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Abstract
Here we find a mapping onto the Sturm–Liouville operator of the first two
balance equations derived from Boltzmann’s equation. This mapping, which is
irreversible and valid only for a subclass of solutions, is achieved by applying a
Fourier transform to the momentum coordinate. In light of this irreversibility,
it is necessary to develop a set of consistent prescriptions to find the probability
of any physical quantity in the p-conjugate space such that it will coincide
with the average over the momentum of the true probabilities obtained from
the original Boltzmann equation. The one drawback of this prescription is
that it is impossible to predict exactly the precise values of the position x
and the momentum p at the same time. This uncertainty is limited by the
relationship that all conjugate variables in a Fourier transform should obey,
namely �x�p = η/2, where η is a free parameter of the theory. The
prescriptions we have found appear to coincide with the postulates of quantum
mechanics, when η is set equal to h̄. This procedure seems to provide a statistical
representation of quantum mechanics.

PACS numbers: 03.65.Ta, 05.20.Dd, 45.05.+x, 03.65.Sq

1. Introduction

Since the work of Madelung [1], it has been known that the Schrödinger equation is equivalent
to Euler’s equations for a fluid with an unusual form of the pressure. This hydrodynamic
approach has been studied extensively [2,3]. In general, the equations of motion of fluids have
an underlying kinetic theory, so one might wonder whether this is also true for the case leading
to Schrödinger’s equation. In this paper, we present a possible route to this connection.
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It is well known that the motion of an ensemble of N classical particles is governed by
Liouville’s equation [4],

∂D

∂t
= {H, D}, (1)

where D represents the number density of points in phase space and H is the Hamiltonian of
the N -particle system [5]. Calling � the volume in phase space and

fN(x1, p1, . . . , xN, pN) = D∫
�

D d�
(2)

we can then define for 1 � j < N the following functions:

fj (xj , pj ) =
∫

�

fN(xN, pN)

N∏
l=j+1

dxl dpl , (3)

where (xN, pN) = (x1, p1, . . . , xN, pN). These functions are called the reduced probability
distributions and correspond to the probability of finding the subsystem of j < N particles
in the phase volume

∏j

l=1 dxl dpl about the state (x1, p1, . . . , xj , pj ). Using the reduced
probability distributions it is possible to recast Liouville’s equation as a set of N coupled
nonlinear partial differential equations for the set of N functions {fj }. These N equations are
known as the BBKGY hierarchy [6], the first two terms of which (i.e. the equations for f1

and f2) determine the kinetic and potential energies of an aggregate of particles, and have a
crucial role in fluid dynamics. Even though no exact solution to this hierarchy is known, it is
possible to decouple the equations in certain cases when some ansatz about the properties of
the probability functions is introduced. This decoupling provides us with what is known as
the kinetic equations for the system.

One of the most important set of kinetic equations is the one obtained with the Bogoliubov
ansatz [6]. This leads to the following equation for the one-particle reduced probability density
f1 = f1(x1, p1, t):

∂f1

∂t
+

p1

m
· ∂f1

∂x1
− ∂V (x1)

∂x1
· ∂f1

∂p1
= 2π

∫
r2 dr2g

∫
dp2[f1( p′

1)f1( p′
2) − f1( p1)f1( p2)], (4)

where V (x1) is the external potential averaged over all other spatial coordinates, g is
the magnitude of the relative velocity defined as g = ( p2 − p1)/m and where we used
dx2 = r2 dr2 dφ dz. This is known as Boltzmann’s equation. A well-known theorem states
that the integral over p1 of the collision integral multiplied by a function ϕ( p1) vanishes
if ϕ satisfies ϕ1 + ϕ2 = ϕ1′ + ϕ2′ . Choosing ϕ = 1, ϕ = p1 or ϕ = p2

1, which clearly
satisfy this condition, we obtain, respectively, the conservation laws for particle number,
momentum and energy, which are necessary conditions for the physical validity of any kinetic
equation [6]. Since the collision integral contributions vanish identically, the first two balance
equations read ∫ +∞

−∞
dp

(
∂f1

∂t
+

p
m

· ∂f1

∂x
− ∂V (x)

∂x
· ∂f1

∂p

)
= 0 (5)

and ∫ +∞

−∞
p dp

(
∂f1

∂t
+

p
m

· ∂f1

∂x
− ∂V (x)

∂x
· ∂f1

∂p

)
= 0, (6)

where we have dropped the subindex 1 from the coordinates x1 and p1. Notice that the last term
of the first equation vanishes, since it can be integrated to yield a surface term that will tend
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to zero due to the convergence properties of f1. In fact, −∫ +∞
−∞ dp(∂V (x)/∂x) · (∂f1/∂p) =

−(∂V (x)/∂x) · ∫ +∞
−∞ dp(∂f1/∂p) = −(∂V (x)/∂x) · f1|+∞

−∞ → 0. And in the last equation

this same term can be integrated by parts to yield − ∫ +∞
−∞ dp p(∂V (x)/∂x) · (∂f1/∂p) =

(∂V (x)/∂x) · ∫ +∞
−∞ dpf1 where again we have used the fact that the surface terms vanish.

