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The quantitative validity of asymptotic particle-hole symmetry in a fluid at its liquid-vapor 
critical point is determined by means of the exact mapping of the fluid Hamiltonian onto that 
of an effective Landau-Ginzburg-Wilson model studied first by Hubbard and Schofield. A 
particular three-particle correlation of a reference fluid is identified as that which controls the 
breaking of liquid-vapor symmetry, as manifested in a linear mixing of the pure Ising-like 
scaling fields and a singularity in the coexistence curve diameter. The inherent smallness of the 
mixing coefficient in a pair-potential fluid is shown to reflect the weak density dependence of 
the second moment of the two-particle direct correlation function of the reference system. It is 
further demonstrated that three-body interactions of the Axilrod-Teller-type enhance the 
broken particle-hole symmetry found in a purely pairwise-additive Hamiltonian, and detailed 
calculations give diameter anomaly amplitudes which vary linearly with the fluid 
polarizability, in quantitative agreement with recent experiments. 

I. INTRODUCTION AND SUMMARY OF RESULTS 

Recent experimental and theoretical studies 1-3 of criti
cal phenomena in fluids have revealed that the correspon
dence between liquid-vapor critical points and the Curie 
points of Ising ferromagnets depend sensitively on the exis
tence of many-body interactions in fluids. Of central interest 
has been the validity of particle-hole symmetry in fluids, as 
expressed in the relationship of the true scaling variables to 
those implied by the lattice-gas model. The most notable 
manifestation of deviations from the rigorous symmetry 
obeyed by Ising ferromagnets is the celebrated singularity in 
the coexistence curve diameter which has been predicted 
from a variety of theories,4 from a continuum model of 
fluids5 to lattice models,I,2,6 and by renormalization-group 
studies. 7 ,8 

This weak anomaly in the mean of the coexisting liquid 
and vapor densities, PI and Pv' as they separately approach 
the critical density Pc along the coexistence curve takes the 
same form as the singular part ofthe internal energy, name
ly, 

PI +Pv Pd= 1 +AI_atl-a+Alt+ .... (1) 
2pc 

Here, the reduced temperature t=(Tc-T)ITc,and 
a"" 0.11 is the exponent of the divergence of the constant 
volume specific heat. The linear term represents the ever
present analytic background contribution. In systems with 
perfect particle-hole symmetry, such as the Ising model and 
the lattice gases to which it is equivalent, A I _ a = A I = 0, as 
indeed are all higher terms, so that the classical analyticity of 
the diameter9 holds trivially. In real fluids, for which the 
diameter has a measurable temperature dependence far from 
Tc ' it is only very recently that there has appeared evidence 
for true broken particle-hole symmetry in the form of the 
scaling variables, namely A I _ a #0. 

a) Address as of 1 August 1988: The Enrico Fermi Institute. The University 
of Chicago. 5640 Ellis Avenue. Chicago. Illinois 60637. 

Analysis of those new high-precision experiments 1,3 on 
simple fluids has revealed that the amplitude of that anoma
ly and several other non universal critical amplitudes are 
strongly and systematically dependent on the molecular po
larizability ap • This would not be the case if these fluids 
obeyed a law of corresponding states, for then all microscop
ic details would have been scaled out in defining the critical 
amplitudes. These systematic deviations from universal be
havior have been ascribed 1-3 to the effects of weak three
body dispersion interactions of the Axilrod-Tel1er (AT) 
type which are argued to introduce a new energy scale. This 
can be seen from the fact that the amplitude of the AT poten
tial scales like a;, in contrast to the quadratic dependence on 
a p of the amplitude of the pair interaction. Thus, the relative 
strength of triplet interactions is linear in the polarizability, 
and both a van der Waals model3 and lattice models2 of 
fluids with triplet interactions have successfully explained 
many of the experimental findings on this basis. In particu
lar, the lattice models have indicated that repUlsive triplet 
potentials (like the AT interaction) lead to a linear variation 
of the amplitude A I _ a with the dimensionless critical polar
izability product appc. Figure 1 shows that this is indeed the 
case for the estimated l

