
Biofilm Growth under Elastic Confinement

George T. Fortune ,1 Nuno M. Oliveira ,1,2 and Raymond E. Goldstein 1,*

1Department of Applied Mathematics and Theoretical Physics, Centre for Mathematical Sciences, University of Cambridge,
Wilberforce Road, Cambridge CB3 0WA, United Kingdom

2Department of Veterinary Medicine, University of Cambridge, Madingley Road, Cambridge CB3 0ES, United Kingdom

(Received 4 December 2021; accepted 6 April 2022; published 29 April 2022)

Bacteria often form surface-bound communities, embedded in a self-produced extracellular matrix,
called biofilms. Quantitative studies of bioflim growth have typically focused on unconfined expansion
above solid or semisolid surfaces, leading to exponential radial growth. This geometry does not accurately
reflect the natural or biomedical contexts in which biofilms grow in confined spaces. Here, we consider one
of the simplest confined geometries: a biofilm growing laterally in the space between a solid surface and an
overlying elastic sheet. A poroelastic framework is utilized to derive the radial growth rate of the biofilm; it
reveals an additional self-similar expansion regime, governed by the Poisson’s ratio of the matrix, leading
to a finite maximum radius, consistent with our experimental observations of growing Bacillus subtilis
biofilms confined by polydimethylsiloxane.
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Bacterial biofilms are microbial accretions, enclosed in a
self-produced polymeric extracellular matrix [1], which
adhere to inert or living surfaces. A biofilm gives the
individual cells a range of competitive advantages, such as
increased resistance to chemical attack. Since the popu-
larization in the mid 1600s of the light microscope as a tool
to study problems in biology [2,3], observations of groups
of bacteria on surfaces have been amply documented [4],
most notably by van Leeuwenhoek in his dental plaque [5].
Yet, it is only in the last few decades with the development
of new genetic and molecular techniques that the complex-
ity of these communities has been appreciated and biofilm
formation has been recognized as a regulated developmen-
tal process in its own right [6,7].
Biofilm formation is common across a wide range of

organisms in the archaeal and bacterial domains of life, on
almost all types of surfaces [8]. Cells attach to a surface and
form microcolonies through clonal growth. These then
grow and colonize their surroundings through mechanisms
such as twitching motility [1]. A central research focus has
been understanding these growth dynamics. Building on
important work on osmotically driven spreading [9], a
biofilm has often been modeled as a viscous, Newtonian
fluid mixture (nutrient rich water and biomass), neglecting
the matrix elasticity. The effects of surface tension [10],
osmotic pressure [11], and the interplay between nutrients,

cell growth, and electrical signaling in response to meta-
bolic stress have all been studied recently [12].
While previous analyses have focused on the experi-

mentally tractable cases of unconfined and unsubmerged
biofilms [9–12], they do not accurately reflect the con-
ditions in which many biofilms grow; they thrive in
confined microspaces [13] between flexible elastic boun-
daries such as vessel walls or soil pores [14], and indeed in
the human body, where they account for over 80% of
microbial infections [15]. Biofilms are difficult to treat with
antibiotics, being thousands of times more resistant than
planktonic cultures [16] due to a range of mechanical and
biological processes [17,18]. The recent rapid growth in the
use of implantable biomedical devices (stents, catheters,
and cardiac implants) has brought with it a large increase in
associated biofilm infections [19] since artificial surfaces
require much smaller bacterial loads for colonization than
the corresponding volume of native tissue (≈10−4 as
much [20]).
Here, we develop the simplest model for a confined

biofilm, using a poroelastic framework to obtain a system
of equations describing its expansion dynamics. We find an
analytic similarity solution for the biofilm height and
radius, together with the vertically averaged biomass
volume fraction. Consistent with experimental observations
on growing Bacillus subtilis biofilms described here, unlike
unconfined biofilms whose radius grows exponentially, the
balance between elastic stresses and osmotic pressure
difference across the interface implies an additional pos-
sible growth regime where within a shallow layer lubrica-
tion assumption, confined biofilms have a maximum radius
at long times. The transition between regimes is governed
by the Poisson’s ratio of the matrix.
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We consider a biomechanical system in which bacteria
grow and divide, converting nutrient-rich fluid into biomass
and thus inducing a flow of biomass outward from the
biofilm center. This flow is resisted by elastic stresses
within the extracellular matrix (ECM), while the biofilm
height dynamically adjusts to ensure conservation of
normal stress across the overlying elastic sheet. An influx
of water assures volume conservation.
Setup, notation, and assumptions.—Illustrated in Fig. 1,