It is not possible to calculate the average 〈←→
pp 〉 that appears in the second term of equation (6)

without explicit knowledge of the distribution function f1. This term defines the pressure tensor
and is the only term that depends on the collision integral, through f1. A standard method
of calculation of f1 is the Chapman–Enskog expansion that perturbatively incorporates the
collision integral. The zeroth order term yields the standard Euler equation of fluid dynamics
with a diagonal pressure tensor, while the first correction yields the viscous terms of the
Navier–Stokes equation.

2. Mapping

We now introduce into our two balance equations the following representation for f1:

f1(x, p, t) = 1

(2πη)3

∫ +∞

−∞
exp

(
−i

p · y
η

)
f̂ (x, y, t) dy, (7)

where f̂ (x, y, t) is, of course, given by

f̂ (x, y, t) =
∫ +∞

−∞
exp

(
i
p · y
η

)
f1(x, p, t) dp. (8)

With these definitions and after some straightforward algebra the balance equations can be
written as

1

(2πη)3

∫∫ +∞

−∞
dp dy exp

(
−i

p · y
η

)[
∂f̂

∂t
+

η

im

∂

∂x
· ∂f̂

∂y

]
= 0 (9)

and

1

(2πη)3

∫∫ +∞

−∞
dp dy exp

(
−i

p · y
η

)

×


 ∂

∂t

(
η

i

∂f̂

∂y

)
− η2

m

∂

∂x
·




←→
∂2f̂

∂y∂y


 +

∂

∂y

(
y · ∂V

∂x
f̂

)
 = 0 . (10)

Using the identity

∂

∂y

(
y · ∂V

∂x
f̂

)
= ∂V

∂x
f̂ + y · ∂

∂y

(
∂V

∂x
f̂

)
(11)

and after performing the p-integrals that yield delta functions on y we obtain:∫ +∞

−∞
dy δ( y)

[
∂f̂

∂t
+

η

im

∂

∂x
· ∂f̂

∂y

]
= 0 (12)

and

∫ +∞

−∞
dy δ( y)


 ∂

∂t

(
η

i

∂f̂

∂y

)
− η2

m

∂

∂x
·




←→
∂2f̂

∂y∂y


 +

∂V

∂x
f̂ + O( y)


 = 0 . (13)
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It is clear that the results of these integrals are given by the limit for y → 0 of the integrands,

lim
y→0

[
∂f̂

∂t
+

η

im

∂

∂x
· ∂f̂

∂y

]
= 0, (14)

lim
y→0


 ∂

∂t

(
η

i

∂f̂

∂y

)
− η2

m

∂

∂x
·




←→
∂2f̂

∂y∂y


 +

∂V

∂x
f̂


 = 0. (15)

These limits are quite interesting since, except for multiplicative constants, they are
identical to the limits that Fröhlich [7–9] encountered when deriving the equations of
hydrodynamics from quantum mechanics in the reduced density matrix formalism. In
continuing our analysis, we could follow his derivation exactly, but it is simpler and more
intuitive to use the properties of f̂ . Notice that the first two limits necessary for the first
balance equation correspond to the following averages:

lim
y→0

f̂ = lim
y→0

∫ +∞

−∞
exp

(
i
p · y
η

)
f1(x, p, t) dp

=
∫ +∞

−∞
f1(x, p, t) dp = ρ(x, t)

m
, (16)

lim
y→0

∂f̂

∂y
= lim

y→0

∂

∂y

∫ +∞

−∞
exp

(
i
p · y
η

)
f1(x, p, t) dp

= i

η

∫ +∞

−∞
pf1(x, p, t) dp

= i

η
ρ(x, t)u(x, t), (17)

where we have defined the mean velocity u as the average, over the momentum p alone, of p/m,
where m is the mass. Replacing these values into the first balance equation it is straightforward
to obtain the continuity equation:

∂ρ

∂t
+

∂(ρu)

∂x
= 0. (18)

The second equation then transforms into

1

m

∂(ρu)

∂t
− η2

m
lim
y→0

∂

∂x
·




←→
∂2f̂

∂y∂y


 +

ρ

m

∂V

∂x
= 0. (19)

Now we are left with the not-so-simple task of evaluating the limit of the tensor in the
second term. As in the discussion following equation (6), evaluation of this pressure tensor
requires some knowledge of f̂ . This task is greatly simplified if we first study the symmetries
of f̂ and any possible constraints that may arise from its equations of motion. To proceed, we
turn our attention to equations (9) and (10). First, we integrate them over the variable x and
then make the canonical change of variables y = x′ − x′′ and x = (x′ + x′′)/2, which satisfies
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the following relationships:

x′ = x +
y
2
,

x′′ = x − y
2
,

∂

∂y
= 1

2

(
∂

∂x′ − ∂

∂x′′

)
,

∂

∂x
=

(
∂

∂x′ +
∂

∂x′′

)
.

