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Intracellular cargo transport can arise from passive diffusion, active motor-driven transport along

cytoskeletal filament networks, and passive advection by fluid flows entrained by such cargo-motor

motion. Active and advective transport are thus intrinsically coupled as related, yet different representa-

tions of the same underlying network structure. A reaction-advection-diffusion system is used here to

show that this coupling affects the transport and localization of a passive tracer in a confined geometry. For

sufficiently low diffusion, cargo localization to a target zone is optimized either by low reaction kinetics

and decoupling of bound and unbound states, or by a mostly disordered cytoskeletal network with only

weak directional bias. These generic results may help to rationalize subtle features of cytoskeletal

networks, for example as observed for microtubules in fly oocytes.
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Intracellular transport of proteins, vesicles or entire or-
ganelles is required by virtually all cells to perform func-
tions as diverse as cell division, intracellular trafficking and
patterning of morphogens during development. To realize
these different functions, eukaryotic cells can utilize three
different forms of cargo transport: passive diffusion by
thermally driven Brownian motion, active transport by
motor proteins on cytoskeletal networks [1], and passive
advection by intracellular flows of bulk cytoplasm. Such
cytoplasmic flows have been studied in plants [2] as well as
animals, including rats, mice, worms, and flies [3–6].While
some cytoplasmic flows result from contractions of actin
networks [4,5,7], cytoplasmic streaming in flies, Characean
algae, and pollen tubes is driven by forces from the motion
of the actively transported cargo itself [8,9] [Fig. 1(a)].
Hence, active and advective transport can be intrinsically
coupled as two related, yet different representations of the
underlying cytoskeletal network. This raises the question
how changes in cytoskeletal network architecture and bind-
ing kinetics affect the distribution of cargo when active and
advective transport are coupled [Fig. 1(b) and 1(c)].

Existing theoretical work has largely focused on the
physical mechanisms of flow [10] and either on the combi-
nation of diffusion and active transport [11–13] or on the
combination of diffusion and advective transport [14,15].
The system-level implications of interactions between all
three transport mechanisms are poorly understood [16].
Here, we study implications of coupled active and advec-
tive transport for cargo localization to a target zone in a
confined geometry; a situation relevant to establishment
and maintenance of cellular asymmetries. Examples in-
clude asymmetric cell divisions, cellular morphogenesis,
embryonic, and preembryonic development [17,18]. A
perfectly aligned cytoskeletal network may be optimal
for cargo localization to a target zone if considered alone.

Our main finding, however, is that a perfectly aligned
network can become suboptimal for localization when
coupled to its corresponding recirculatory fluid flow that
washes away the cargo once it is dropped off in the target
zone [Fig. 1(b)]. Instead, a mostly disordered network with
only weak directional bias can become optimal for persis-
tent accumulation of cargo in the target zone by balancing
an on-average directional active transport with the sup-
pression of fluid flow caused by it [Fig. 1(c)].

(a)

(b) (c)

FIG. 1 (color). Coupling of active transport and advection and
its system-level implications. (a) Active motor-driven transport
of cargo bound to a cytoskeletal filament (left) entrains surround-
ing fluid and causes advective transport of unbound cargo (right).
(b) A perfectly aligned cytoskeletal network (red arrows) causes
recirculatory fluid flows (blue arrows) out of a target zone (green
dashed area). (c) A mostly disordered cytoskeletal network with
only weak directional bias suppresses range and magnitude of
fluid flows.
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To formalize this concept, we construct a reaction-
advection-diffusion model for the transport of a passive
scalar tracer that is advected by two coupled, yet different
velocity fields. A motor-velocity field (vm), which advects
the bound-state cargo concentration (cb), captures active
motion on a dense cytoskeletal network, while the fluid
flow field (u), which advects the unbound cargo concen-
tration (cu), represents the cytoplasmic flow. Cargo
exchanges between bound and unbound states via inter-
conversion reactions that conserve total mass. The parti-
tioning of cargo between these two states is regulated by a
parameter, 0 � � � 1. Together with a diffusion term in
the unbound state, the nondimensional transport part of the
model is defined as

@cb
@t

þr � ðvmcbÞ¼2Da½�ð1��Þcbþ�cu�;
@cu
@t

þr � ðucuÞ¼2Da½ð1��Þcb��cu�þPe�1r2cu: (1)

Here, the nondimensional motor Péclet number (Pe ¼
VL=D) and Damköhler number (Da ¼ LK=V) are deter-
mined by the typical motor velocity (V), mean reaction rate
(K), system length (L), and diffusion constant (D). The
advection fields vm and u are coupled since u is the
solution to the Stokes equations for a viscous incompress-
ible (r � u ¼ 0) Newtonian fluid driven by forces from the
motor-velocity field. Suitably rescaled these are

0 ¼ �rpþ r2uþ f ; f ¼ avm: (2)

In general, the forces will depend on the concentration of
bound cargo, with a ¼ aðcbÞ, but this more complex case
is left to future work. Here we focus on the simplest case of
constant proportionality between forces and motor veloc-
ities, and set a ¼ 1 for convenience. The solution of (2)
with no-slip conditions on the domain boundary was ob-
tained with a finite volume discretization on staggered
grids in MATLAB using the SIMPLE algorithm [19].

