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Abstract The prevalence of multicellular organisms is due in part to their ability to form complex 
structures. How cells pack in these structures is a fundamental biophysical issue, underlying their 
functional properties. However, much remains unknown about how cell packing geometries arise, 
and how they are affected by random noise during growth - especially absent developmental 
programs. Here, we quantify the statistics of cellular neighborhoods of two different multicellular 
eukaryotes: lab- evolved ‘snowflake’ yeast and the green alga Volvox carteri. We find that despite 
large differences in cellular organization, the free space associated with individual cells in both 
organisms closely fits a modified gamma distribution, consistent with maximum entropy predictions 
originally developed for granular materials. This ‘entropic’ cellular packing ensures a degree of 
predictability despite noise, facilitating parent- offspring fidelity even in the absence of develop-
mental regulation. Together with simulations of diverse growth morphologies, these results suggest 
that gamma- distributed cell neighborhood sizes are a general feature of multicellularity, arising from 
conserved statistics of cellular packing.

Editor's evaluation
This work uncovers a simple but far- reaching statistical principle that describes the geometry of cell 
packing in snowflake yeast and green algae. It draws on ideas from granular physics to offer new 
insight into universal rules of multicellular geometry that are otherwise easily obscured by the cell- 
scale idiosyncrasies of the different biological systems.

Introduction
The evolution of multicellularity was transformative for life on Earth, occurring in at least 25 separate 
lineages (Grosberg and Strathmann, 2007). The success of multicellular organisms is due in part 
to their ability to assemble cells into complex, functional arrangements. Self- assembly, however, is 
fundamentally subject to random noise (Zeravcic and Brenner, 2014; Szavits- Nossan et al., 2014; 
Damavandi and Lubensky, 2019) that affects the final emergent structure (Michel and Yunker, 2019). 
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The physiology of multicellular organisms can depend sensitively on the geometry of cellular packing 
(Bi et al., 2015b; Drescher et al., 2016; Jacobeen et al., 2018b; Brunet et al., 2019; Schmideder 
et al., 2021), and such noise may therefore have direct consequences on organismal fitness. Under-
standing the evolution of multicellularity, and the subsequent evolution of multicellular complexity 
(Bell and Mooers, 1997), requires understanding the impact of random noise on multicellular self- 
assembly. How do organisms accurately assemble functional multicellular components in the presence 
of noise?

Recent work has shown that extant multicellular organisms can either suppress (Hong et al., 2016) 
or leverage (Haas et al., 2018) variability in the process of reliably generating structures, and their 
tissues can change function based on cellular packing geometry (Bi et al., 2015a). This occurs through 
a coordinated developmental process involving genetic (Davidson, 2001), chemical (Sampathkumar, 
2020), mechanical (Deneke and Di Talia, 2018), and bioelectric (Levin, 2004) feedbacks between 
interacting cells. However, even with coordinated developmental processes, noise during self- assembly 
results in deviations from perfectly regular structures. Further, as these developmental processes have 
not yet evolved in nascent multicellular organisms, it is unclear how unregulated assembly can reliably 
result in reproducible packing geometries and multicellular structures.

Multicellular organisms also exhibit diverse growth morphologies; for example, cells can remain 
attached through incomplete cytokinesis (Bonner, 1998; Grosberg and Strathmann, 2007; Knoll, 
2011), they can adhere through aggregative bonds (Claessen et al., 2014), and they can assemble 
multicellular groups through successive cell division within a confining membrane (Angert, 2005; 
Herron et al., 2019). These growth morphologies can have distinct intercellular connection topol-
ogies (Yanni et al., 2020), changing how randomness is manifested. For instance, groups that grow 
with persistent mother- daughter bonds maintain the same intercellular connections, ‘freezing’ in 
place any structural randomness that arises during reproduction. In contrast, cells in aggregates 
can rearrange, so their final structure emerges from a combination of reproduction and intercellular 
interactions and noise (Delarue et al., 2016; Hartmann et al., 2019). Further, the dimensionality 
of multicellular groups can vary, from filaments (Herrero et al., 2016) and quasi- two- dimensional 
sheets (Besson and Dumais, 2011; Brunet et al., 2019) to groups that grow equally in three dimen-
sions (Ratcliff et  al., 2012; Tang et  al., 2020; Butterfield, 2016). While the impact of noise on 
systems in thermal equilibrium is well known to depend sensitively on spatial dimensionality (Mermin 
and Wagner, 1966; Hohenberg, 1967; Vivek et al., 2017), no such information is yet at hand for 
biological development, which is intrinsically out of equilibrium. The growth morphology, connection 
topology, and dimensionality therefore altogether determine a multicellular architecture. Random-
ness resulting from many sources, such as stochastic cell division, variability in cell growth, intercel-
lular interactions, and more, subsequently occurs as perturbations to this idealized form. It would 
appear that noise manifests in a unique, context- dependent manner in each of these different multi-
cellular systems.