(20)

We can now rewrite the term with the potential V making use of the derivative by definition,
the change of variables (20) and the fact that limy→0 ≡ limx′→x′′

lim
y→0

∂

∂y

(
y · ∂V

∂x
f̂

)
= lim

y→0

∂

∂y

(
f̂ y · V (x′) − V (x′′)

(x′ − x′′)

)

= lim
y→0

∂

∂y

(
f̂ y · V (x + y/2) − V (x − y/2)

y

)

= lim
y→0

∂

∂y

(
f̂

[
V

(
x +

y
2

)
− V

(
x − y

2

)])

= lim
x′→x′′

1

2

(
∂

∂x′ − ∂

∂x′′

)
(f̂ [V (x′) − V (x′′)]). (21)

After integrating over p and x′, and replacing (21) into (9) and (10) they become∫
dx′′ lim

x′→x′′

[
iη

∂f̂

∂t
+

η2

2m

(
∂2f̂

∂x′2 − ∂2f̂

∂x′′2

)]
= 0 (22)

and∫
dx′′ lim

x′→x′′

1

2

(
∂

∂x′ − ∂

∂x′′

)[
η

i

∂f̂

∂t
− η2

2m

(
∂2f̂

∂x′2 − ∂2f̂

∂x′′2

)
+ (V (x′) − V (x′′))f̂

]
= 0.

(23)

Notice that in the limit y → 0, which corresponds to x′ → x′′, x′ = x′′ ≡ x. The fact that
the symmetries of f̂ can be obtained from the balance equations is the consequence of two
important points. The first is that the main mechanism driving the equation is the nonlinearity
arising from what will eventually become the convective derivative. If that nonlinearity
were not present we would be left with nothing to study. Second, the Fourier transform has
linearized the nonlinear term, making it separable in each variable, thus enhancing the intrinsic
symmetries of the original equation. In fact, the left-hand side of Boltzmann’s equation, even
though highly nonlinear, presents a remarkable symmetry regarding the variables x and p; it is
clear that the left-hand side remains invariant under the exchange x ↔ p:

∂f1

∂t
+

dx
dt

· ∂f1

∂x
+

dp
dt

· ∂f1

∂p
. (24)

This symmetry is most apparent in the new variables, and translates into the fact that
equations (22) and (23) can be satisfied up to O( y) by a function f̂ (x′, x′′, t) that has the
property of being separable. Thus,

f̂ (x′, x′′, t) = h′(x′, t)h′′(x′′, t). (25)

We must point out that separable solutions correspond only to a subclass of solutions of
the original equation. In fact, if the initial and/or boundary conditions of the problem to be
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solved are not separable the solution will not be separable either. It is nonetheless instructive
to consider the subset of separable solutions because it is only this subclass that leads to
Schrödinger’s equation3. Another important feature of the solutions to equations (22) and (23)
is that regardless of its separability the limit y → 0 of the function f̂ must be real since it
coincides with the average over the momentum of the reduced probability function f1; this is
the real quantity that we have labelled ρ/m. However, before the limit is taken f̂ (x′, x′′, t)
is a complex function that can be written in terms of a magnitude σ and a phase shift eiφ . This
phase must vanish in the limit y → 0 so that f̂ will be real in this limit. Thus, we write f̂ as

f̂ (x′, x′′, t) = σ(x′, x′′, t) eiφ(x′,x′′,t). (26)

Replacing this expression for f̂ into our tensor we can write its k, l-component as

lim
y→0

∂

∂yk

∂

∂yl

f̂ (x′, x′′, t) = lim
y→0

eiφ

[
∂2σ

∂yk∂yl

− σ
∂φ

∂yk

∂φ

∂yl

+ i

(
∂φ

∂yl

∂σ

∂yk

+
∂φ

∂yk

∂σ

∂yl

+ σ
∂2φ

∂yk∂yl

)]
.

(27)

As we pointed out before, the imaginary part of this expression must vanish. This will
constrain σ and φ to be functions with given symmetries: first, (∂2φ/∂yk∂yl) must vanish.
This requirement is satisfied if φ(x′, x′′, t) = −φ(x′′, x′, t), i.e. φ is antisymmetric in the
variables x′ and x′′. And second, since the first derivative of φ will not vanish due to the fact
that φ is antisymmetric, the remaining terms will vanish if (∂σ/∂yn) vanishes for n = k, l. This
condition is satisfied if we require that σ(x′, x′′, t) = σ(x′′, x′, t), i.e. σ is symmetric in the
variables x′ and x′′. Due to these symmetry conditions we can immediately determine the
value of (∂φ/∂yk) for any k. Since limy→0(∂f̂ /∂yk) = limy→0 eiφ[(∂σ/∂yk) + iσ(∂φ/∂yk)]
and limy→0(∂σ/∂yk) = 0 by symmetry, then

lim
y→0

∂

∂yk

f̂ (x′, x′′, t) = lim
y→0

iσ
∂φ

∂yk

= 1

η
muk (28)

and, thus,

lim
y→0

∂

∂yk

∂

∂yl

f̂ (x′, x′′, t) = − 1

η2
mρukul + lim

y→0

∂2σ

∂yk∂yl

, (29)

where uk and ul are the k and l components of the average velocity u(x, t). Finally, we can
write the remainder of our tensor using the separability property. We can write σ as a product
of two functions g1(x′, t) and g2(x′′, t). Since σ must also be symmetric, g1 and g2 must be
equal up to a multiplicative constant that can be normalized, so we can set, in the limit y → 0,
g1(x, t) = g2(x, t) = g(x, t). When these results are substituted into (29) we obtain

lim
y→0

∂2σ

∂yk∂yl

= g2

4

[
2

mg

∂2(mg)

∂xk∂xl

− 2

(mg)2

∂(mg)

