periodic ®lament disruption, wave initiation, and subsequently, new ®lament attachment at x� 1.

The period is T � 1.8 min relative to an assumed actin assembly rate of g� 1/min. Biomechanical

parameters are ®lament viscosity l� 0.1 kPa min, contractility w� 25 kPa, saturating concentra-

tion hsat � 0.2, swelling coe�cient r� 0.5 kPa, drag u� 0.01 and adhesive friction U� 0.26, both in

kPa á min/lm2.
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assumed to have similar consistency as the ®lamenteous actin network at x� 0
with hB � h�x � 0�, we suppose there a constant pressure PB :� PB ÿ Ps�hB�
now denoting the hydrostatic pressure that exceeds the swelling pressure of the
cytoskeleton. Thus, with uB� 0, we require the Dirichlet condition p�PB at
X� 0 for the hydrostatic pressure p in the lamella.

The condition for `attachment' of actin ®laments to membrane proteins at
x�L(t) means that the local ®lament network tension is subcritical, s�x; t�6 sC,
where the maximal tension sC � smax � hC=�Ks � hC� is modelled to be propor-
tional to the number of membrane proteins bound by actin ®laments: corre-
sponding to their mean length and di�usional activity radius, we take hC as the

Fig. 5. Irregularities in the periodic contraction±relaxation cycle (Fig. 4) appearing e.g. when the

adhesional friction is increased, here U� 0.32. Then the ®lament contractility is more localized

leading to higher peak concentration in the waves, and eventually, to failure of its attraction by the

®xed actin peak at x� 0, see (a), plots extending over 8 min. The `intermediate' actin wave may

stagnate but (quasi-) periodically move to the right or left trying to capture the period of repetitive

wave disruptions occuring at x� 1, whose period Twave� 2.0 min is longer than before and half the

overall period of T� 4.0 min, see (b).
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average of ®lament concentration h over a boundary region L�t� ÿ ds6
x6 L�t�, e.g. with ds � 0:03 � L0; L0 denoting the mean basic lamella length of
about 2 lm.

4.2. Numerical solution techniques

Let us brie¯y describe the numerical algorithms that we use for our computer
simulations. As in the ®xed case X� [0,1], for any given discrete time t the ®l-
ament concentration h � h�x; t� is approximated by a piecewise constant func-
tion on n (e.g.� 31) interior compartments. Then, given this distribution, the
(pseudo-)stationary linear elliptic system in Eqs. (9) and (10) with appropriate
boundary conditions is solved by an alternating iteration procedure with (tri-
diagonal) matrix inversion to obtain a piecewise linear approximation for the

Fig. 6. Unstable quasi-symmetric solutions of the two-phase ¯ow model, occuring if swelling

(r� 0.7 kPa) is enlarged. Then the actin ®laments are pushed against both sides of the ®xed in-

terval, however, wave instabilities occur in the relatively low concentrated middle region: plots (a),

(b) extending over 10 min. Longer time simulations reveal irregular (possibly chaotic) wave patterns

shown by the long term plots in (c) of actin concentration h�0; t� and tension s�0; t� (lower panel) as

well as of the local actin concentration maxima in the interval �0; 1� (upper panel) plotted over time,

from 0 to 100 min.
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®lament velocity v� v(x, t) and a piecewise constant approximation for the
pressure p � p�x; t�. At the free boundary x�L(t), the lamella tip, we ®rst (case
I: attachment) search for solutions satisfying the homogeneous Neumann
condition oxp � 0 and accept it if s6 sC�hC�, i.e. if the pressure at the lamella tip
ful®ls the inequality p6 pmax :� �1=�1ÿ h��sC�hC� ÿ Ps�h�; otherwise (case II;
disruption) we declare that the ®lament network has been disrupted from the
lamella tip and search for solutions satisfying the homogenous Dirichlet con-
dition p� 0 at x�L(t). Then, after having checked the (discretized) inequality
oxp6 0 there, the current speed _L of the free boundary is calculated as de®ned in
Section 2. In (case I: attachment) with _L�t� � v�L�t�; t�we transform the domain
�0; L�t�� to the standard ®xed interval �0; 1� and apply there, as we did for the ®xed
domain in the last section, the upwind di�erence Euler step in order to solve the
now transformed hyperbolic Eq. (1). In (case II: disruption) we ®rst proceed in
the same way obtaining the ®lament distribution h on an interval �0; ~L�t�� having
moved along the characteristic curve locally de®ned by _~L�t� � v�~L�t�; t� with
initial condition ~L � L at time t. Afterwards the really extended length of the
lamella after dt is determined via the simple Euler step L�t � dt� � ~L�t � dt� �
� _L�t� ÿv�L�t�; t� � dt, and the ®lament distribution in the newly covered lamella
area is adjusted from zero to the newly assembled concentration level
h � g � heq � dt. Thus, the iteration cycle is closed and we restart with t :� t � dt.