Here, we provide experimental evidence that, rather than being context- dependent, fluctuations in 
cell packing geometry instead follow a universal distribution, independent of the presence or absence 
of developmental regulation. We quantify the distributions of cellular space in two different types of 
organisms: experimentally evolved multicellular yeast (Ratcliff et al., 2012) and wild- type multicellular 
green algae (Goldstein, 2015). In both cases, maximum entropy considerations (Aste and Di Matteo, 
2008) (see inset box) accurately predict the cell packing distribution. Building on these observa-
tions, we use computational models of diverse prescribed growth rules, mimicking extant biological 
morphologies, to show that cells are ubiquitously packed according to the maximum entropy prin-
ciple. Detailed analysis of the case of green algae shows that correlations, that is, the lack of structural 
randomness, produce deviations from maximum entropy predictions, but that even a relatively small 
amount of randomness is sufficient to generate cellular packings that largely follow maximum entropy 
predictions. Next, we explore the evolutionary consequences of cell packing. We use the cell packing 
distribution to predict the distribution of snowflake yeast group sizes, an emergent multicellular trait 
that arises from cell crowding (Jacobeen et al., 2018b). Then, we use a theoretical analysis to show 
that the effects of fluctuations in intercellular space on the motility of green algae are small. These 
findings together suggest that, rather than impeding innovation, fluctuations in cell packing are highly 
repeatable, and may play a fundamental role in the origin and subsequent evolution of multicellular 
organisms.

https://doi.org/10.7554/eLife.72707
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Results
Maximum entropy
Within statistical physics, the maximum entropy principle relates randomness in low- level units (e.g. 
cells) to the properties of the assembly (e.g. a multicellular group). It works by enumerating all low- 
level configurations that conform to a set of constraints. Any particular group- level property can be 
generated by many different low- level configurations, but some group- level properties may corre-
spond to more low- level configurations than others. Those that are generated by many configurations 
are more likely to be observed than those that correspond to relatively few configurations; in this way, 
the maximum entropy principle allows one to calculate the probability of observing different group 
properties, given a set of constraints. Multicellular groups obey a simple but universal constraint: 
each group has some total volume,  V  . This volume can be divided into  N   pieces, where  N   is the total 
number of cells. Each piece is associated with a particular cell, and the  N   pieces must sum to the total 
volume of the group,  V =

∑
i vi , for  i = 1, 2, ..., N  . Using this constraint, and assuming no correlations, 

one can predict the most likely distribution of volumes for the  N   pieces. This approach has been 
successfully used to predict the distribution of free volumes within granular materials and foams (Aste 
and Di Matteo, 2008; Katgert and van Hecke, 2010). Here, we use it to predict the distribution of 
cellular free volumes in the absence of spatial correlations in cell positions.

Consider the ensemble of all possible cellular configurations in a simple group. As first derived by 
Aste and Di Matteo, 2008 and Aste et al., 2007 for granular materials, the maximum entropy prob-
ability distribution  p(v)  of cell neighborhood volumes within  V   is the modified gamma distribution

 
p(v) = kk

Γ(k)
(v−vc)k−1

(̄v−vc)k exp
(
−k v−vc

v̄−vc

)
  (1)

where  ̄v  is the mean cell neighborhood volume, vc is the minimum cell neighborhood volume,  Γ(k)  
is the gamma function, and  k ≡ (v̄ − vc)2/σ2

v   is a shape parameter that is defined by vc,  ̄v , and the vari-
ance of the cell neighborhood volumes,  σ

2
v  . This distribution is expected if cell neighborhood volumes 

are determined independently of each other (while still conforming to the total volume constraint). In 
other words, volumes must be set randomly; correlations between the size of separate volumes will 
lead to deviations from maximum entropy predictions. If this condition holds, then maximum entropy 
volume distribution predictions should be valid, regardless of other geometric or structural details. 
For example, maximum entropy statistics hold in granular materials, despite the fact that they must 
obey strict force and torque balance conditions (Aste and Di Matteo, 2008; Snoeijer et al., 2004; 
Bi et al., 2015a). Further, the same approach applies to groups with a constraint on total area or 
length; this does not change the result, and  V   can be replaced by  A  or  L  without other modifications. 
However, we would not expect this prediction to necessarily hold for confluent cell layers (i.e. packing 
fraction  ϕ ≈ 1 ), since in general cell size is a highly regulated process; when cells tile space, the cell 
neighborhood volume distribution will strongly correlate with the the cell size distribution.

In practice, we divide the total group volume or area into  N   pieces via a Voronoi tessellation. The 
size of the space associated with cell    includes the cell itself and the portion of intercellular space 
closer to its center than to the center of any other cell. As cells must have non- zero size, we therefore 
set vc to be the volume of a single cell without any intercellular space (or ac, the area of a single cell).