∂xk

∂(mg)

∂xl

]

= 1

4m
ρ(x, t)

∂2 ln ρ(x, t)

∂xk∂xl

, (30)

where we have used

lim
y→0

f̂ = lim
y→0

σeiφ = lim
y→0

σ = ρ(x, t)

m
(31)

3 We find Feynman’s description (1951 Phys. Rev. 84 108) of his own work quite applicable here. ‘The mathematics
is not completely satisfactory. No attempt has been made to maintain mathematical rigor. The excuse is not that it is
expected that rigorous demonstrations can be easily supplied. Quite the contrary, it is believed that to put the present
methods on a rigorous basis may be quite a difficult task, beyond the abilities of the author.’
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in keeping with the definition introduced in equation (16). We should point out that this tensor
was first derived by Kaniadakis [3] in a different context. Finally, our two balance equations
in Fourier space read:

∂ρ

∂t
+ ∇ · (ρu) = 0 (32)

and

∂

∂t
(mρu) + ∇ ·


ρ


muu − η2

4m

←→
∂2 ln ρ

∂x∂x




 + ρ∇V = 0, (33)

where ∇ ≡ ∂/∂x. It is interesting to notice that the only difference between this pair of
balance equations and the ones obtained with the usual method of averaging without Fourier
transforming is the presence of the Kaniadakis tensor instead of an arbitrary pressure tensor.
From this point on, finishing the mapping onto the Sturm–Liouville operator is a task whose
individual parts have been done many times before. For completeness, we will summarize the
main steps of the mapping closely following Kaniadakis [3].

First, the pair of equations we found is transformed into the standard form of Euler’s
equations for a non-viscous fluid with an unusual pressure tensor by using the continuity
equation to eliminate the time derivative of ρ. This yields the result

∂u
∂t

+ (u · ∇)u − η2

4m2ρ
∇ ·


ρ

←→
∂2 ln ρ

∂x∂x


 +

1

m
∇V = 0. (34)

When we compare this equation to the standard Euler equation we notice that the pressure has
become the term proportional to η2 (recall that the pressure is related to the standard deviation
of the velocity) and that its very particular form is a direct consequence of having assumed
separability for f̂ . Once we have rewritten our equations in the standard form, we use the
notation Q = ln ρ and the classical definition of the action S in terms of the momentum in
the Hamilton–Jacobi formalism; p̃ = ∇S. Since we are working in Cartesian coordinates
p̃ = mu. Substituting this into our two balance equations, after considerable algebra we find

∂Q
∂t

+
1

m
∇S · ∇Q +

1

m
∇2S = 0 (35)

and

∂S

∂t
+

1

2m
(∇S)2 − η2

4m

(
∇2Q +

1

2
(∇Q)2

)
+ V = 0. (36)

Then, multiplying the first equation by 1
2 , the second by η/i, and adding them we can write [1,2]

η

i

∂Z

∂t
= η2

2m
(∇2Z + (∇Z)2), (37)

where we have defined Z = (Q/2) + (η/i)S. Finally, we perform a standard Hopf–Cole
transformation Z = ln � to obtain the Sturm–Liouville operator:

− η2

2m
∇2� + V (x)� = iη

∂�

∂t
. (38)

At this point, we can solve this equation for a given potential and in principle we would
have the reduced one-particle probability in p-conjugate space from the fact that

ρ(x, t) = |�(x, t)|2 = �(x, t)�∗(x, t), (39)
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where the asterisk indicates the complex conjugate. This seems to be a simple enough task,
however as we mentioned before the mapping is irreversible; we cannot recover f1(x, p, t).
In fact, the closest approximation to the original reduced probability distribution that can be
constructed looks rather similar to the Wigner function [10] of quantum mechanics:

f
(W)
1 (x, p, t) = 1

(2πη)3

∫ +∞

−∞
e−i( p·y)/ηf̂ (x, y, t) dy

= 1

(2πη)3

∫ +∞

−∞
e−i( p·y)/η�

(
x +

1

2
y, t

)
�∗

(
x − 1

2
y, t

)
dy. (40)

This function will give the correct probability as a function of x when integrated over p
and will give the correct probability as a function of p when integrated over x but, clearly, it is
not equal to the true reduced probability density f1. In fact, as well known from discussions of
the Wigner function, f

(W)
1 may even become negative for some values of the variables. This

discrepancy is due to the fact that f̂ has been constructed using only information given by
the first two kinetic equations, without any input from the others. To have all the information
necessary to reconstruct f1 fully, it would be necessary to know every single moment (of the
infinitely many) of the Boltzmann equations. To claim that anti-transforming the f̂ we found
retains any resemblance with the full probability f1 would be similar to claiming that the
polynomial built with the first two coefficients of the Taylor expansion of a function would
be equivalent to the said function everywhere. On the other hand, since we have the exact
value of the function f̂ for y → 0, it is correct to say that the probabilities obtained in this
limit are the same as the ones in the original problem in that particular case. Thus, since we
cannot retrieve f1 completely, we are unfortunately confined to make all our calculations in
the p-conjugate space. This can only be done if we find a way to evaluate the averages we
need and recover as much information as possible without undoing the mapping.