Consider first the fluid flow field (u) for various degrees
of order in the motor velocity field (vm). Before normal-
izing to a peak magnitude of 1, we define on a two
dimensional square vmðx; yÞ ¼ h1ðx; yÞh2ðx; yÞ wherein
h2 attenuates the magnitude of h1 in the form

4h2ðx;yÞ¼ ferf½mðb�xÞ�þerf½mðbþxÞ�gferf½ðmðb�yÞ�
þerf½mðbþyÞ�g;

with erfðxÞ denoting the error-function,m ¼ 3 and b¼0:3.
The function h1 is a weighted sum of the form

h1ðx; yÞ ¼ ð1� �Þ sinðkxÞ cosðkyÞ þ �x

� cosðkxÞ sinðkyÞ þ �y

 !
þ �

1

0

 !
;

where k ¼ 4� and 0 � � � 1 acts as an order para-
meter for the directional bias of the motor velocity field.
For � ¼ 0, h1ðx; yÞ consists of an array of vortices per-
turbed by random numbers (�x;y) from the open interval

(� 0:5; 0:5) such that streamlines of neighboring vortices
connect (Fig. 2, top left). Similar vortex arrays have been
employed extensively for example in percolation theory
[20]. Using this as the force field input to the Stokes
equations, we find a fluid flow field that mirrors the vortex
structure of the forcing, but with a magnitude reduced by a
factor of 103 (Fig. 2, top right).
For � ¼ 1, the motor field is perfectly aligned along the

x direction (Fig. 2, bottom left), giving rise to a Stokes flow
field that in the center is aligned along the abscissa as well.
In the periphery, however, mass conservation and incom-
pressibility result in pronounced recirculatory flows in the
opposite direction (Fig. 2, bottom right). This demonstrates
that the topologies of the motor velocity and fluid flow
fields can differ strongly.
For intermediate and even small values of� (Fig. 2, middle

left), the averaging properties of Stokes flow still yield recir-
culatory flow fields similar to the perfectly aligned case
(Fig. 2, middle right), although with tenfold lower magni-
tudes. Thus, while the flow topology remains approximately
constant over awide range of the directional bias, variations of
� represent a possible mechanism to tune the magnitude of
the fluid speed and hence its impact on cargo transport.

 

 

 

 

 

 

 

 

 

 

 

 

FIG. 2 (color). A perfectly aligned motor velocity field causes
recirculatory fluid flow. Shown are topology (vector field) and
magnitude (color coding) of motor velocity fields (left column)
and the corresponding flow fields (right column) for varying
network order parameter, � ¼ 0, 0.1 and 1, as indicated. To aid
visibility only every second vector of the field is shown.
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We next explore the consequences of these flow fields
with fixed � for the localization of a chemical species to a
target zone. Depending on the system described, different
initial conditions may be of interest, including a homoge-
neous distribution or a deposit localized in a starting zone.
Final concentration patterns are insensitive to this choice,
and results are shown for the homogeneous case with cargo
in the unbound state. Cargo found at the end of a simulation
in the stripe 0:75 � x � 1 is considered as localized in the
target zone [dashed area in Fig. 1(b) and 1(c)]. We first
study the effects of the Damköhler number (Da) that
regulates the strength of chemical exchange between
bound and unbound states.

When reactions are fast, cargo transport on a perfectly
aligned motor network (� ¼ 1) and its corresponding flow
field (Fig. 2, bottom row) show that the steady-state dis-
tributions in bound and unbound states are virtually iden-
tical, only scaled by the amounts of cargo in the respective
states [Fig. 3(a) and 3(b)]. Cargo deposition in the target
zone also occurs with the same dynamics for the two states
[Fig. 3(c), solid lines]. In the limit of very fast reactions

(Da � 1) the system can be reduced to a single equation
for the total cargo concentration c ¼ cu þ cb,