an axisymmetric biofilm of thickness hðr; tÞ, radius RðtÞ
and biomass volume V rests on an impermeable flat plate at
z ¼ 0 and grows below an elastic sheet of thickness d ¼
OðRÞ and bending modulus B ¼ Ed3=12ð1 − ν2Þ, where E
and ν are the Young’s modulus and Poisson’s ratio of the
sheet. We examine the simplest biofilm composition, a
mixture of bacteria (volume fraction ϕb), sugar-rich
secreted polymeric ECM (volume fraction ϕm), and
nutrient-rich water (modeled as a low viscosity
Newtonian fluid [9] with dynamic viscosity μf and volume
fraction 1 − ðϕm þ ϕbÞ≡ 1 − ϕ), under the assumption
that ϕm ≪ ϕb [9]. For theoretical simplicity, we assume
that the biomass volume fraction ϕ is independent of z,
so ∂ϕ=∂z ¼ 0.
We denote the pore-averaged velocity and stress tensor

of the solid and liquid phases by fus ¼ ðus; wsÞ; σsg and
fuf ¼ ðuf; wfÞ; σf ≈ −pIg [9], respectively, where p, Π,
and p̃ are the pore, osmotic, and bulk pressures (with p̃ ¼
pþ Π [21]). Since the vertical deflection of the sheetΔd ¼
OðhÞ is small compared to its thickness d, we ignore
stretching and model it as a thin elastic beam with radius of
curvature R̃ ≫ fd; hg and surface tension γ against the
biofilm. We neglect gravity, assume that nutrient concen-
trations across the biofilm are constant, and take the
biomass growth rate g to be constant in light of our
experiments, introduced below, in which there is an
external flow that ensures homogeneity.

Governing equations.—Conserving mass in both the
solid and fluid phases gives

∂ϕ
∂t þ ∇ · ðϕusÞ ¼ gϕ; ð1aÞ

−
∂ϕ
∂t þ ∇ · ½ð1 − ϕÞuf � ¼ −gϕ: ð1bÞ

Defining the Terzaghi effective stress tensor as σ ¼ ϕðσs −
uf Þ [22], momentum balance yields

∇ · σ ¼ ∇p: ð2Þ

To model σ, we deviate from prior work that assumed a
Newtonian fluid by adopting a poroelastic framework that
incorporates the elasticity of the ECM. In this picture, σ
obeys the elastic constitutive law

σ ¼ σð∇ξÞ; ð3Þ

where ξ ¼ ðξ; ζÞ, the deformation vector of the medium
away from a reference state, is related to the biofilm phase
velocity through us ¼ ð∂t þ us · ∇Þξ. Little utilized in the
study of biofilms, it is a common approach in many
problems containing elasticity in geophysics (hydrology
subsidence and pumping problems [23,24] or industrial
filtration [25]) and biological physics (cell cytoplasm [26]).
Here, we consider the simplest case, where σ obeys the
linear constitutive law

σð∇ξÞ ¼
�
K −

2G
3

�
ð∇ · ξÞI þ Gð∇ξ þ ∇ξTÞ; ð4Þ

where K and G are the effective bulk and shear moduli of
the biofilm respectively, assumed constant. As in [23], K
and G are properties of the whole biofilm rather than just
the ECM. We prescribe explicitly the general form for the
horizontal velocity of the solid phase,

us ¼
r
R
∂R
∂t u0

�
z
h

�
; ð5Þ

where u0 is the z-dependent part of us. We take

u0 ¼
6zðh − zÞ

h2
; ð6Þ

since this is the simplest functional form obeying no-slip
boundary conditions at z ¼ 0 and z ¼ h as well as
hu0i ¼ 1. However, as shown below, we find a solution
independent of the exact form for u0. Global volume
conservation gives ∂R=∂t while r=R sets a simple linear
radial dependence, ensuring that us ¼ 0 at r ¼ 0. As for u0,
tweaking this radial dependence does not qualitatively
change the resulting dynamics of the system.