We continue by studying some of the features of the transformations we used.
Examining (36) we are tempted to think that setting η = 0 would give us the Hamilton–Jacobi
equation for a single particle. However, this would leave the role of equation (35) unexplained.
Since our original starting point was an ensemble of classical particles, equation (36) can only
be viewed as the equation of motion of the velocity potential of this ensemble. Another issue
that comes to mind is the fact that we have performed several integrations by parts involving the
function f̂ . In each one of these integrations we assumed that limx→±L f̂ → 0 for L → ±∞
so that the surface integrals would vanish. Were this not the case the mapping would be
rendered invalid. This is almost never a problem since this property can be fulfilled for most
cases by imposing the appropriate boundary conditions on �. A notable exception to this is the
case of zero external potential (i.e. V (x) = 0), since � cannot be made to vanish as L → ±∞.
It is possible in some very special cases to salvage the situation if only the averages are of
interest. Then we need to confine our transform to integration between (−L, +L) and, only at
the end of the calculation, after the averages were calculated, take the limit L → ∞.

Another interesting feature of this mapping has already been pointed out by others [3], but
is nonetheless worthwhile to review. The last transformation, known as Hopf–Cole, involves
the logarithm of a complex function

Z = ln ρ

2
+

η

i
S = ln �. (41)

This is not a single valued transformation, since ln � = ln |�|+i(θ0+2lπ), where l is an integer.
This puts some restrictions on S and hence on u since we defined previously u = (1/m)∇S.
As pointed out by Kaniadakis the consequence of introducing the complex variable � is that
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the velocity u and hence its associated momentum defined as p̃ = mu must satisfy the condition

�S =
∮

p̃ dx = 2πnη, (42)

where n is an integer.
Finally, we will derive the prescription to evaluate the averages in the p-conjugate space.

Since we have not changed the meaning of the variable x anywhere in the calculation (recall
that in the limit y → 0 not only x′ = x′′, but also they are both equal to x), it is clear how to
compute the averages for physical quantities that only depend on the position x:

〈xn〉 =
∫

xnf1(x, p, t) dx dp∫
f1(x, p, t) dp dx

=
∫

xn(limy→0 mf̂ ) dx∫
(limy→0 mf̂ ) dx

=
∫

�xn�∗ dx∫
��∗ dx

. (43)

However this is not the case for those quantities that depend on the momentum p. It is possible
to show (see appendix A) that the average of an integer power of the momentum p is given by

〈 pn〉 =
∫

�∗(−iη ∇)n� dx∫
��∗ dx

. (44)

Notice that this is the true momentum p from the original Boltzmann equation and not the
momentum p̃ = mu that we defined above. In fact, p̃(x, t) is the value of p after the Fourier
transform and the average in the original variable p has already been performed. It is true,
however, that 〈 p〉 = 〈p̃〉.

By making use of expression (44) it is possible to prove that the average of a physical
quantity A(x, p, t) is given by (see appendix A)

〈A〉 =
∫

�∗Â(x, pF , t)� dx∫
��∗ dx

, (45)

where we have defined the operator pF = −iη∇ to represent the resulting momentum in
Fourier space after the average over all possible momenta has been done.

An interesting issue that we wish to address relates to the relative importance of each
of the terms in equation (34) because this is the determining factor in the applicability of
perturbative methods. The easiest way to determine the relative order of each term is by
a rescaling of the variables so that the equation becomes dimensionless. We introduce the
following rescalings:

∇ = 1

Y
∇̃, V = V0Ṽ ,

u = U0ũ, t = Y

U0
t̃ ,

ρ = 1

Y 3
ρ̃, x = Y x̃,

(46)

where Y , V0 and U0 are the characteristic length, potential and velocity, respectively.
Introducing this rescaling into equation (34) we obtain

(
mU 2

0

V0

)[
∂ũ

∂t̃
+ (ũ · ∇̃)ũ

]
− η2

4mV0Y 2ρ̃
∇̃ ·


ρ̃

←→
∂2 ln ρ̃

∂ x̃∂ x̃


 + ∇̃Ṽ (x̃) = 0. (47)
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When the characteristic kinetic and potential energies are of the same order
(i.e. (mU 2

0 /V0) � 1) we can define the following dimensionless quantity, the Shelley
number:

Sh = η

2 (mV0)
1/2 Y

= η

2P0Y
, (48)

where P0 is a characteristic momentum. Then we can rewrite (48) as

[
∂ũ

∂t̃
+ (ũ · ∇̃)ũ

]
− (Sh)2 1

ρ̃
∇̃ ·


ρ̃

←→
∂2 ln ρ̃

∂ x̃∂ x̃


 + ∇̃Ṽ (x̃) = 0. (49)

Since the term proportional to Sh2 is the highest derivative in the equation of motion,
any perturbation scheme will be singular. This equation strongly suggests the existence of
a boundary layer where the small value of the Shelley number is counterbalanced by a large
value of the highest derivative. In general, it will be necessary to use matched asymptotic
techniques to obtain an adequate solution valid everywhere. Moreover, if we first set Sh = 0
and find the solution afterwards, the results obtained will not be able to represent faithfully
the true behaviour of the full solution in the limit Sh → 0. This singular behaviour is hardly
surprising since the limit Sh → 0 corresponds to the limit y → 0 and η → 0 in the Fourier
transforms (7), (8), obviously a quite singular limit. A last interesting detail is that, as clearly
can be observed from the way in which Sh appears in the equation of motion, most perturbative
schemes will only produce even powers of the parameter η.