Experimental tests of multicellular maximum entropy predictions
To test whether different kinds of multicellular groups pack their cells according to the maximum 
entropy principle, we investigated cell packing in two different multicellular organisms. First, we used 
experimentally evolved ‘snowflake’ yeast (Ratcliff et al., 2012), a model system of undifferentiated 
multicellularity. Second, we used the green microalga Volvox carteri, a member of the volvocine algae 
that first evolved multicellularity in the Triassic (Starr, 1969; Herron et al., 2009).

Snowflake yeast
Snowflake yeast grow via incomplete cytokinesis, generating branched structures in which mother- 
daughter cells remain attached by permanently bonded cell walls (Figure 1A). New buds appear on 
ellipsoidal cells at a polar angle  ⟨θ⟩ = 42% ± 23%  and azimuthal angle  ϕ  that is randomly distributed 
( ⟨ϕ⟩ = 180% ± 104% , Figure 1—figure supplement 1). Therefore, even though snowflake yeast struc-
ture is limited to configurations in which daughter cells remain attached at their base to their mother, 

https://doi.org/10.7554/eLife.72707
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Figure 1. Cell packing in two multicellular species. (A) Cross- section of a multicellular yeast organism, which grows with persistent intercellular bonds. 
Scalebar is 5 m. The inset shows a smaller section, with ellipsoidal fits to individual cells along with their corresponding Voronoi polyhedra. Black 
overlays indicate the connection topology between yeast cells; not all connections are labeled. (B) Darkfield microscopy image of Volvox carteri, 
scalebar is  100 m . Inset: a small piece of the Voronoi- tessellated surface; black points are somatic cell positions. (C) Distributions of Voronoi polyhedron 
volumes as a function of cell size normalized by average size vc for snowflake yeast. In orange is the histogram for all cells; the other three distributions 
correspond to different subsections of Voronoi volumes. The cells were grouped into spherical shells with radius  R  and width  ∆R  from the cluster center 
of mass. Shown are shells with edges  [0, 6.2] ,  [6.2, 9.7] , and  [9.7, 20.4] . Black lines are maximum entropy predictions. (D) Distributions of solid angles 
subtended by Volvox somatic cells divided by a minimum solid angle  Ωc . Solid black lines are the maximum entropy predictions. The top row shows the 
histogram for all cells in green and a subsection of correlated areas in gray. Bottom row illustrates the subsectioning process: blue polygon is the center 

Figure 1 continued on next page

https://doi.org/10.7554/eLife.72707
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these new cells bud in random orientations. Each snowflake yeast cluster has a different specific 
configuration of cells; the ensemble of snowflake clusters will include many different configurations. 
We expect that this structural randomness produces predictable distributions of cellular neighbor-
hood volumes. Conversely, if there are strong correlations in the locations of daughter cells, then we 
will observe deviations from maximum entropy predictions regarding the cell neighborhood volumes.

To determine the distribution of cell neighborhood volumes, we first must measure the position 
of every cell in a cluster. It is difficult to image individual cells within snowflake yeast clusters due to 
excessive light scattering. Instead, we used a serial block face scanning electron microscope equipped 
with a microtome to scan and shave thin ( 50 nm ) layers off a resin block with embedded yeast clusters 
with stained cytoplasms. This process allowed us to determine the 3D structure of  N = 20  snowflake 
yeast clusters and locate cell centers with nanometer precision.

We define the group volume as the smallest convex hull that surrounds all cells in the cluster 
and computed the 3D Voronoi tessellation of cell centers within that (Figure  1A). The distribu-
tion of cellular Voronoi volumes closely matched the predicted k- gamma distribution (Figure  1C, 
 k = 2.88 ). This agreement is quantified via ‘P- P plots’ of the empirical cumulative distribution func-
tion (CDF) plotted against the predicted k- gamma CDF. We find a root- mean- square residual 

 rRMS =
√

⟨(F(v) − Fi)2⟩ = 0.02 , where  Fi  is the empirical CDF and  F(v)  is the predicted k- gamma CDF.
The influence of the convex hull on these results was investigated by using an alternative proce-

dure in which the Voronoi volumes were binned into shells centered at the cluster’s center of mass 
(Figure 1C and E). We binned cells into shells with shell edges of  [0, 6.2] ,  [6.2, 9.7] , and  [9.7, 20.4]  away 
from the center of mass. We found that the distribution of Voronoi volumes within each shell matched 
the predicted k- gamma distribution, with  rRMS = {0.037, 0.020, 0.014} ,  k = {3.45, 3.08, 4.63}  in the shells 
shown in Figure 1C(ii- iv).