,3 amplitudes AI _ a ofNe, N2, C2H4, 
C2H6, and SF 6' 

The experimental determination of the anomaly ampli
tude is complicated by the numerical closeness of the leading 
singular and analytic exponents in Pd' so the estimated 
A I _ a is somewhat dependent on the range of data fit and the 
functional form assumed. In Fig. 1, we have indicated by 
circles the estimates obtained by single power-law fits to a 
subset of the data closest to the critical point. For the more 
extensive and precise data on Ne and N2, estimates which 
include analytic background terms and corrections to scal
ing are also shown. Extrapolation to the limit of negligible 
triplet interactions, i.e., appc -+0, clearly reveals that there 
remains a small anomaly, and hence a residual breaking of 
particle-hole symmetry for systems with pairwise-additive 
forces. 
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FIG. 1. Experimental values of the diameter anomaly amplitude A 1 _ a as a 
function of the critical polarizability product for Ne, N2, C2H., C2H 6, and 
SF6> from Ref. 3. Circles are results from single power-law fits of a subset of 
the data close to Tc ' squares from a sum of linear and singular terms over 
entire data range, and diamonds are results from fits for Ne and N2 includ
ing in addition a correction-to-scaling term. 

Despite the theoretical progress mentioned above, espe
cially that on the statistical mechanical lattice models, it has 
remained unclear the extent to which particle-hole symme
try should be valid influids governed either by pair potential 
Hamiltonians or in the presence of many-body interactions: 
There has been no theoretical discussion which explains 
quantitatively the data in Fig. 1. It is the purpose of this 
paper to examine the correspondence between fluids and 
magnets in the critical region and to derive the theoretical 
result shown as a dashed line in Fig. 1, which, without adjus
table parameters, agrees quantitatively with the data. We 
first show in Sec. II A that the mapping from a fluid Hamil
tonian to a continuous-spin effective Landau-Ginzburg
Wilson model first discussed on a purely formal basis by 
Hubbard and Schofield lO may be carried out explicitly and 
exactly for a pair-potential fluid. The result is that the spin 
operators of the LGW model are completely expressible in 
terms of particular kinds of direct correlation functions of a 
reference system. Renormalization-group arguments are 
used to identify that operator which, to leading order in 
E==4 - d (in d spatial dimensions), leads to so-called "re
vised" or linearly mixed scaling variables. When combined 
with a simple application of scaling-law arguments, this 
leads to a closed-form expression for the diameter anomaly 
amplitude in terms of measurable and calculable material 
properties. Important insight into the origin of the near par
ticle-hole symmetry in fluids is obtained by the observation 
that this amplitUde is governed by the density dependence of 
the second moment of the direct correlation function of the 
reference fluid, and in the case of a reasonable such system, a 
fluid of hard-spheres, this is shown to be an inherently small 
quantity. Within a simple approximation for the effects of 
the Axilrod-Teller triplet interactions on the structure of the 

reference fluid, we show in Sec. II C that the observed vari
ation in the anomaly amplitude with molecular polarizabili
ty may be quantitatively explained, as indicated by the calcu
lated line in Fig. 1. The possibility of extending these results 
to metallic and semiconducting fluids is discussed in Sec. III. 