One last important point relates to Frölich’s derivation of the equations of hydrodynamics
in the reduced density matrix formalism. In his case, the starting point for the derivation was
the equation of motion for the first-order quantum reduced probability function known as the
first-order reduced density matrix, which is constructed from the wave functions, solutions of
the time dependent Schrödinger equation. The equations that Frölich obtains in the particular
case of isotropic ideal fluids are identical to (18) and (19) when replacing η = h̄. Since the
tensor Frölich derived operates on a function that naturally has the symmetries required to
ultimately yield the Kaniadakis tensor, it is clear that an aggregate of quantum particles will
evolve according to a Sturm–Liouville operator, which in this case corresponds exactly to the
time dependent Schrödinger equation since the constant η is h̄ in Frölich’s case. This clearly
means that aggregates of quantum particles behave like quantum objects themselves, as is well
known in superfluids, superconductors, etc.

3. Conclusions

Using Boltzmann’s equation obtained through the Bogoliubov ansatz applied to the BBKGY
hierarchy, we connected the equation of motion of an ensemble of N classical particles to the
Sturm–Liouville operator. The main consequences of such a mapping, achieved by taking a
limit to the Fourier transform on p of the Boltzmann equation, are

(1) The new equation of motion in p-conjugate space is

− η2

2m
∇2� + V (x) � = iη

∂�

∂t
(50)

and the probability in p-conjugate space is a function of x only, given by ρ(x, t) =
�(x, t)�∗(x, t), where �(x, t) is a solution of the equation of motion (50) and �∗(x, t)

its conjugate.



Mapping of balance equations onto Schrödinger equation 221

(2) The average of any physical quantity A(x, p; t) in the original problem can be found
by calculating

〈A(x, p; t)〉 =
∫ +∞
−∞ dx �∗Â(x, pF ; t)�∫

��∗ dx
. (51)

where pF = −iη∇.
Notice that an immediate consequence of the definition for pF is that the equation of

motion can be written as[
p2

F

2m
+ V (x)

]
� = iη

∂�

∂t
. (52)

The term in square brackets in (52) corresponds to the energy stored in the streamline described
by equation (34). Thus, we can define EF = p2

F /2m+V (x). With this definition and using (52)
we can establish the correspondence EF = iη(∂/∂t).

(3) We have lost the ability to recover f1(x, p, t). This precludes us from predicting values
of p when in conjugate space. Due to the intrinsic properties of the Fourier transform with
regard to conjugate variables the following relationship must hold:

�p�x = η

2
, (53)

where �p and �x represent the standard deviations of p and x, respectively.
Notice that by substituting η = h̄ the rules we have derived read like the postulates of

quantum mechanics.
In closing, we would also like to point out the wonderful coincidence of having started

with an equation due to a theorem proven by Joseph Liouville in 1838, and having transformed
it into a linear differential equation whose properties and solvability conditions were finally
understood thanks to Jacques Sturm and Joseph Liouville himself.
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Appendix A

To prove equation (44) we begin by expressing the average of p in terms of f̂ ,

lim
y→0

∂nf̂

∂yn
= lim

y→0

∂n

∂yn

∫ +∞

−∞
exp

(
i
p · y
η

)
f1(x, p, t) dp

=
(

i

η

)n ∫ +∞

−∞
pnf1(x, p, t) dp. (54)

Then,

〈 pn〉 =
∫∫ +∞

−∞ pnf1(x, p, t) dp dx∫∫ +∞
−∞ f1(x, p, t) dp dx

= (−iη)n

∫ +∞
−∞ dx m limy→0 ∂nf̂ /∂yn∫ +∞

−∞ dx m limy→0 f̂
. (55)
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As we have shown before, m limy→0 f̂ = ρ(x, t), so we only have to calculate the
numerator in our expression. We do so by using the canonical change of variables given
by (20), so that

∂n

∂yn
= 1

2n

(
∂

∂x′ − ∂

∂x′′

)n

= 1

2n

n∑
k=0

(
n

k

)(
∂

∂x′

)k (
− ∂

∂x′′

)(n−k)

. (56)

Once more we will invoke the separability of f̂ in the form

f̂ (x′, x′′, t) = h′(x′, t)h′′(x′′, t). (57)

Notice that h′ and h′′ are complex functions given by h′ = g1eiφ′
and h′′ = g2eiφ′′

and
φ(x′, x′′, t) = φ′(x′, t)+φ′′(x′′, t). Then, replacing into the integral of the numerator we obtain

∫ +∞

−∞
dx m lim

y→0

∂nf̂

∂yn
=

∫ +∞

−∞
dx

1

2n

n∑
k=0

(
n

k

)
m lim

y→0

(
∂h′

∂x′

)k (
−∂h′′

∂x′′

)(n−k)

=
∫ +∞

−∞
dx

1

2n

n∑
k=0

(
n

k

)
∂k�

∂xk
(−1)(n−k) ∂

(n−k)�∗

∂x(n−k)
, (58)

where we have used the identities

m lim
y→0

f̂ (x′, x′′, t) = m lim
y→0

h′(x′, t)h′′(x′′, t)