Volvocine algae
To test if cell neighborhood volumes in extant multicellular organisms are consistent with maximum 
entropy cell packing predictions, we examined cell packing within the green microalgae Volvox 
carteri. Development in V. carteri, which evolved over millions of years, is highly regulated, occurring 
through a stereotyped morphological progression (Kirk, 2005). V. carteri embryos arise as a spher-
ical cellular monolayer from palintomic cell divisions with incomplete cytokinesis, which leaves the 
cells attached via cytoplasmic bridges. These bridges disappear when ECM is secreted by the cells, 
filling the entire sphere, and eventually moving the cells apart. The approximately 1000 somatic cells 
remain embedded on the surface of a translucent sphere of extracellular matrix (Figure 1B). While 
six- fold coordination is the most frequent local arrangement of somatic cells, the fact that the cells 
are embedded in a surface with spherical topology requires there to be ‘defects’ with differing coor-
dination number (e.g. 5,7), and these are found interspersed around the spheroid. Thus, despite their 
developmental regulation, somatic cells exhibit a degree of disorder with respect to coordination 
number. From a physics perspective, the local hexatic order in the somatic cell arrangement is low 
(see Materials and methods).

To determine the distribution of Volvox cell neighborhood sizes, we imaged somatic cells using 
their chlorophyll autofluorescence in a light sheet microscope. Since the somatic cells are arranged 
around a surface embedded in 3D space, we constructed a 2D Voronoi tessellation of somatic cells on 
the surface. Each organism imaged had a different size, and therefore had a different mean Voronoi 
area  ⟨A⟩ . To compare distributions across organisms, we removed the systematic area differences by 
recording the solid angle  Ωi = 4πAi/S  subtended by each somatic cell, where  S =

∑
i Ai  is the total 

surface area of the organism. We found that the k- gamma distribution largely matched the distribution 

of the subsectioned region. Only the Voronoi polygons, i.e. not the somatic cells, are shown for clarity. (E,F) Empirical cumulative distribution function 
vs entropic predictions for all distributions shown in c,d. The dashed black line represents hypothetical perfect agreement between observation and 
prediction.

The online version of this article includes the following source data and figure supplement(s) for figure 1:

Source data 1. Experimental data files enumerating the cell centers positions for each organism sampled.

Figure supplement 1. Random cell budding positions in multicellular yeast groups.

Figure 1 continued

https://doi.org/10.7554/eLife.72707
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of solid angles (Figure 1D,  k = 2.40 ,  rRMS = 0.04 ). However, there are systematic deviations between 
the data and maximum entropy predictions (Figure 1F).

We next investigated if maximum entropy predictions are more accurate within subregions with 
similar mean solid angles; specifically we examine regions whose mean is  ⟨Ω⟩ = 0.0185 ± 0.0003 , 
obtained across six organisms. The distribution of Voronoi solid angles within these subregions closely 
follows the k- gamma distribution (Figure 1F,  k = 10.66 ,  rRMS = 0.01 ). This observation suggests that 
while there are systematically correlated subregions of cells, within these subregions cells are largely 
arranged randomly. Thus, the organization of Volvox carteri somatic cells is consistent with maximum 
entropy predictions.

Simulations of different growth morphologies
We next used simulations to investigate the impact on cell packing of four different growth morphol-
ogies: growth via incomplete cell division (cf. snowflake yeast), cells distributed on a spherical surface 
(cf. Volvox), aggregation, and palintomy. The goal of these studies was to determine if morphological 
details and constraints impact entropic packing using simplified models that capture the essential 
features of the growth and behavior of these varied organisms. These simulations captured a couple 
basic properties of multicellularity: organisms may grow in both two and three dimensions, and they 
may assemble with two different classes of bonds: bonds that are reformable, and bonds that are 
not reformable. Nonreformable, or ‘fixed’ bonds (like those formed from incomplete cytokinesis) are 
common in plants, algaes, and fungi; on the other hand, reformable bonds (such as those formed via 
sticky proteins) are common in animal tissues and cellular aggregates, like biofilms and slime molds. 
Finally, palintomy, or growth confined inside a maternal membrane, is also common from algae to 
animals.

First, we performed geometric simulations of multicellular groups that grow via incomplete cell 
division; these simulations were inspired by previous simulations of snowflake yeast (Jacobeen et al., 
2018a; Jacobeen et al., 2018b). Daughter cells bud from mother cells with experimentally deter-
mined polar angle and random azimuthal angle, and remain attached to mother cells with rigid bonds. 
We ran 9, 100 simulations starting from a single cell, each of which underwent seven generations of 
division, and calculated the Voronoi tessellation of the final structure from each simulation. The distri-
bution of Voronoi volumes closely matched the k- gamma distribution across four orders of magnitude 
(Figure 2A,  k = 2.26 ,  rRMS = 0.007 ).