FIG. 1. Schematic of a confined biofilm. An axisymmetric
biofilm (green) grows between a rigid surface at z ¼ 0 and an
elastic sheet at z ¼ h, with undeformed gap height h∞. Inset: the
biomass is a mixture of bacterial cells (blue, volume fraction ϕb)
and extracellular matrix (green,volume fraction ϕm). The pore-
averaged velocities of the solid and fluid phases are denoted by
us ¼ ðus; wsÞ and uf ¼ ðuf; wfÞ.
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In contrast, vertical flow is governed by pressure
gradients induced both by the upper confinement and by
elastic stresses in the extracellular matrix. We invoke
Darcy’s law for flow within the matrix, giving

ð1 − ϕÞðws − wfÞ ¼
κ

μf

∂p
∂z ; ð7Þ

where κ ¼ κðϕÞ is the effective biofilm permeability with
characteristic permeability scale κ0. The osmotic pressure
away from equilibrium ΠðϕÞ is taken to be that of Flory-
Huggins theory [27], with interaction parameter χ ≃ 1=2 so
there is no demixing [28]. Assuming that the matrix solid
fraction β ¼ ϕm=ϕ ≪ 1 is constant across the biofilm, the
osmotic pressure is [29]

Π ¼ kBT
3ν0

�
ϕm

1 − ϕ

�
3

; ð8Þ

a function of thermal energy kBT and ν0, the effective
volume occupied by one monomer of matrix. Since the
matrix consists of many different substances, notably
sugars, proteins, and DNA, we estimate ν0 by the volume
occupied by one sugar monomer. The osmotic pressure is
subdominant in the analysis below (see Eq. (S14f) of [30] ),
and thus does not appear in the interior (r ≤ R) solutions
(13)–(17). We close this system of equations with a set
of vertical boundary conditions, given in Supplemental
Material [30].
Nondimensionalization.—The analysis exploits two sep-

arations of scales: (i) the initial radius of the confined
biofilm R0 ¼ Rðt ¼ 0Þ is much greater than the initial
height H0 ¼ hðr ¼ 0; t ¼ 0Þ, a lubrication approximation,
and (ii) the growth time scale 1=g is much larger than the
poroelastic equilibration time μfH2

0=κ0P0. We nondimen-
sionalize the equations anisotropically using these length
scales, denote the vertically averaged form of a function f
by hfi ¼ h−1

R
h
0 fdz, and define φ ¼ hϕi, vs ¼ husi,

k ¼ hκi, P ¼ p=P0, and

ρ¼ r
Rð0Þ ; τ¼ gt; R¼ RðtÞ

Rð0Þ ; H¼ hðr; tÞ
hð0;0Þ : ð9Þ

Keeping only leading-order terms in ϵ ¼ H0=R0 [30], the
model reduces to the set of coupled PDEs given below for
the height Hðρ; τÞ and depth-averaged biomass fraction
φðρ; τÞ as functions of radial distance ρ and time τ. The
horizontal pressure gradient adjusts to one of three possible
modes

∂P
∂ρ ¼

�
0;
C1

ρ
;
C2

ρ2

�
; ð10Þ

where C1 and C2 are constants and the dominant contri-
bution to the pressure P arises from the bending stresses
imposed from the upper elastic sheet,

P ¼ ∇4H: ð11Þ

The depth-integrated biomass fraction φH satisfies a
conservation law of the form ∂ðφHÞ=∂τ ¼ −∇ ·J φ þ S,