II. THEORY 
A. General results 

In the context of an effective continuous-spin Landau
Ginzburg-Wilson Hamiltonian, the existence of revised 
scaling variables has been shown 7 by Nicoll to be related to 
the presence of a particular "asymmetric" operator. The 
precise connection between that operator and the micro
scopic Hamiltonian of a fluid, although implicitly contained 
in the work of Hubbard and Schofield,lo has not until now 
been given. Consider then a system whose reduced Hamilto
nian :7t"==H IkB T can be written as a sum of an Ising-like 
operator:7t"/ and an asymmetric operator W:7t"A' with w a 
small parameter. Let t/J be the fluctuating field whose average 
is the order parameter of the fluid. These two Hamiltonians 
in d dimensions are 

and 

:7t"A = J ddxqtt/J3-!ht/J2V2t/J+-6 Uip5}, (3) 

where t is the deviation from the mean field critical tempera
ture, and U > O. With E = f g; t/J exp ( - I?) the grand par
tition function of the system, it may be shown 7 through the 
use of correlation function identifies arising from the "equa
tion of motion" in field theory that to leading order in w, the 
free energy !l = - kB TIn E of the system governed by 
I? / + wI? A is equivalent to one governed solely by I? /' 
but with an effective thermal scaling field 

7 = t + wh. ( 4 ) 

With this result, the measured amplitUde of the diame
ter anomaly may be related to wand more easily measured 
quantities by considering the scaling form II of the singular 
part of the reduced thermodynamic potential per unit vol
ume gs ( 7, J.l) == - P!ll V = In EI V, 

gs=Dr-aY±(E~), (5) 

where D and E are nonuniversal metric factors, Y ± are uni
versal scaling functions appropriate above and below the 
critical temperature, and for the present analysis we need 
only consider a linearly mixed thermal field 7 and pure one
body field ~ of the form 

(6) 

with t== (Tc - nlTc' With these definitions, the thermo
dynamic density is ag.l a~ = P - Pc' On the coexistence sur
face ~ = 0 one finds from the symmetry properties of the 
scaling functions Y _ that 

P± -Pc = ±DEY'_ (O+)t P 

+ (2-a)DY_ (O)wt l -
a + .... (7) 
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This allows the identification of the diameter anomaly am
plitude as 

(2 - a)wDY _ (0) 
A I _ a = (8) 

Pc 
To relate the quantities on the right-hand side ofEq. (8) 

to the measured specific heat anomaly we first define for 
convenience the reduced specific heat density l2 
C== (kB TJPc )cv' with Cv the specific heat per unit volume, 
and Pc the critical pressure. Further defining the specific 
heat amplitude A above Tc via C= (A la) Itl- a

, and com
puting Cv from the asymptotic scaling equation, 

cv =D(2-a)(l-a)Y+(0)ltl- a (9) 

we obtain 

(10) 

where Zc ==PclPckB Tc is the critical compressibility factor. 
Note that the ratio Y _ (O)IY + (0) is precisely the uni

versal amplitude ratio conventionally denoted by A _I A +. 
Renormalization-group estimates l3.14 of this ratio give a val
ue of A_IA+ = 1.9 in d = 3, close to the value of 2 in four 
dimensions. Experimental values cluster slightly below a 
value of = 2. The compressibility factor for the simple fluids 
extrapolates3 in the limit of negligible three-body forces to 
Zc =0.32. Using the accepted value of a=O.II, and typical 
values for the amplitude A as quoted by Sengers and 
Sengers,12 namely A = 2 for light noble gases, we find that 
A I _ a = (13 ± 1)w. 

Having established the relationship between the scaling 
variables at the critical point and the coefficients in the effec
tive LG W Hamiltonian, it remains to make the connection 
between the latter and the Hamiltonian of a fluid in order to 
compute the field-mixing coefficient w. The total Hamilto
nian JY' of the fluid is partitioned as JY' = JY'o(rN) + JY'I' 
where JY'0 is that of the reference system, typically consist
ing of purely repulsive potentials, and 

(11 ) 

involves the attractive part ¢I of the pair potential. The 
grand canonical partition function of the full interacting sys
tem is 

-( n T -P(JY'o+JY',) +PpN .::. f-L, = r e 

which may be rearranged to yield 

':'( n - ':' ( n( -PJY',+P(P-P-Q)N) - f-L, - -0 f-Lo, e 0 

(12) 