= ρ(x, t) ≡ ��∗ (59)

and called m1/2 limy→0 h′(x′, t) = �(x, t) and m1/2 limy→0 h′′(x′′, t) = �∗(x, t). Then, after
integrating by parts (n − k) times the derivatives of �∗, we obtain∫ +∞

−∞
dx �∗ ∂n�

∂xn
, (60)

where we have used the fact that
∑n

k=0

(
n

k

) = 2n. Finally, replacing these results into (55) and
changing the notation to ∂/∂x ≡ ∇, the expression for 〈 pn〉 reads

〈 pn〉 =
∫

�∗(−iη∇)n� dx∫
��∗ dx

. (61)

To prove (45) we write the physical magnitude A(x, p, t) through its series representation,

A(x, p, t) =
∑
n,m

Anmxnpm, (62)

where the coefficients Anm are functions of time. Then, its average is given by

〈A〉 =
∫∫ +∞

−∞
∑

n,m Anmxnpmf1(x, p, t) dp dx∫∫ +∞
−∞ f1(x, p, t) dp dx

=
∑

n,m Anm

∫ +∞
−∞ dx xn

∫ +∞
−∞ pmf1(x, p, t) dp∫∫ +∞

−∞ f1(x, p, t) dp dx
. (63)
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Now, using (60) we can rewrite this average as

〈A〉 =
∑

n,m Anm

∫ +∞
−∞ dx xn�∗(−iη∇)m�∫

��∗ dx

=
∫ +∞
−∞ dx �∗ [∑

n,m Anmxn(−iη∇)m
]
�∫

��∗ dx

=
∫ +∞
−∞ dx �∗Â(x, pF , t)�∫

��∗ dx
, (64)

where pF = −iη∇.

Appendix B

Here we show an interesting feature of the BBKGY hierarchy, which even though not fully
relevant to this paper, is nonetheless quite intriguing.

The equation that governs the s-particle probability function in the classical BBKGY
hierarchy is given by

∂fs

∂t
+

s∑

=1

p


m
· ∂fs

∂x


+
∑ s∑


<j

−∂u
j

∂x


·
(

∂fs

∂p


− ∂fs

∂pj

)

+(N − s)

∫
dxs+1 dps+1

s∑

=1

−∂u
,s+1

∂x


· ∂fs+1

∂p


= 0, (65)

where uij is the inter-particle potential between the particles i and j , which only depends on
the distance between those particles.

Given the results obtained by introducing Fourier transforms into the momentum averages
of Boltzmann’s equation, one could ask about the outcome of such a procedure when applied
to the momentum average of any one member of the full BBKGY hierarchy:∫ s∏

k=1

dpk

[
∂fs

∂t
+

s∑

=1

p


m
· ∂fs

∂x


+
∑ s∑


<j

−∂u
j

∂x


·
(

∂fs

∂p


− ∂fs

∂pj

)

+(N − s)

∫
dxs+1 dps+1

s∑

=1

−∂u
,s+1

∂x


· ∂fs+1

∂p


]
= 0. (66)

Thus, we generalize our previous mapping by introducing the following transforms:

fs(Xs , Ps , t) = 1

(2πη)3s

∫ +∞

−∞
exp

(
− i

η

s∑

=1

p
 · y


)
f̂s(Xs ,Ys , t) dYs (67)

and

f̂s(Xs , . . . ,Ys , t) =
∫ +∞

−∞
exp

(
i

η

s∑

=1

p
 · y


)
fs(Xs , Ps , t) dPs , (68)

where we have introduced the short-hand notation Xs = (x1, . . . , xs), Ys = (y1, . . . , ys),
Ps = ( p1, . . . , ps), dYs = ∏s


=1 dy
 and dPs = ∏s

=1 dp
. Also, from now on we will not

write explicitly the Xs , Ys and Ps dependence of fs and f̂s unless needed for clarity.
When these definitions are replaced into each term of (66) and the usual algebraic steps

are followed we obtain:

∂fs

∂t
= 1

(2πη)3s

∫ +∞

−∞
dYs exp

(
− i

η

s∑

=1

p
 · y


)
∂f̂s

∂t
(69)
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for the first term,

s∑

=1

p


m
· ∂fs

∂x


= 1

(2πη)3s

∫ +∞

−∞
dYs exp

(
− i

η

s∑

=1

p
 · y


)
s∑


=1

iη

m

∂

∂y


· ∂f̂s

∂x


(70)

for the second term, using the symmetry relation ∂u
j /∂x
 = −∂u
j /∂xj ,

s∑

<j

−∂u
j

∂x


·
(

∂fs

∂p


− ∂fs

∂pj

)
= 1

(2πη)3s

s∑

<j

∫ +∞

−∞
dYs

i

η

[
y
 · ∂u
j

∂x


+ yj · ∂u
j

∂xj

]

×f̂s exp

(
− i

η

s∑
k=1

pk · yk

)
(71)

for the third term and

(N − s)