∂
∂τ ðφHÞ ¼ −

1

ρ

∂
∂ρ ðρvsφHÞ þ φH: ð12Þ

Thus, φH grows exponentially from the source term
S ¼ φH, while subject to radial advection at speed
vsðH;RÞ from the flux term J φ. The system is closed
with a set of boundary conditions, deriving the boundary
conditions for H at the biofilm interface by extending the
framework outside the biofilm to the whole domain and
imposing far field boundary conditions [30].
Similarity solution.—In the mode zero case when the

horizontal pressure gradient is zero, Eqs. (10)–(12) admit
the interior (ρ ≤ R) solutions

H ¼ eτR−2fðρ=RÞ; ð13aÞ

φ0 ¼ φ0ðρ=RÞ; ð13bÞ

where

fðxÞ ¼ 1 − ð1 −m0Þx2; ð14Þ

the incline ratio

m0 ¼
hðr ¼ Rð0Þ; t ¼ 0Þ
hðr ¼ 0; t ¼ 0Þ ð15Þ

is a measure of the initial flatness of the biofilm, φ0ðρÞ ¼
φðρ; τ ¼ 0Þ is set from the initial conditions and we have
utilized the vertically averaged boundary conditions [30]
and the initial conditions Hðρ ¼ 0; τ ¼ 0Þ ¼ Rðτ ¼ 0Þ ¼
1 and Hðρ ¼ 1; τ ¼ 0Þ ¼ m0. The form of (13) guarantees
that the total biomass

R
dρρHφ grows as eτ. We obtain

RðτÞ as the solution of the cubic equation

e−τR3 þRðΞ − 1Þ − Ξ ¼ 0; ð16Þ

where the single free parameter is

Ξ ¼ ξ0m0

ζ0

K þ G=3
K þ 4G=3

¼ Ψ
2ð1 − νbÞ

: ð17Þ

Derived in [30],Ψ ¼ ξ0m0=ζ0, a measure of the initial ratio
between horizontal and vertical stress gradients in the
biofilm, is directly proportional to the incline ratio m0,
while νb is the effective Poisson’s ratio of the ECM. The
radial expansion of the biofilm is mediated by a balance at
the biofilm edge between horizontal and vertical elastic
deformation in the biofilm [the Ξ and e−τR3 terms,
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respectively, in (16)] and the osmotic pressure difference
across the biofilm interface (the RðΞ − 1Þ term).
For general Ξ and τ, this equation does not always admit

an analytic solution and is solved numerically [30].
Figure 2(a) plots the temporal evolution of R for a range
of different values of Ξ. Figure 2(b) explores this further,
choosing a fixed observation time τ0 and plotting Rðτ0Þ as
a function of Ξ. Two clear regimes emerge. If Ξ < 1, the
first and second terms in (16) dominate in a balance
between stresses caused by the vertical elastic deformations
and the osmotic pressure difference, leading to a limit on
vertical expansion. The biofilm then spreads with expo-
nential radial growth [9], with R → ð1 − ΞÞ1=2eτ=2 as
τ → ∞. If Ξ > 1 [the dark blue curves in Fig. 2(a)], the
second and third term in (16) are dominant, giving a
balance between stresses caused by horizontal elastic
deformations and the osmotic pressure difference that
limits horizontal expansion. The radius at intermediate
times exhibits power-law growth before slowing down to
reach a maximum Rð∞Þ ¼ Ξ=ðΞ − 1Þ, when the shallow
layer approximation is still valid. In the special case Ξ ¼ 1,
the osmotic pressure difference across the interface is zero,
leading to a balance between horizontal and vertical elastic
stresses. As shown in Fig. 2(a), the system exhibits

transitional exponential growth, with R ¼ eτ=3, but this
state is not stable; curves with Ξ just above and below unity
will veer off eventually to tend to a constant radius or to the
faster eτ=2 growth law.
Experiments.—We performed experiments on the