='::'0'::'1' (13) 
the angular brackets denoting an ensemble average with re
spect to the reference system at chemical potential f-Lo' 

We introduce the density operator p(r) = };jD(r - r i ) 

and its Fourier transformp(k) =};; exp( - ;IN;), and re
write - (3JY'1 as 

~N{3¢I(O) __ I_{3"ip(k)p( -k)¢I(k). (14) 
2 2V k 

Defining the dimensionless chemical pot~ntial 

ji=={3[f-L - f-Lo + ¢I (0)/2] and potential i\ (k) == - (3¢(k), 
we obtain the excess free energy 0 1 = - kB TIn E I, where 

=1 (f-L,n = (exp{Up(O) + _1_ "ip(k)p( - k)v1 (k)})o' 
2V k 

(15) 

A Hubbard-Stratonovitch IO transformation applied to 
Eq. (15) may be cast in the form 

=1 ex:f II dfPk exp{ - _1_ "i vI(k)-IfPkfP_k 
2V k 

+~ jifPo }(exp(~ "ifPkP( -k»)) . (16) 
VvI(O) V k 0 

In writing this proportionality, we have suppressed all ana
lytic factors coming from the Gaussian transformation since 
they do not contribute to the thermodynamic singularities at 
the critical point. It should be remarked that the ability to 
perform the transformation leading to Eq. (16) depends on 
the positive definiteness of the transform v(k),IS The free
dom to choose the partition of the full configurational ener
gy into a reference potential and perturbing potential in prin
ciple allows a choice with v(k);;.O. Although simple 
prescriptions for defining ¢I (r) do not always accomplish 
this, the values of momentum for which v,O are very high, of 
order the inverse hard core diameter, and are in any event 
irrelevant to the discussion of critical phenomena. 

From the cumulant theorem, the expectation on the 
right-hand side of Eq. (16) may be written as the exponen
tial of a sum of cumulant averages., 

co 1 1 A 

( .. ')0 = exp "i - -- "i ... "i Gn (kI,· .. ,kn) n = I n! vn - I k, k
n 

XfP-k,·"fP-knDk,+k2+···+kn.O· (17) 

These reference system correlation functions are the Fourier 
transforms of thermodynamic derivatives of the form 16 

Dnln E 
Gn (r)! ... ,rn ) = , (18) 

Dlnz(rI)'''lnz(rn ) 

where z( r) is the (spatially varying) fugacity. These are the 
so-called "connected" correlation functions, and their Four
ier transforms are nonzero only if the sum of their wave 
vectors vanishes. 

Inserting Eq. (17) into Eq. (16), we conclude that the 
excess free energy is given by the functional integral E I' 

=1 ex: f II dfP exp( - JY'), (19) 

where the reduced continuous-spin Hamiltonian JY' has the 
form 

JY' = "i KI (k)fP - kDk.O 
k 

+ ~ "i "i "i K3 (k,k',k") 
3!V k k' k' 

XfP-kfP-k'fP-k,Dk+k'+k',O + .... (20) 

Using the diagrammatic expansion 16 of the Gs in terms of the 
direct correlation functions of the reference fluid, we obtain 

A 

explicit expressions for the kernels K: 
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KI(k) = - (A j1 + Po) , 
VI (0) 

K2 (k,k') = (~+-A _1_), 
C~(k) vl(k) 

K3 (k,k',k") = - G3 (h,h ',h ")(k,k',k") 

e ~ (k,k' ,k") 
A A A 

C~ (k)C~ (k')C~ (k") 

(21) 

(22) 

(23) 

etc., where in Eq. (23) we have used the Ornstein-Zernike 
relations to express the G n in terms of the total direct corre
lation functions e ~, which differ from the more usual excess 
functions en by the addition of the ideal gas contribution, 
i.e., e~ = en - (n - 2)!( - 1)n/pn-1 . 