Inspired by Volvox, we simulated cells distributed across the two- dimensional surface of a sphere 
through a random Poisson point process. We completed 10 simulations, each with 1000 cells, and 
computed the distribution of solid angles subtended by Voronoi cells. As shown in Figure  2B, 
the distribution of Voronoi solid angles is consistent with maximum entropy predictions ( k = 9.29 , 

 rRMS = 0.009 ).
Next, we simulated organisms that stick together via reformable cell- cell adhesions, a mechanism of 

group formation that is common in biofilms and extant aggregative multicellular life (Claessen et al., 
2014) (i.e. Dictylostelium and Myxococcus; Figure 2C). In these simulations, multicellular aggregates 
were grown from a single cell. Seven generations of cell division occurred, in which new cells appear 
on the surface of existing cells at random positions, and steric interactions force cells to separate 
after division and occupy space. Aggregative bonds were modeled through harmonic interactions of 
the cell centers. The observed Voronoi volume distributions were consistent with maximum entropy 
predictions ( k = 7.84  and  rRMS = 0.007 ).

Finally, we modeled cells undergoing palintomic division within a maternal cell wall, as is common 
in green algae (Lürling and Van Donk, 1997; Boraas et al., 1998; Ratcliff et al., 2013; Fisher et al., 
2016; Herron et  al., 2019), and is reminiscent of both baeocyte production in Stanieria bacteria 
(Angert, 2005) and neoproterozoic fossils of early multicellularity (Xiao et al., 1998; Figure 2D). The 
details of these simulations remained similar to the simulations of aggregative multicellularity, with 
the important difference being that instead of harmonic interactions between cell centers enforcing 
groups to stay together, cells interacted with a spherical maternal wall acting as a corral. The Voronoi 
volume distributions for these simulations were also consistent with maximum entropy predictions 
( k = 15.16  and  rRMS = 0.013 ).

Taken together, the results of these simulations suggest that a broad distribution of cell neighbor-
hood sizes is a general feature of multicellular growth morphologies. In particular, when cell locations 

https://doi.org/10.7554/eLife.72707
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are random under these rules, cell neighborhood size distributions closely follow the k- gamma 
distribution.

The role of spatial correlations
While we have shown that the distribution of cell neighborhood volumes closely follows the k- gamma 
distribution in two very different organisms, we have also seen that in some cases maximum entropy 
predictions are more accurate in sub- sections of an organism than across its entirety. For instance, in 
Volvox we observed that  rRMS  is much smaller within subregions with similar mean solid angles than 
across the whole organism. This observation suggests that correlations exist in the arrangement of V. 
carteri somatic cells. Such a correlation is not wholly unexpected; V. carteri have a well- known anterior- 
posterior polarity which they use to orient and swim toward light sources (Drescher et al., 2010b). 
This polarity may affect the somatic cell packing distribution in different subregions of the organism, 
leading to deviations from maximum entropy predictions.

The spatial correlations in the cellular areas in Volvox were studied first by plotting a 3D heatmap 
of Voronoi solid angle sizes (Figure 3A). It is apparent that extended spatial regions have well- defined 
and non- random mean Voronoi solid angles. We quantified this feature by calculating the spatial 
correlation function  C(Q)  of the solid angle

Figure 2. Entropic packing is a general feature of simple multicellularity. We simulated four different growth morphologies: (A) Tree- like groups formed 
with rigid, permanent bonds between cells, (B) surface- attached cells located on a spherical surface, (C) aggregates formed with attractive ‘sticky’ 
interactions, and (D) groups formed by rapid cell division within a maternal membrane. In all subfigures, left panel shows the predicted and observed 
probability distributions, and right panel plots the observed cumulative distribution vs. the expected cumulative distribution. Histogram bars represent 
measured Voronoi volume distribution in simulations, and black solid line represents the maximum entropy prediction. Maximum entropy predictions 
accurately described the distribution of cellular volumes/areas, despite their varying mechanisms of group formation ( rRMS ≤ 0.01 ).

The online version of this article includes the following source data and figure supplement(s) for figure 2:

Source data 1. Simulation data (enumerating the cell center positions) for the six classes of numerical studies; aggregation, apoptosis, polydispersity, 
snowflake yeast growth, tree- like growth, and Volvox growth.

Figure supplement 1. Four different distributions were tested for goodness- of- fit: the maximum entropy prediction (black line), the normal distribution 
(red), the log- normal distribution (blue), and the beta- prime distribution (green).

Figure supplement 2. Four different distributions were used to estimate the skewness of the distribution given the first two moments (A).

Figure supplement 3. In simulations of palintomy within a confining membrane, boundary effects due to frustrated packing near a wall affect the local 
packing fraction, but do not change the general distribution.

https://doi.org/10.7554/eLife.72707
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C(Q) = ⟨

(
Ω−⟨Ω⟩

)
YQ⟩

σΩσYQ
,
  

(2)

where  YQ = J(Q)−1 ∑
j(Ωj − ⟨Ω⟩)  is the average deviation of the solid angle of a given polygon’s 

neighbors at a neighbor distance  Q  from the mean. Here, the number of neighbors is  J(Q) , a func-
tion of  Q , which enumerates the network distance from the polygon of interest (i.e.  Q = 1  calls the 
nearest neighbors, of which there are  J(1) ,  Q = 2  calls the next nearest neighbors, of which there are 

 J(2) , and so on). The standard deviation of the solid angle across the population is  σΩ , and  σYQ  is the 
standard deviation of  YQ  across the population. We find that Volvox Voronoi solid angles are positively 
correlated at distances as large as  Q = 10  (Figure 3A). This analysis suggests that there are system-
atic differences in Volvox group structure in different spatial regions. We therefore should expect to 
observe deviations from the k- gamma distribution, which was derived under the assumption that 
there are no correlations in the division of space among cells.