4.3. Results

Initially starting with a lamella in the constant equilibrium state h � heq the
free lamella tip will, in general, always move, either by shrinking due to con-
traction or by extending due to protrusive pressures. However, under param-
eter constellations similar to those in the last section, numerical simulations
show the already described disruption of actin ®laments from the lamella tip
and the formation of a retracting wave. Again, depending on the choice of the
mechanical parameters, the lamella tip will retract or extend: In Fig. 7(a) we
show a particular simulation, where the lamella tip comes to rest as soon as the
backwards travelling contraction wave has arrived at the ®xed `cell body'
boundary x� 0; afterwards the tip very slowly extends until, for long time, it
stabilizes leading to a stable stationary actin ®lament distribution �h � h�x��,
which decreases from a ®xed `gel concentration' at the `cell body' down to zero
at the lamella tip, see Fig. 7(b). In this steady state, which might model the
stable lamella of fast moving keratocytes [25], there is ongoing reassembly of
actin ®laments at the anterior lamella region, from where they are transported
towards the cell body by the `centripetal' actin ¯ow. The strength of this
contractile ¯ow �jvj� and the lamella length adjust in such a way, that the lo-
cally induced drag in the two-phase ¯uid is equilibrated by the pressure drop
(p) from an imposed hydrostatic pressure PB > 0 at the cell body down to zero
at the lamella tip.
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This situation can occur provided the ®lament concentration near the tip
(hC) is too small to form enough connections to membrane proteins, and the
induced ®lament tension s at the tip (due to contractile and viscous stresses) is
supercritical so that attachment cannot happen. Indeed, when lifting the
critical tension smax a bit, we observe sudden attachment and subsequent
contraction of the whole lamella, see Fig. 8(a). However, due to the rapidly
increasing ®lament concentration at the retracting tip the ®lament stress be-
comes supercritical again, with subsequent ®lament disruption and tip stag-
nation. Continuing the simulations we would observe a repetition of this
contraction±relaxation cycle but with the lamella gradually decreasing in
length. Therefore, in order to balance the mean contractile action of the actin
polymer system and sustain a su�cient protrusion length, we have to provide
a counteracting protrusion force, for example, by increasing the cell body
pressure PB. Indeed, for the parameters chosen in Fig. 8(b), very similar as in
the ®xed boundary situation (see Fig. 4), we obtain a periodic cycle of alter-
nating disruption and attachment of the actin ®laments, now exactly timed
with alternating protrusion and retraction of the lamella. By changing the
mechanical parameters slightly, the amplitude of these protrusion±retraction
dynamics can be enlarged, e.g. by a further increase of the tension threshold
smax leading to longer periods of contraction, balanced by an increasing pro-
trusive pressure at the lamella tip due to lowering the interphase drag, u, see
Fig. 9(a). Notice, the periodic contraction waves that are initiated at the

Fig. 7. Simulations of the 1-dimensional contractile two-phase ¯ow model with ®xed sticky

boundary (but permeable for the solvent) at x� 0 and free boundary x�L(t). (a) Actin ®lament

concentration h� h(x, t) is plotted for increasing times from back to front, extending over 2 min.

Parameters are w� 18, r� 0.25, u� 0.008, U� 0.4, with relatively low cell body pressure PB� 0.25

Pa, and tension threshold smax� 30 Pa with saturation constant Ks� 0.1. For times t ® 1 the

concentration pro®le stabilizes and the lamella length converges to a value L1 � 0.97. (b) The

stable steady state distribution of h(x) (upper curve), the modulus jv�x�j of the centripetal ®lament

velocity and the hydrostatic pressure p(x).
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lamella tip every time disruption occurs, develop higher condensation of actin
in its wave peak as the su�ciently strong adhesive friction, U, resists the
backward motion of the cytoplasm. Thus, the theoretical plot in Fig. 9(a)
qualitatively resembles the experimental plot in Fig. 1(c) though reversed,
since there the waves describing `ru�es' retracted towards the cell body are
`valleys' of dark luminance values. Also, the resulting characteristic quantities,
as cycle period and retraction speed, are in the same range as the observed
data, namely periods of about T� 1 min and speeds of about one lamella
length per min.