To identify the relationship between the parameters in 
the LGW Hamiltonian and the reference system correlation 
functions, we expand the latter in momenta. Expressing the 
reference total two-body direct correlation function as 
e~ (k) = e~ (0) - bR k 2 + ... ,and the Fourier transform 
of the attractive part of the potential as 
vl(k) = vl(O) - b l k

2 + "', we conclude that the param
eters of the symmetric Hamiltonian are 

- 1 1 1 Tc- T 
t=.-A----A--= A (24) 

C ~ (0) f3tPl (0) f3ctPl (0) Tc 

and 

-- j1 h - - >< +Po 
f3ctPl (0) 

(25) 

to leading order in T - Tc, where Tc is the mean field criti
cal temperature. To the same order, the effective range pa
rameter b is given by 

- _ bR bl b= A + A • 

[C~(O)]Z [f3ctPI(O)]z 
(26) 

The effective Hamiltonian in Eq. (20) has odd (and 
momentum dependent) terms just like those in the simpli
fied field-theoretic model Eq. (3), but they do not appear in 
the precise linear combination found in Nicoll's Hamilto
nian £" A' There thus arises the issue of identifying within 
the continuous-spin fluid Hamiltonian the particular terms 
which give rise to field-mixing, in other words, the projection 
ofEq. (20) onto the field-mixing operator. For this purpose, 
we note on general grounds and independent of the argu
ments which lead to Eq. (4) that in a scaling description of 
the behavior of the order parameter M near the critical point, 
we expect the amplitude of this mixing operator Vm to appear 
in the form 

M=Mot13W(E'~'F'~) . 
t {3lj t A."IA2 

(27) 

the parameters Mo, E', and F' are non universal metric fac
tors, W is the universal scaling function, Am is the mixing 
eigenvalue, and Az is the thermal eigenvalue. As long as the 
mixing perturbation is irrelevant, Am < 0, and we may ex
pand the scaling function along the critical isochore as t --+ 0, 
obtaining 

M=Mot 13 [1 + Mit -Am/
A

2 + ... ] . (28) 

Thus, an energy-like diameter anomaly, viewed as a correc-

tion to scaling, requires Am = - Az ( 1 - a - f3). With the 
E-expansion results Az=2 - d3, a=d6, and f3= 1/2-
d6, we find Am = - 1+ d6 + O(c). 

Renormalization-group analyses8
•
17 of momentum-in

dependent operators show that no irrelevant eigenvalues of 
odd perturbations have this E expansion. Thus, although the 
mixing term £" A has both momentum-independent and mo
mentum-dependent components, it has no projection on mo
mentum-independent odd operators to order E. Therefore, 
under the assumption that the starting fluid Hamiltonian 
(20) is sufficiently close to the fixed-point Hamiltonian for a 
linear analysis to be valid, it is not possible to determine the 
field-mixing in fluids by examining the zero momentum val-

A 

ues of the reference correlation functions Kn. Indeed, Nicoll 
and Zia have shown that the operator q; ZVZq; (which is actu
ally mixed with q; 5), is precisely that responsible for the 
eigenvalue Am' at least to first order in an E expansion. This 
implies that it is precisely this term of the three in £" A upon 
which we must focus attention to find field mixing. Consid
ering the long-wavelength expansion of the three-body di
rect correlation function and invoking the thermodynamic 
identity 

A 

dC I (k) 
2 = e~ (k, - k,O) (29) 

dp 

wefindK3 (kl,kz,k3 ) =K3(O,0,Q) -g3~k7, where 

(de~ (O)/dp) 1 (dbR/dp) 
g3 = - A + - A • (30) 

[C~(O)]4 2 [C~(O)p 

By comparison with the Fourier transform of the q; ZVZq; 
term in the perturbing asymmetric Hamiltonian, - wb /2, 
we identify 

w = g3/b, (31) 

so that the field-mixing coefficient is expressible completely 
in terms of the reference system's correlation functions and 
the properties of the attractive potential. When combined 
with Eq. (10) we have an explicit numerical prediction for 
the diameter amplitude, A I _ a = (13 ± 1) (g3/b). 