A natural question is whether maximum entropy predictions are more accurate within correlated 
subregions of an organism. We measured the Voronoi distribution in subregions with similar mean 
solid angles across six organisms and, for each subregion, a central node and its neighbors up to Q0 
were identified. We varied Q0 from 3 (corresponding to, on average,  38 ± 2  cells in the subregion) to 

 Q0 = 20  ( 928 ± 10  cells on average in the subregion) to measure the Voronoi solid angle distributions 
in subregions of different sizes. Spatial correlations were weaker within smaller domains (Figure 3A), 
and deviations from maximum entropy predictions smaller as well (Figure  3B) with the minimum 

 rRMS  at  Q0 = 6  (Figure 3C, average of  133 ± 5  cells). These observations suggest that while there are 
systematic correlations between subregions, cell neighborhood sizes are largely randomly distributed 
within subregions.

The crucial role of randomness
How much randomness is necessary for the k- gamma distribution to predict cell neighborhood size 
distributions? Our analysis of the solid angle distribution of Volvox cells demonstrates that maximum 
entropy principle predictions are relatively accurate ( rRMS = 0.04 ) even in the presence of some spatial 

Figure 3. Correlations lead to deviations from maximum entropy predictions in Volvox carteri. (A) Correlation function of Voronoi polygon areas 
vs. network neighbor distance  Q . Green circles represent all experimental Volvox data. Lines indicate the same correlation function calculated in 
subsections of size  Q0 = {6, 10, 14, 18} . Inset: visualization of spatial correlations of solid angle; one Volvox’s Voronoi tessellation is displayed with 
a three- color heatmap corresponding to polygons with areas smaller than (light gray), within (gray) and larger (black) than one standard deviation of 
the mean. Scale bar is  200 m . (B) PP plots for the observed vs predicted cumulative distribution function. In green is the Volvox distribution for all 
cells before corrections for correlations. A selection of differently- sized subsections is also plotted, corresponding to sizes  Q0 = {6, 10, 14, 18} . Arrow 
indicates direction of increasing Q0 value. (C) Root- mean- square residual deviation from maximum entropy predictions as a function of subsection size, 
as a function of nearest neighbor number Q0. As the subsection size increases (including more and more uncorrelated Voronoi areas), the deviation from 
predictions first decreases until  Q0 = 6 , then increases.

The online version of this article includes the following source data for figure 3:

Source data 1. Used in this figure is specifically Volvox cartesian cell center position measured from lightsheet microscopy.

https://doi.org/10.7554/eLife.72707
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correlations. However, it is unclear how much randomness is necessary for the k- gamma distribution 
to be predictive. Developmental processes are known to incur random effects (Hong et al., 2016; 
Haas et al., 2018), but, at the same time, fluctuations must be sufficiently suppressed for complex 
structures to assemble. This dilemma is augmented because there are few methods for measuring 
the degree of randomness in developmental processes. Therefore, it is difficult to disentangle exactly 
which reproducible qualities and traits stem from regulated processes, and which ones stem from 
random processes. In this section, we address this gap by assessing the stability of maximum entropy 
packing distributions to correlative perturbations (Figure 4). We do so by simulating three different 
sources of correlations: (i) size polydispersity, (ii) precisely defined growth patterns, and (iii) coordi-
nated cellular apoptosis, each of which is a common multicellular developmental process. In each 
scenario, we varied the relative strength of correlations and noise, and monitored how closely the cell 
neighborhood size distributions agreed with the k- gamma distribution via P- P plots and the  rRMS . We 
do not attempt to exactly recapitulate naturally- occurring levels of randomness strength; rather, we 
investigate the limits of how well maximum entropy predictions can measure the impact of correlations.

The impact of heritable size polydispersity was investigated by simulating aggregative groups 
consisting of large and small cells. All simulations were seeded with one small cell and one large cell. 
We then varied the probability  ξ  that a new cell is the same size as its mother from 0.5 to 1.0. When 

 ξ = 1 , cells always produce offspring with the same radius; for  ξ = 0.5  it is equally likely that a small 
cell produces a small or large daughter (and vice versa for large cells). Therefore, groups with  ξ = 1  
have correlated regions of cell size, but the degree of correlations decreases with decreasing  ξ . While 
groups with  ξ = 1  deviate significantly from the k- gamma distribution ( rRMS = 0.09 ), we observed that 
even a small amount of randomness results in excellent agreement between simulated groups and the 
k- gamma distribution (in order from  ξ = 1  to  ξ = 0.5 ,  rRMS = {0.09, 0.04, 0.03, 0.03, 0.02} ).

