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Self-Organized Beating and Swimming of Internally Driven Filaments
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We study a simple two-dimensional model for motion of an elastic filament subject to internally gen-
erated stresses and show that wavelike propagating shapes which can propel the filament can be induced
by a self-organized mechanism via a dynamic instability. The resulting patterns of motion do not de-
pend on the microscopic mechanism of the instability but only of the filament rigidity and hydrodynamic
friction. Our results suggest that simplified systems, consisting only of molecular motors and filaments,
could be able to show beating motion and self-propulsion. [S0031-9007(99)08456-2]

PACS numbers: 87.10.+e, 02.30.Jr, 46.25.Cc, 47.15.Gf

Cilia and flagella are hairlike appendages of many cells In this article, we introduce a simple two-dimensional
which generate motion and are used for self-propulsion anthodel which reveals many physical aspects of the mo-
to stir the surrounding fluid. They all share the charaction of an elastic filament driven by internal forces that
teristic architecture of their core structure, the axoneme, ahould be relevant for flagellar beating. Our approach is
common structural motive that was developed early in evoinspired by studies of semiflexible filaments subject to ex-
lution. It is characterized by nine parallel pairs of micro-ternal forces [13—17], however, in our case all motion is
tubules, which are long and rigid protein filaments, that aréenduced byinternal stresses Our model consists of two
arranged in a circular fashion together with a large numbeincompressible but elastic filaments of lengtarranged at
of dynein molecular motors [1]. In the presence of adeno€onstant distance < L and rigidly attached only at one
sine triphosphate (ATP) which is a fuel, the dynein motorsend which we call the head. A large number of molecu-
attached to the microtubules generate relative forces whilar motors and passive elements holding the filament pair
acting on neighboring microtubules; the resulting internakogether are assumed to generate a coarse-grained force
stresses induce relative sliding motion of filaments whichper unit lengthf which acts in opposite directions on the
leads to the propagation of bending waves [1,2]. two filaments and induces the relative sliding of the fila-

These biological systems are complex; they consist ofment pair. The dynamic equations of this model define pat-
a large number of different components and various patterns of beating motion resulting from the internal forces
terns of motion have been observed. Attempts to modelhich are assumed to oscillate. More interestingly, we
their behavior are either based on the assumption that sonsbow that characteristic wavelike patterns which propa-
unknown control system generates oscillatory motor acgate along the filament are generated most naturally by
tivity [3] or that a self-organized mechanism is at work a dynamic instability of the motor-filament system (see
[4,5]. Generically, the latter involves a dynamical insta-Fig. 1 for examples). As we show below, the qualitative
bility. Theoretical studies of simple models for collective shapes of these patterns do not depend on the microscopic
action of molecular motors have demonstrated the possi-
bility of such instabilities [4,6—8]. Several examples of
oscillatory motion of biological many-motor systems are
known. Recently, it was suggested that spontaneous os-
cillations observed in muscles could be a property of the
motor-filament system alone [7,9]. This idea is supported
by the fact that the oscillations continue to exist after all
regulatory systems are removed [9] but also by the obser-
vation that anin vitro motor-filament system shows the
signature of a dynamic transition [10]. Furthermore, the
observations that flagellar dyneins are able to generate os-
cillatory motion on microtubules [11] and that isolated and
demembranated flagella in solution containing ATP above
a threshold concentration swim with a simple wavelike moFIG. 1. Snapshots of wavelike patterns generated by a motor-
tion [12] support the idea that basic types of flagellar beatinduced Hopf bifurcation calculated for different boundary
ing could result from a dynamic instability. Eventually, conditions (solid lines): A) Clamped head, position and slope

X . .are fixed. B) Fixed head; position is fixed only. C) Free
the beating motion of flagella such as those of sea urchife,q”sybject to a viscous load. The broken lines represent

sperms is planar, which suggests that basic properties Ca@rlier configurations. The arrows indicate the direction of
already be captured in a two-dimensional description [2].wave propagation.
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mechanism of force generation but only on the elastic propa(x, 1) = Re[h(x)e“‘”] we can express the total force den-
erties of the filaments and on hydrodynamic friction. Wesity asf = yo + fo, whered = iwal[dh(x) — 9,h(0)]
demonstrate that these patterns lead to self-propulsion @& the complex amplitude of the local sliding velocity

the system and calculate the velocity of motion. v = 9;A. The coefficienty = (A + K/iw) describes a
In order to define our model and to derive the dynamicviscoelastic response of the material between the filaments
equations, we start from the enthalpy functional with dissipation coefficiend and elastic moduluk. The
I oscillating state is characterized by
_ K 2 =12 _ _ _
1)