We shall see in Sec. II B that a sensible choice of the 
reference chemical potential is exactly that which sets the 
firstterm in Eq. (30) equal to zero, so that a nonzerog3 arises 
from the density dependence 0/ the range 0/ the direct correla
tion/unction of the reference system. Within the convention
al Ornstein-Zernike l8 view the second moment of C2 (r) is 
governed by the range of the attractive part of the potential, 
and hence is independent of density. Here, for pair-potential 
fluids, we see that the residual density dependence arising 
from the hard-core exclusion governs the field mixing. Note 
that the terms in the full field-theoretic Hamiltonian £" 
which scale like (momentum)z may be combined together 
to give a coefficient b (1 + 2wtP), which can be viewed as a 
series expansion of an effective range parameter in the neigh
borhood of the critical density. 

B. Application to a model fluid 

The explicit application of the results of Sec. II to fluids 
requires a choice of reference system, and it is natural to take 
the potential £"0 to be that of the hard-sphere fluid, namely, 

J. Chem. Phys., Vol. 88, No. 11, 1 June 1988 

Downloaded 01 Jan 2011 to 150.135.239.98. Redistribution subject to AIP license or copyright; see http://jcp.aip.org/about/rights_and_permissions



R. E. Goldstein and A. Parola: Particle-hole symmetry in critical fluids 7063 

(32) 

where rPo = 00 for r<"u and vanishes otherwise. The correla
tion functions ofinterest are known analytically within fairly 
accurate approximations, and to compute the field-mixing 
parameters, we shall evaluate those correlations at the mean 
field critical point, whose density and temperature are easily 
determined from the k = ° terms in the effective field theory 
( 19). 

From the mean field analysis of the LGW Hamiltonian 
the critical point is at a density Pc and inverse temperature 
{3c for which K2 (0,0) = K3(0,0,o) = 0, that is to say, the 
vanishing of the leading-order relevant even and odd opera
tors. These conditions are 

(33) 

and 
A A 

dC~(O) = (dC2 (0») +~=O. 
dp dp Pc p~ 

(34) 

In the Percus-Yevick approximation, the direct correlation 
function C2 (r) is known 19 to be 

C { -AI-61JA2r-~1JAI~' r<u 
2(r) = ° ' , r>u 

(35) 

where Al = (1 + 21J)2/(1 _1J)4, ,1,2 = - (1 + 1J/2)21 
(1 - 1J )4, and 1J = 1TP~ 16, u being the hard-core diameter. 
This yields a critical density Pc ~ "'" 0.246, and a critical tem
perature - {3c~(O) "'" 11.2~ = - C~ (0), at which the 
density derivative of the second moment of C2 is dbR I 
dp"", - l.36if, while bR itself is - 0.665cr. Note that the 
condition for criticality (34) renders the field-mixing quan
tity g3 (30) equal to its second term alone. Although we have 
evaluated the reference correlation functions at the mean 
field critical density, their values are changed little (i.e., 
5 %-10%) by a shift of the reference system density to the 
critical density obtained in more refined calculations. 20 

The treatment of the short-distance behavior of the at
tractive part of the pair potential is somewhat arbitrary, but 
of little numerical significance for both the integrated 
strength of the potential and its range. We have adopted the 
simple Weeks-Chandler-Andersen21 approach of extending 
the potential from its minimum to the origin with constant 
amplitude. In particular, we consider the Lennard-Jones po
tential 

rPu(x) =4E(X- 12 _x-6 ), 

with x = rlu, which has a transform 

(36) 

~u(k) = -15.79E~-7.68Ecrk2+ .... (37) 

These results give the range b"",0.038u- l
. Combining all of 

the above results, we estimate the field-mixing coefficient to 
be w"",O.012, so that intrinsic diameter anomaly amplitude 
in a pair-potential fluid is 