4.4. Localization of energy gain and loss

From numerical simulations it turns out that adhesive friction U and net
contractile stress S play the central roles in determining the relation between
input energy and output forces, whereas viscosity l determines the amount of
energy loss. To remember, the modelled biomechanical system of `creeping
two-phase ¯ow' is always in a pseudo-steady equilibrium characterized by

Fig. 8. Continuation of the simulation in Fig. 7(b): (a) Sudden increase of the tension threshold

(smax� 35 Pa) leads to attachment of ®laments at the free boundary x�L(t) and its subsequent

retraction, during which the ®lament concentration at the lamella tip gradually rises until, after

about 0.3 min, ®lament disruption takes place. Thereafter the tip stagnates, while a slight shoulder

of higher actin concentration moves centripetally towards x� 0; simultaneously, tension of net-

work at the tip gradually relaxes until, after about 0.4 min, it again attaches. Then the process of tip

retraction repeats. Inset: Curve plot of the maximal pressure pmax(hC) that actin bonds to membrane

proteins could sustain in case of attachment, given a ®lament concentration hC near the boundary;

also plotted (*) are actual values of hydrostatic pressure p there: Periods of attachment start at the

left side of the pmax-curve and show increasing values of hC and p as long as p < pmax�hC� is satis®ed,

whereas at the time of disruption the pressure p jumps down to zero and hC rapidly decreases until

the process repeats with newly attachment. (b): Doubling cell body pressure (PB� 0.5 Pa) extends

the mean lamella length and induces a regular periodic cycle of lamella protrusion (during dis-

ruption of ®laments) and retraction (during their attachment). Plot extends over 2 min, the period

being T� 0.8 min, with Tprotrusion� 0.5 and Trefraction� 0.3 min.
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minimization of the power functional J calculating the `total energy loss rate'
summed up over the whole lamella domain �0; L�t��. Now, in Fig. 9(b)±(d) we
have plotted, for various situations within the protrusion±retraction process,
the spatial distribution not only of the actin ®lament concentration, but also
of the `local energy dissipation rate' Ed and the `local energy gain rate' Eg. In
addition, we have calculated the induced ®lament tension sB at the cell body
x� 0 and the value J � R L�t�

0
�Ed ÿ Eg� of the minimized `total energy loss

Fig. 9. Stable periodic protrusion±retraction cycle in the one-dimensional lamella model. (a): Plots

similar as in Fig. 8(b), extending over 3 min, with slightly changed parameters (u� 0.005, U� 0.35,

PB� 0.4 Pa, smax� 38 Pa) yielding a period of T� 1.15 min with Tprotrusion� 0.5 and longer

Tretraction� 0.65 min. The following pictures (b±d) show time shots in intervals of Dt� 0.1 min of the

distribution of actin ®laments h(x, t) [upper curve], of local energy dissipation rate Ed(x,t) (curve

with hump to the left, scaling reduced by 1/10) and of local energy gain rate Eg(x,t) [curve with

hump to the right, scaling reduced by 1/50]. Also shown are the successive values of traction force

sB at x� 0 and total energy loss rate J. (b) Development of a wave after initial disruption from the

constant chemical equilibrium state, h� heq� 0.1. While energy dissipation Ed mainly appears at

the wave concentration maximum, energy gain Eg always occurs `behind the wave'. (c±d) Successive

waves at later stages in the periodic cycle, during extension shortly after disruption (c) and during

contraction (d). Actin gel concentration at x� 0 has a constant value of hB� 0.4.
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rate'. Here, Ed just collects all the integral terms in Eq. (3), but in spite of the
choice of high adhesive friction, U, ®lament viscosity essentially dominates
the friction and drag terms. On the other hand, Eg contains all integral terms
in Eq. (4), but due to the choice of strong contractivity, w, energy gain is
dominated by contractile energy which is put into the ®lamenteous network
by the ATP-dependent action of myosin, however, damped by network
swelling, r.

Now, the striking observation is that energy gain Eg is exclusively localized
to the region behind the contraction wave, whereas energy dissipation Ed is
signi®cant in all regions where the ®lament network is going to be compressed.
Therefore, it seems as if the `contraction wave' is actively pushed and com-
pressed by forces in its wake: indeed, the most important and dynamically
e�ective contraction takes place in this region, where actin ®laments from the
lower concentrated area at the tip are attracted by the higher concentrated
shoulder or peak of the wave.