growth of biofilms confined by polydimethylsiloxane
(PDMS), the results of which can be compared directly
to the model developed above. The methodology follows
existing protocols [12,31,32] developed to understand the
growth of focal (and submerged) biofilms under well-
defined flow conditions. Full details are given in
Supplemental Material [30]; here we summarize the key
features. Flagella-less mutants of Bacillus subtilis were
used to avoid secondary contributions to biofilm spreading
[9]. Cells in exponential growth phase were centrifuged and
resuspended in growth medium before being loaded at the
center of Y04-D plates linked to the CellASIC ONIX
microfluidic platform (EMD Millipore), and kept at 30 °C.
In this setup, they are confined between glass and an
overlying PDMS sheet of thickness d ¼ 114 μm, with an
initial gap of h ¼ 6 μm. Fresh medium was flowed through
the chamber with a mean speed of ∼16 μms−1 [12,31,32].
Biofilm growth was imaged at 1 frame/min on a spinning-
disc confocal microscope in bright field. As the biofilms
were often frilly, with long thin strands of matrix polymer
protruding from their edges, a Gaussian image processing
filter in MATLAB was used to neglect these strands when
identifying the interface with a Sobel edge detector.
Figure 3(a) is a montage of the expanding biofilm edge

and the best-fit circle for one particular experiment, while
Fig. 3(b) plots the scaled biofilm radius R as a function of
time. In a clear departure from unconfined bacterial
biofilms, the R initially grows as a power law before
tending to saturate at long times. These profiles exhibit the
main qualitative features predicted by the theoretical model
for Ξ > 1. The lines of best fit (black lines in Fig. 3(b),
[30]) show good agreement over the entire time course of
the experiments. A further comparison with theory is
obtained by measuring in three different experiments, at
the same nutrient concentration, the radius Rðt0Þ at a
particular time t0 ¼ 5 h, chosen as a time when the biofilm
radius had at least doubled from its initial value. The
parameter g relating absolute and rescaled times was fitted
across all experiments, and gives the value τ0 ¼ 4.29 used
in Fig. 2(b), while Ξ is fitted independently for each. These
experimental points in the Ξ −R plane are shown as blue
circles in Fig. 2(b), and agree very well with the poroelastic
model developed here.
To understand the evolution of biofilms under confine-

ment, we have constructed a minimal mathematical model
that uses a poroelastic framework. This admits a family of
self-similar quasisteady solutions, parametrized by a
dimensionless parameter Ξ that measures the elasticity of
the matrix. Those solutions are consistent with the exper-
imentally observed behavior of confined B. subtilis

(a)

(b)

Ξ = 1

Ξ > 1

Ξ < 1

FIG. 2. Growth dynamics of confined biofilms according to
the poroelastic model. (a) The scaled biofilm radius R as a
function of scaled time in a semilogarithmic plot, for
Ξ ∈ ½0.4; 0.75; 0.91; 1; 1.13; 1.3; 1.7�. Darker colors denote
larger Ξ. (b) Biofilm radius at a fixed τ0 [dashed vertical line
in (a)] as a function of Ξ, both numerically (red solid line) and
experimentally (turquoise circles), and numerically for τ0 → ∞
(black curve).
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biofilms. For comparison, [30] presents the corresponding
theoretical model in which, following previous work in the
literature, the biomass is modeled instead as a viscous
Newtonian fluid, neglecting the intrinsic elasticity of the
biofilm ECM. In that case, a solution with power law
growth tending to a maximum finite biofilm radius is not
supported, demonstrating that modeling the matrix elas-
ticity is essential to capturing biofilm growth under elastic
confinement.
Unlike unconfined biofilms, a subset of these solutions

(where Ξ > 1) have a maximum radius due to a balance
between elastic stresses and the osmotic pressure difference
across the interface. The key parameter that determines
which regime the system lies in and thus whether the
biofilm grows predominately radially or axially is the
Poisson’s ratio of the biofilm matrix. Hence, we may view
matrix elasticity as a competitive trait that could well be
optimized by natural selection.
For growth under confinement, a next step is to begin to

build on this initial framework, adding more biological
complexity, to investigate different aspects of this rich
problem. In particular, we plan to explore how biofilms
can biomechanically damage their surroundings, through

inducing the swelling of soft tissues upward into the
biofilm [37,38]. Most work done on how biofilms damage
their surroundings has focused on biochemical mecha-
nisms. We hope to complement these studies by focusing
on the biomechanical aspects.
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