A\_a "",0.16 ± 0.02. (38) 

The uncertainty we have indicated is that associated with the 
known uncertainties in the exponents, critical amplitudes, 
and compressibility factor appearing in Eq. (10). As shown 

in Fig. 1, this prediction is in excellent agreement with the 
data in the limit appc -+0, and lends strong support to the 
identification of the field-mixing operator proposed here. 

c. Fluids with many-body Interactions 

We have seen in Sec. II A that the field-mixing operator 
may be identified with the leading term in a small-momen
tum expansion of the transform of a reference three-particle 
direct correlation function, and hence with the long-range 
behavior of that function in real space. Clearly, the long
range components of three-body interactions will have an 
important contribution to this correlation function, and for 
insulating fluids it is well established that the relevant 
asymptotic behavior is that given by Axilrod and Teller,22 
namely 

V ( ) - V 3 cos ()\ cos ()2 cos ()3 + 1 
AT r\,r2,r3 - 3 . 

~2~3~3 
(39) 

Here, the amplitude V3 = (9/16)a;a, a being a character
istic electronic excitation energy, the angle (); is that at the 
ith vertex of the triangle formed by the three particles, and 
the rij are the leg lengths. 

Under the assumption that such interactions are weak, 
we have explored incorporating their effects into the re/er
ence hard-sphere system according to a low-order virial ap
proximation. Let us recall the essential result obtained by 
Casanova et al. 23 for the lowest-order density expansion of 
the effective pair potential in a fluid with weak three-body 
interactions. If 1(12) = exp[ - ¢(12)lkB T] - 1 is the 
Mayer / function of the effective potential at density p, 
/0(12) = exp[ - rPo(12)lkB T] - 1 is that of the bare po
tential, and/(123) = exp[ - ",(123)lkB T] - 1 is that of 
the triplet potential "', then 

1(12) ""'/0(12) + peo(12) 

x J dr3 eo(13)eo(23)/(123) + O(p2), (40) 

where e(ij) =/(ij) + 1. Linearization of Eq. (40) in the 
small shift 8rP = (¢ - rPo) I k B T and small ",I k B T gives 

- {38rP(12) "'" -.{3p J dr3 eo(13 )eo(23 )",(123). (41) 

For the hard-sphere rPo, the effect of the integration over r3 is 
simply to define a new triplet potential which vanishes for 
configurations corresponding to overlap of the spheres. If we 
incorporate the effects of that new potential on the reference 
system by means of a mean spherical ansatz, then in Fourier 
space we obtain for the case of the Axilrod-Teller potential 

C~ (k) = [C~ (k) ]HS - p{3r AT (k, - k,O) , (42) 

where 'Y is the AT function modified to satisfy the above 
overlap condition. The correlation function relationship 
(29) implies that the three-body direct correlation function 
then behaves as 
A A A 

C; (k(,k2,k3 ) = [C; (k\,k2,k3 >] HS - {3'Y AT (k(,k2,k3 ). 

(43) 

To determine the small-k expansion of the Fourier 
transform of the Axilrod-Teller potential, we may use the 
known23 analytical results for the integral 
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J(r12 ) = J d 3r3 eo(13 )eo(23 ) rAT' 

For the case of a hard-sphere reference potential, 

J(r) = 21TV3 fer) , 
f> 

(44) 

(45) 

where f = (1/4 )(r/a)4 - (1/24 )(r/a) 6 for r<2a, and 
f = 4/3 for r>2a. To compute the Fourier transform, we 
note that 

100 

d 3r e - ,k-r J(r) = rAT (k, - k,O) . (46) 