Next we investigated groups with varying amounts of noise on top of defined growth 
patterns. In these simulations, new cells bud in precise positions; the first daughter at the posi-
tion ( θ = 0 ± η ,  ϕ = 0 ± η  in spherical coordinates), the second at  θ = 90 ± η ,  ϕ = 0 ± η , the third at 

 θ = 90 ± η ,  ϕ = 180 ± η , etc., where the noise is uniformly distributed with zero mean and width  η . For 

 η = 0  (no noise), the distribution of Voronoi volumes was discontinuous, since cells could only access a 
finite number of local configurations. As expected, as  η  increases ( η = {0, 5, 30, 60, 90} ),  rRMS  decreases 
( rRMS = {0.07, 0.05, 0.02, 0.02, 0.02} ).

Finally, we investigated groups with localized and random cell death. In these simulations, 50 cells 
were confined to the surface of a sphere of unit radius following the protocol described above. One 
cell is randomly selected to die. Centered at this cell, a spherical region of radius  R  is defined, and 
then 10 cells in this region were randomly selected to die (and disappear, thereby not contributing to 
the Voronoi tessellation). For small  R , cell death is highly localized, and thus spatially correlated. As  R  
increases, cell death events become less localized, and therefore more random. We find that highly 
correlated cell death resulted in large deviations from maximum entropy predictions. Conversely, as 
 R  increases dead cells become less localized, the observed distribution becomes more accurately 
described by the k- gamma distribution; as  R  increases from  R = {0.75, 1, 1.25, 1.5, 1.75, 2} , we find 

 rRMS = {0.10, 0.07, 0.03, 0.02, 0.01} .
In summary, absent randomness, spatial correlations lead to large deviations from the k- gamma 

distribution. Yet, with even a small amount of randomness, the k- gamma distribution holds significant 
predictive power. These simulations suggest that maximum entropy predictions are likely to be robust 
against even moderate correlations.

Parent-offspring fidelity via maximum entropy packing
So far, we have shown that randomness in cellular packing leads to highly predictable packing statis-
tics. Here we show that maximum entropy statistics can directly impact the emergence of a highly 
heritable multicellular trait, organism size.

Prior work has shown that the size of snowflake yeast at fragmentation is remarkably heritable – 
higher, in fact, than the traits of most clonally reproducing animals (Ratcliff et al., 2015). The size to 
which snowflake yeast grow depends strongly on the aspect ratio of its constituent cells; more elon-
gated cells allow the growth of larger clusters before strain from cellular packing causes group fragmen-
tation (Jacobeen et al., 2018a; Jacobeen et al., 2018b). Recently, experiments with engineered yeast 
showed that this emergent multicellular trait, group size, was in fact more heritable than the underlying 
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cellular trait upon which it was based (cellular aspect ratio), despite the fact that the mutations engi-
neered in this system only affected cellular aspect ratio directly (Zamani- Dahaj et al., 2021). Simulations 
of multicellular chemotaxis observed a similar effect (Colizzi et al., 2020). While at first glance this may 
seem surprising, we show below that the high heritability of snowflake yeast group size arises from the 
direct dependence of size on the robust maximum entropy distribution of volume within groups.

Before addressing how fracture impacts the distribution of cluster sizes by impacting the number 
of cells within a group, we first must address fluctuations in size among clusters with the same number 
of cells. Given a number of cells  N   in the cluster, variation in cell packing fraction results in varia-
tion of the total volume. The arguments given above for predicting the distribution of individual cell 
volumes also applies to the distribution of total volume (Aste and Di Matteo, 2008); the distribution 
of total volume for clusters with the same number of cells should follow the k- gamma distribution. To 
generate enough clusters with identical  N   to test this prediction, we used simulations. We generated 
3000 snowflake yeast clusters, each with 100 cells, and measured their total volumes. The distri-
bution of volumes is consistent ( rRMS = 0.0043 ,  k = 23.0 ) with the k- gamma distribution as shown in 
Figure 5A. Further, these fluctuations in size are small compared to the differences in size gained via 
reproduction of cells or lost via fracture.