Finally, we have computed the traction force sB �
R L�t�

0
Uhjvj onto the cell

body due to the frictional interaction of retracting acting ®laments with

Fig. 9. Continued.
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adhesion proteins connected to the substratum. This force is eventually re-
sponsible for and proportional to the rate of cell translocation towards the
protruded lamella tip. During the periodic lamella cycle it increases to a
maximal value (sB � 12.8 Pa) at the moment of disruption, see Fig. 9(c),
whereas it attains its minimal value (sB � 8.1 Pa) when the contraction
wave reaches the cell body, see Fig. 9(d). Simultaneously, the net energy
input (ÿJ), i.e. the di�erence between total energy input and total energy
dissipation, is always positive meaning that we have negative entropy pro-
duction, i.e. entropy reduction, in the active lamella therefore representing
the typical feature of a `biological motor'. It also varies cyclically but
contrarily to the output force sB. After disruption, when the initiated con-
traction wave is ¯at, the net energy input is minimal (ÿJ� 11.9 Pa), whereas
it is maximal (ÿJ� 30.6 Pa) as the increased wave is approaching the peak
at x� 0.

Consistent with the formula for sB, the potential traction force for cell
translocation is reduced, if we lower the adhesive friction (U). In parallel, a
similar reduction of the net energy input (ÿJ) occurs.

5. Discussion: the role of stochastics and outlook to further modelling

These various kinds of spatio-temporally solutions to the one-dimensional
hyperbolic±elliptic boundary value problem seem to con®rm that the presented
two-phase ¯uid model, with its main non-linearity S(h) in Fig. 3, has the ca-
pacity to produce a broad spectrum of dynamical behavior, already in the one-
dimensional situation with ®xed boundaries. Since the derived continuum
equations approximate the stochastic `biointeraction' between cytoplasmic
®laments and proteins, they might serve as a suitable tool for proving that the
observed richness in the dynamics of cellular motility could be due to the
mechano-chemical properties of the cytoplasm.

So far, our 1-dimensional model for lamella dynamics assumed that the cell
body (with its boundary x� 0 to the lamella) stays ®xed while the lamella tip
protrudes or retracts. The same assumption holds for a simpli®ed circular
model that describes tangential cytoplasm ¯ow and radial lamella protrusions
around the cell periphery, assumed to be a circle with ®xed radius [5]. In an
even more simpli®ed model [23], deformations of cell body shape were con-
sidered, though directly dependent on local actin ®lament concentration which,
by its varying distribution around the cell periphery, may induce a polarization
of the cell. Indeed, many motile tissue or blood cells (as leukocytes or ®sh
keratocytes) soon after displacement on a substratum polarize their shape by
expressing one leading lamella that performs protrusions and determines the
direction of locomotion, whereas the rear of the cell is characterized by cyto-
plasmic contraction.
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One unresolved question is whether the experimentally observed ¯uctua-
tions in direction and motile activity of the leading lamella can result from
irregular or chaotic cytoplasm dynamics within the deterministic framework of
continuum models as presented in this paper; or if they are the consequence of
additional stochasticity e�ected by random ¯uctuations of the mechanical or
chemical parameters. The latter hypothesis has been investigated in [23] as-
suming that actin polymerization is stimulated by membrane receptors which
randomly di�use and bind certain ligands. In this combined deterministic±
stochastic model the resulting ¯uctuations of cell polarization and retrograde
cytoplasmic ¯ow induce corresponding ¯uctuations of the translocation vector,
thus leading to typical cell migration paths which can be characterized as di-
rectionally persistent random walks.

Another important candidate for inducing stochasticity in cell motion is
the process of formation and con®guration of adhesion bonds, being essential
for force transduction between cell and substratum. Hitherto stochastic
models that took into account the kinetics, di�usion and transport of ad-
hesion receptors in order to quantify the dynamics of adhesion and to de-
termine the resulting cell translocation speed, see e.g. Ref. [24], lack in
considering the internal cytoplasm dynamics or, at least, the feedback that it
gets from the adhesion kinetics. Thus, we address this as a further open
problem, namely to investigate hybride models which, for example, combine
the presented two-phase ¯ow model for the cytoplasm with stochastic models
for the tension dependent kinetics of attachment/disruption between actin
®laments and membrane proteins as well as the binding/disruption kinetics
between adhesion proteins and the substratum; a ®rst attempt is performed in
Ref. [20].
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