@c

@t
þr � ½ð�vmþð1��ÞuÞc�¼ ð1��ÞPe�1r2c; (3)

in which motor velocity and fluid flow fields mix to form an
effective advection field supplemented by an effective
diffusion term [12]. This approximation works well even
for Da ¼ 1 [Fig. 3(c), dashed line].
Transport simulations for slow reactions (Da � 1) show

bound cargo accumulating at the extreme distal boundary,
while unbound cargo remains mostly homogeneously dis-
tributed by diffusion [Fig. 3(e) and 3(f)]. Similarly, the
dynamics of cargo accumulation separate into a roughly
constant contribution from the unbound state, and into a
slow increase due to the gradual recruitment of cargo to
the bound state [Fig. 3(d)]. Hence, cargo transport in bound
and unbound states proceeds virtually independently from
one another. Thus, by regulating the strength of chemical
reactions between bound and unbound states, Da controls
the degree of coupling of motor velocity and fluid flow
fields.
We now vary both the network order parameter � and

the coupling strength Da. For Pe ¼ 102 we find (Fig. 4,
bottom) that the highest amount of cargo localization
occurs for a perfectly aligned motor field (� ¼ 1) and

(a) (b)

(c) (d)

(e) (f)

FIG. 3 (color). The parameter Da regulates the coupling of
bound and unbound states. For strong coupling Da ¼ 1, the
steady-state distributions of bound cargo cb (a) and unbound
cargo cu (b) are shown, with coloring on an arbitrary scale for
each panel individually. (c) Fraction of cargo localized in the
target zone cl in the simulation in (a),(b) for the two-state system
(1) (solid lines) as well as for the effective one-state system
(3) (dashed line). (d) Fraction of cargo localized in the target
zone cl analogously to panel (c), but for the simulations of
bound cargo (e) and unbound cargo (f) for weak coupling
Da ¼ 4� 10�4 with coloring as in panels (a),(b). All transport
simulations use Pe ¼ 102, � ¼ 0:15, and the motor velocity and
fluid flow field with � ¼ 1 [Fig. 2].

FIG. 4 (color). Parameter space for transport and localization
on a two-dimensional square. Contour plots show the fraction of
total cargo localized in the target zone 0:75 � x � 1 at the end
of simulation time t ¼ 104, with � ¼ 0:15, as a function of the
parameters � and Da for three different motor Péclet numbers
Pe ¼ 102, 103, and 104 as indicated. Arrows highlight parameter
values used in Figs. 3 and 5.
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fast reaction kinetics (Da ¼ 1). Strikingly, however, this
combination of perfect alignment and strong mixing of
bound and unbound states ceases to be the optimal con-
figuration for cargo accumulation if Pe is increased.

For values of Pe ¼ 103 and 104, respectively, the
regime of high cargo accumulation in the target zone first
moves towards smaller � (Fig. 4, middle), and finally
(Fig. 4, top) forms a ridge circumventing the point
(� ¼ 1, Da ¼ 1). Simulations at this point for Pe ¼ 104

show a rapid accumulation of cargo at t� 102 [Fig. 5(b)].
This accumulation, however, remains transient due to the
impact of the recirculatory backflows that move the bulk
cargo towards the sides of the domain and eventually out of
the target zone [Fig. 5(a)]. Strong accumulation of cargo
in the target zone still occurs for lower reaction kinetics
Da 	 10�2 (Fig. 4, top) that partially decouple bound and
unbound states. Alternatively, high reaction kinetics com-
bined with a strong reduction in directional bias to � 	 0:1
also lead to strong accumulation, albeit at the expense of
slow dynamics [Fig. 5(c) and 5(d)]. Such changes in �
have limited effects on the recirculatory flow pattern
(Fig. 2). Instead, the reduction in fluid flow velocities
stabilizes cargo accumulation in two ways: first by reduc-
ing directly the amount of material transported away from
the target zone, and second by increasing the time for cargo
to bind to the motor velocity field, hence increasing the
amount of material that is returned to the target site. This
counter-intuitive effect occurs over the wide range 0:1 �
� � 0:75 for which the fraction of localized cargo at low
values of � is more than 10 percentage points higher than
at � ¼ 1. The qualitative features of the parameter space

also remain unchanged for simulations performed in a
circular geometry, thereby highlighting the generality of
the concept.
Any biological cell that requires long-time or persistent

cargo localization, for example prior to an asymmetric cell
division, or to provide positional information during devel-
opment, needs to limit dispersive effects. In general, bio-
chemical mechanisms may contribute to stabilize cargo
accumulation at the target site. Yet, the coupling between
active and advective transport in our model indicates that
an only weakly biased cytoskeletal network provides an
alternative, physical strategy to balance an on-average
directed active transport with suppressed cytoplasmic
flows. Rough estimates for organelles or vesicles in
Characean algae (Pe 	 5� 103) or mRNA in fly oocytes
(Pe 	 5� 103) show that biological systems can reach
the high Péclet number regimes explored here. This con-
cept may therefore help to rationalize subtle directional
biases recently discovered in microtubule networks of fly
oocytes [21].
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