∫
dxs+1 dps+1

s∑

=1

−∂u
,s+1

∂x


· ∂fs+1

∂p


= 1

(2πη)3(s+1)

s∑

=1

∫
dps+1 dxs+1

×
∫ +∞

−∞
dYs+1 exp

(
− i

η

s+1∑
k=1

pk · yk

)
i

η

[
y
 · ∂u
,s+1

∂x


]
f̂s+1 (72)

for the fourth term.
Now we introduce the usual canonical change of variables yj = x′

j − x′′
j and xj =

(x′
j + x′′

j )/2. The first term remains the same and the second term can be rewritten as

1

(2πη)3s

∫ +∞

−∞
dYs exp

(
− i

η

s∑

=1

p
 · y


)
s∑


=1

− 1

iη

[
− η2

2m

∂2f̂s

∂x′2



−
(

− η2

2m

)
∂2f̂s

∂x′′2



]
. (73)

For the third and fourth terms we notice that

y
 · ∂u
j

∂x


+ yj · ∂u
j

∂xj

= u

(
x
 +

�x


2
, xj +

�xj

2

)
− u

(
x
 − �x


2
, xj − �xj

2

)
+ O(y
, yj )

= u(x′

, x′

j ) − u(x′′

 , x′′

j ) + O(y
, yj ) . (74)

Thus, the third and fourth terms can be rewritten, up to order O(Ys+1), as

1

(2πη)3s

s∑

<j

∫ +∞

−∞
dYs exp

(
− i

η

s∑
k=1

pk · yk

)(
− 1

iη

)
[u(x′


, x′
j ) − u(x′′


 , x′′
j )]f̂s (75)

and

1

(2πη)3(s+1)

s∑

=1

∫
dps+1 dxs+1

∫ +∞

−∞
dYs+1 exp

(
− i

η

s+1∑
k=1

pk · yk

)

×
(

− 1

iη

)
[u(x′


, x′
s+1) − u(x′′


 , x′′
s+1)]f̂s+1, (76)

respectively. In equation (76), the integral on ps+1 can be calculated since the only dependence
on this variable appears in the exponential:

1

(2πη)3

∫ +∞

−∞
dps+1 exp

(
− i

η
ps+1 · ys+1

)
= δ(ys+1). (77)
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Since δ(ys+1) = δ(x′
s+1 − x′′

s+1),∫ +∞

−∞
dxs+1

∫ +∞

−∞
dYs+1 δ(ys+1) =

∫ +∞

−∞
dx′

s+1 dx′′
s+1 δ(x′

s+1 − x′′
s+1). (78)

Finally, replacing identity (78) in the last term and collecting all the results we obtain for the
Fourier transform of the s-term in the BBKGY hierarchy:

1

(2πη)3s

∫ +∞

−∞
dPs

∫ +∞

−∞
dYs exp

(
− i

η

s∑

=1

p
 · y


)

×
{

∂f̂s

∂t
+

s∑

=1

− 1

iη

[
− η2

2m

∂2f̂s

∂x′2



−
(

− η2

2m

)
∂2f̂s

∂x′′2



]

+
s∑


<j

(
− 1

iη

)
[u(x′


, x′
j ) − u(x′′


 , x′′
j )]f̂s

+(N − s)

s∑

=1

∫∫ +∞

−∞
dx′

s+1 dx′′
s+1 δ(x′

s+1 − x′′
s+1)

×
(

− 1

iη

)
[u(x′


, x′
s+1) − u(x′′


 , x′′
s+1)]f̂s+1

}
+ O(Ys) = 0. (79)

We can now use the well-known fact that for any function F(Ys , Xs)

1

(2πη)3

∫ +∞

−∞
dpk

∫ +∞

−∞
dyk exp

(
− i

η
pk · yk

)
F(Ys , Xs)

=
∫ +∞

−∞
dyk δ(yk)F (Ys , Xs) = lim

yk→0
F(Ys , Xs) (80)

taking into account that limYs→0 ≡ limX′
s→X′′

s
and replacing (80) for each value of k into (79)

we obtain

lim
X′

s→X′′
s

{
∂f̂s

∂t
+

s∑

=1

− 1

iη

[
− η2

2m

∂2f̂s

∂x′2



−
(

− η2

2m

)
∂2f̂s

∂x′′2



]

+
s∑


<j

(
− 1

iη

) [
u(x′


, x′
j ) − u(x′′


 , x′′
j )
]
f̂s

+(N − s)

s∑

=1

∫∫ +∞

−∞
dx′

s+1 dx′′
s+1δ(x

′
s+1 − x′′

s+1)

×
(

− 1

iη

)
[u(x′


, x′
s+1) − u(x′′


 , x′′
s+1)]f̂s+1

}
= 0, (81)

where we have omitted the corrections O(Ys) because they vanish when we take the limit.
If we replace in (81), as we have done before, η ≡ h̄ and also relabel ρs ≡ f̂s ,

the expression inside the curly brackets coincides, except for the limiting operation, with
the equation that governs the sth member of the quantum hierarchy for the density matrix
ρs(X′

s , X′′
s ) [6]. We should point out, though, that results calculated with the density matrix

only have physical meaning when at the end of such calculation the limit x′
j → x′′

j , ∀j is taken.
Therefore, any averages obtained from either f̂s or ρs should be identical. This would also
seem to indicate that the solutions for f̂s could be separable in this limit since the solutions for
ρs satisfy this property. While this argument by no means constitutes a proof of the existence
of separable solutions for f̂s it is encouraging in that direction.
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