The homogeneous active forggenters only via boundary
where 7(s) is a parametrization of the shape of theconditions. Equation (4) and boundary conditions repre-
filament pa|r by the arclength « is the bending rigidity, Sent an inhomogeneous linear system which is solved by
andC = 7 - 9%F is the local curvature with the filament 7 = Ae**/" leading to four complex values &f The cor-
normal 7. The internal force density couples to the responding coefficient$ are adjusted to satisfy the bound-
relative sliding displacememt(s) = a jO C(s')ds' of the  ary conditions which leads to a squtioQ with an amplitude
two filaments [13]. In order to impose the constraint of proportional to the internal force(x) ~ fo. We can dis-
local incompressibility(d,7)2 = 1, we have introduced tinguish two different reglmes (i) Hydrodynamic friction
the Lagrange multiplierA(s) [14]. The equation of dominatesy|* < Kéﬁ/wa (ii) internal viscoelasticity

motion can be written as dominategy|* > «£, /wa*. We can neglect, in Eq. (4),
x in case (i) andé¢, in case (ii). Figure 2 shows ex-
07— —[ Lz L37)9¢ (2) amples of the amplitudH and the gradient of the phase

! & 57 ¢ of h(x) = H(x)e '™ for y = 0 and different bound-

ary conditions as dashed lines. The corresponding time
where77 and nn are projectors on the filament tangent dependent solutions

and normal, and we assume local anisotropic friction with
tangent and normal coefficienfg and ¢ |, respectively. h(x,t) = H(x)codwt — ¢(x)] (5)

In order to keep the description simple, we consider
small deformations of a filament parallel to theaxis, '€ Propagating wavelike shapes qualitatively similar to
7(s) = [s + u(s), h(s)], which we describe by an expan- those. shown in Fig. 1. The sign of the local propagation
sion in the transverse and longitudinal displacemgrasd ~ Velocity v, = @/d. ¢ of the phase allows us to deter-

u. To quadratic order i, (x), we can write mine the direction of apparent wave propagation.
We have thus developed the framework to calculate and

_ Lk 5 analyze wave-propagating solutions of our model and can
G = fo [7 (@ch)” + af (1) [9:h(x) — 0:h(0)]pdx, now study motion generated by the properties of the motor-
(3) filament system via a Hopf bifurcation. We assume that
the material between the two filaments which contains
where we use the Monge representation with th@or-  both molecular motors and passive elements has proper-
dinate as parameter. We first discuss transverse motiaies which can be characterized on a coarse-grained level
which for small deformations is independent of longi- by a nonlinear history-dependent response function. We
tudinal forces [18] and satisfies the equatiénd,h =  will study the instability of a nonmoving solutionx) = 0
—kd%h + ad,f together with two boundary conditions towards wavelike patterns. For this case it is sufficient to
at the head withx = 0 and two conditions at the tail for consider only small amplitude$y. | < 1 as described
x = L. We assume a free tail which impli@$h(L) = 0  above. Furthermore, in this regime the local sliding ve-
andkalh(L) = af(L). Atthe head, we distinguish three locity v is small, and we can ignore nonlinearitiesin
different cases as shown in Fig. 1A)(clamped head with and restrict ourselves to the frequency dependent linear
h(0) = 0 and d,.h(0) = 0; (B) fixed head with2(0) = 0  responsef = y©. Here, we have set the artificially in-
andkd2h(0) = —a f o f(x)dx; and C) a viscous load at troduced forcef, = 0 and characterize both passive and
x = 0 with friction coefficient{ for which the condition active material properties by the complex response func-
onk(0) in (B) is replaced by 9,4(0) = af(0) — «d3h(0).  tion y(w, ) which can, e.g., be calculated explicitly for
We demonstrate the basic properties of this modela simple model [7] or measured experimentally [19]. The
by first assuming that an oscillating force density without-of-equilibrium nature of the system is characterized by
constant amplitude is generated by some unspecifiethe control-parametef) which measures the distance of
mechanismy,,(t) = Re(foe’®’). The total force density this system from thermal equilibrium and can, for example,
f acting on the filament pair is the sum of the forfg,  be varied by changing the ATP concentration. Note that,
internal dissipative forces, and, in general, the forcedor an active systemy can have unusual behaviors which
of elastic elements which locally connect the filamentsformally correspond to a negative frictipRe(y) < 0] or
Introducing the complex Fourier amplitude, where a negative elastic respongen(y) > 0].
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of the bifurcation to subcritical—in this case, the motion
would appear via a discontinuous transition. Typically,
the instability occurs for the smallest valye= y:(w)
since larger| x| require larger values of) which cor-
respond to more system activity. Note that the result-
ing pattern of motion is independent of the microscopic
mechanism which leads to the instability. It is sufficient
that the active material is capable to generate the response
x = Xxi [20].