Defining the range parameter b3 of this potential as 

rAT (kl,k2,k3) = rAT (0,0,0) - b3 L k ~ + ... ,(47) 
i 

we may identify b3 as one-half of the coefficient of - k 2 in 
the small-k expansion of Eq. (46). We find 

b
3 

= - 119r ~. (48) 
90 a 

Note that within a Lennard-Jones model, the amplitude 
of the r- 6 attraction between atoms is 4Ea6 = (3/4 )a~.:l, so 
V3 = 3Eap if. The field-mixing quantity dbR/dp has thus 
acquired an additional contribution from triplet interac
tions, 

(49) 

where we have used the mean field results for the critical 
temperature and density to recast the expression purely in 
terms of apPe' Combining all of these results, we arrive at 
the final prediction for the diameter anomaly amplitude, 

A I _ a = (0.16±0.02) + (l4± 1)apPe' (50) 

which, as shown in Fig. I, is in good agreement with the 
available experimental data. The amplitude of SF 6 appears 
to deviate significantly from the trend exhibited by the other 
fluids. We have no immediate explanation for this, although 
the possibility of artifacts due to the presence of wetting lay
ers in the sample cell cannot be ruled out. 3,24 

It is significant to note that in the penetrable-spheres 
model the sign of the anomaly is also like that found in real 
fluids, and this is consistent with the fact that this model is 
equivalenfs to a fluid with attractive even-body interactions 
and repulsive odd-body interactions, like the Axilrod-Teller 
potential. 

Finally, we have carried through the present calculation 
of the diameter anomaly within the context of certain two
dimensional lattice models for which exact results are 
known.2 The results of the approximate calculation are with
in - 30% of the exact results, and we expect a closer corre
spondence in three dimensions, where fluctuations are less 
important. 

III. CONCLUSIONS AND EXTENSIONS 

From the early work on model systems to more recent 
studies with the renormalization group, it has become clear 
that a central concept in the fluid-magnet correspondence is 
that of intermolecular potentials that are functions of thermo-

dynamic variables. Most relevant to the nature of the scaling 
variables is the situation in which the effective potential, or 
the thermal scaling field, depends on the chemical potential. 
This was seen in the original work on penetrable-sphere 
models,S various decorated-lattice calculations,6 and also in 
phenomenological studies. II The conjectures for the role of 
many-body interactions in such effective potentials which 
were advanced2 on the basis the statistical mechanics of lat
tice models have been verified here for real continuum sys
tems. The quantitative agreement achieved here with data 
on insulating fluids suggests that the ultimate origin of 
broken particle-hole symmetry in fluids has now been iden
tified. 

It remains an important problem to extend these results 
to the cases of semiconducting and metallic systems in light 
of recent studies ofliquid-vapor equilibria in both Hg and in 
the alkali metals Cs and Rb.26 All of these fluids exhibit 
extremely large amplitude diameter anomalies compared to 
the insulating fluids discussed here. An essential aspect of 
both kinds of conducting fluids is the strong dependence on 
thermodynamic state of their electronic properties in the 
neighborhood of the critical point, especially in the alkali 
metals for which the metal-nonmetal transition density is 
nearly Pc' This rapid variation in electronic structure im
plies27 a corresponding variation in the nature of ion-ion 
interactions. 

We suggest that the framework developed above for in
sulating fluids may provide a means of understanding those 
observations. In particular, note that while a metallic fluid is 
formally a two-component system, consisting of ions and 
electrons, the Born-Oppenheimer separation of ionic and 
electronic motions allows for the elimination of the elec
tronic degrees of freedom in favor of state-dependent, many
ion interactions mediated by the electrons.28 The linear re
sponse of the electron gas gives rise to screened pair 
potentials, while the nonlinear response controls the multi
ion interactions. The relationship between this nonlinear 
susceptibility and the properties of the three-particle direct 
correlation function may be the key to an understanding of 
the extreme liquid-vapor asymmetry exhibited by the metal
lic systems. Detailed calculations, which we have not under
taken, must account not only for the intrinsic state depend
ence of these effective potentials, but also for the proximity 
of the metal-nonmetal transition to the liquid-vapor critical 
point, and the semidegenerate nature of the electron gas. 
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