Figure 2 displays examples of the amplitude and the gra-
dient of the phase df; (x) for boundary conditions&) and
(B); snapshots of the corresponding motion are shown in
Fig. 1. The boundary conditions play an essential role in
selecting different types of motion. Observing the sign of
dx¢ which determines the direction of the phase veloc-
ity, we find that for clamped head\) the wave propagates
from the tail towards the head while for ca®® {t propa-
gates in the opposite direction. The amplitudér) also
differs significantly between case&)(@nd B) (see Fig. 2).
The case() of a free head with viscous loaflis similar
to case B) and therefore is not shown in Fig. 2. For this
example, the qualitative properties of motion induced by
the dynamic instability are the same as those of the sys-
tem driven by a homogeneous for¢g (see Fig. 2). In
fact, for the parameters chosdy; |> < «¢, /(wa*) and
the corresponding solution is not far from the solution for
x = 0. The case of homogeneous forggis simple and
allows us to explain the effect of boundary conditions. A
homogeneous internal forgig can be rewritten as bound-

FIG. 2. (a) AmplitudeH (x) (in arbitrary units) of the wave- ary terms in the expreSS|onLof the energy= afoh(L) -

like motion characterized by Eq. (5) as a function of the posi-afoh(0) — aLfod h(0) + [; dx (82h)*k/2. Its action is
tion x along the filament axis for boundary condition®) (s  equivalent to two opposite transverse foreg acting
defined in Fig. 1 andt, wL*/k = 2500. (b) Same plot for  at poth ends together with a torqué f, applied at the

boundary conditionsB). (c) Gradientd, ¢ of the phase along :
the filament axis for the same systems. The solid lines correhead' In the case of a clamped head, this apparent force

spond to motion induced by a Hopf bifurcation for the smallest2d torque are suppressed, and the system is driven by a

response coefficient,, the broken lines to motion induced by Virtual force at the tail, propagating the wave towards the

a homogeneous internal force agd= 0. head [17]. If the head is not clamped, the virtual oscillat-
ing torque at the head can propagate a wave in the opposite
direction.

In the casefy = 0, Eq. (4) and boundary conditions be-  Can these beating patterns propel the filament? Time-
comes a homogeneous linear system which always has theversal symmetry has to be broker(x, —1) # h(x,1),
solution(x) = 0 and which can now be reinterpreted asfor propulsion to be possible [21]. According to Eq. (5),
an eigenvalue problem fgy. Spontaneous motion corre- this requirement is fulfilled sincé.¢ # 0. Because of
sponds to nontrivial solutions to this problem. A discretethe symmetryi(x,t) = —h(x,t + 7/w), there can be
set of such solution&; exists; eachi; corresponds to a Nno net motion in the transverse direction. In order to
complex eigenvalug = y;(w),i = 1,2...,2whichwe estimate longitudinal motion, we have to study the dis-

x/L

1

0

x/L

order according toy; (w)| = |xi+1(w)l.
Consider now a system initially at equilibrium with =

placementu(x). To second order i .z, we can write
u(x) = u(0) — % 0(d.h)? dx', indicating that the dynam-

0. If Q isincreased, an instability occurs as soon as a critiics of u(x) is governed by the motioha(x, 7). Note that

cal value(). is reached for whichy(w., Q.) = yi(w.)
for a frequencyw.. In the vicinity of this point, the sys-
tem develops for() > (), motion with this frequency
and a shape characterized by the nontrivial solutidn).

u(x) — u(0) is small, but the filament displacement0)
can become large. The longitudinal compongitof
the hydrodynamic force density (¢, in + &i1) - 9,7
acting locally on the filament is given by, = (¢, —

This scenario applies to a supercritical bifurcation. Non-¢)d,hdh — &9,u(x,t) in our approximation. The ve-
linear terms of the response function and nonlinear corlocity of motion V is the time average af,u(0) and fol-
rections to the simple Monge representation can becomiews from the condition that the total longitudinal force

important for larger(), or they could change the nature vanishes.
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head, this condition isfé firdx + £9;u(0) = 0, and we development of the basic axonemal structure in order to

findV = Vo/(1 + /& L), where fine-tune the system and to create more complex types of
¢ w (L motion. This concept suggests that artificially constructed

Vo = —(—l - 1) —f H(x)*0, ¢ dx (6) systems consisting only of motor molecules and filaments

4 2L Jo could already undergo beating motion and self-propulsion.
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