To predict the group size distribution, we consider the probability of fragmentation via a weakest- 
link model of fracture. As the location of new cells is random (see Figure 1—figure supplement 1), 
each new cell has a chance of causing intercellular bond fracture. It was previously observed that bonds 
only break if cells are highly confined, that is they have smaller Voronoi volumes; otherwise flexible 
cellular branches simply bend (Jacobeen et al., 2018b). We model fracture as occurring when a cell’s 
Voronoi volume is below a critical value denoted by  v∗  (Figure 5B) such that its motion is completely 
restricted. We measure  v∗  from simulations that determine the maximum local packing density for 
groups with same cell size and shape distributions as seen in experiments (see Materials and methods). 
The probability that a particular cell is confined to a Voronoi volume  v ≤ v∗  is the integral

 
p∗ =

ˆ v∗

vc

p(v)dv.
  (3)

Figure 5. Maximum entropy cell packing generates a consistent and predictable life cycle in snowflake yeast. (A) Distribution of total cluster volume 
for 3000 simulated snowflake clusters, each with  N = 100  cells. The total volume is divided by the minimum possible volume  Nvc . The k- gamma 
distribution (black line,  k = 23.0, rRMS = 0.0043 ) provides a good description of the data. (B) Distribution of all experimental Voronoi volumes (black 
circles) and the maximum entropy prediction (black line). The vertical black dashed line is the critical Voronoi volume  v∗ = 2.02  predicted from 
simulations. Orange filled region integrates up to  p∗  the probability that any one cell occupies a volume less than  v∗ . Insets: sequential brightfield 
microscope images of one yeast cluster undergoing group fragmentation. White arrowhead indicates location of fracture point. The images measure 
 150 m  across from top to bottom. (C), Experimentally measured yeast cluster size distribution (solid black line) along with the prediction from weakest 
link theory (orange line). Gray region represents  1σ  confidence bounds on the measured distribution from estimating the number of cells in a group. 
(D), Coefficient of variation in group radius ( σ/R̄ ) for snowflake groups (S) and flocculating groups (F). Data from Pentz et al., 2020.

The online version of this article includes the following source data for figure 5:

Source data 1. This figure was generated from a combination of the simulation data and experimental data provided with Figures 1 and 2, as well as 
epxerimental size measurements included here from a particle multisizer, or Coulter Counter.

https://doi.org/10.7554/eLife.72707
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As each cell in a cluster of  N   cells independently has probability  p∗  of having  v ≤ v∗  (and thus 
causing fracture), the probability of a cluster with  N   cells not fragmenting is

 P(N) = (1 − p∗)N
  (4)

As we do not model the fate of products of fragmentation (i.e. the size of the separate pieces 
post- fracture), we expect the weakest link model to be more accurate for larger clusters than it is for 
smaller clusters.

We measured group size for approximately  10, 000  snowflake clusters, all descendants of a single 
isolate, using a particle multisizer, and found strong agreement between the experimentally observed 
cluster size distribution and the weakest- link prediction (the coefficient of determination is  r2 = 0.97  
for  log(Counts)  vs  N  ) (Figure 5C). Hence, the predictable statistics of entropic cell packing guides the 
distribution of group size among offspring of a single isolate.

For context, we compared the distribution of group size in snowflake yeast to that of flocculating 
yeast, which forms multicellular groups via aggregation. The multicellular size of flocculating yeast 
depends on the rate of collisions with other cells and groups of cells. The growth rate of aggregates 
is thus typically proportional to their size, as larger aggregates are more likely to contact more cells 
(Pentz et  al., 2020). In fact, the maximum size of a flocculating yeast aggregate is bounded by 
the duration of aggregation, an extrinsic parameter, while the minimum size can be a single cell 
(Stratford, 1992). Using data from Pentz et al., 2020, we compared the group size distributions of 
snowflake yeast and flocculating yeast grown in the same environmental conditions. We find that floc-
culating yeast groups exhibit a much larger coefficient of variation in size compared to snowflake yeast 
groups (Pentz et al., 2020; Figure 5D). These results demonstrate that randomly assembled groups 
can exhibit more reproducible group traits than groups assembled with correlations.

Multicellular motility is robust to cellular area heterogeneity
One of the issues arising from the existence of the broad distribution of somatic cell areas in Volvox is 
the extent to which colony motility is affected by that heterogeneity. Each of the somatic cells at the 
surface of a Volvox colony has two flagella that beat at  ∼ 30  Hz, in planes that are primarily oriented 
in the anterior- posterior (AP) direction but with a slight lateral tilt that makes each colony spin around 
its AP axis. A longstanding focus in biological fluid mechanics of multicellular flagellates has been to 
understand the connection between the beating of the carpet of flagella that cover their surface and 
their self- propulsion. Measurements of the flow fields around micropipette- held (Short et al., 2006) 
and freely- swimming colonies (Drescher et al., 2010a) have shown that despite the discreteness of 
the flagella, the flow is remarkably smooth, albeit often displaying metachronal waves (Brumley et al., 
2015), long- wavelength phase modulations of the beating pattern. However, the effect of heteroge-
neity in cell area on motility is as yet unknown; naively, we might expect that heterogeneities in flagella 
packing may lower the motility of the organism in comparison to a highly regular arrangement. Here, 
we show in fact that Volvox motility is largely unaffected by fluctuations in cell area, indicating that 
area heterogeneity may not be detrimental to the organism’s swimming fitness. The absence of such 
a barrier may represent a scenario where trait optimization can be achieved without first evolving 
sophisticated developmental genes.

A heuristic explanation for the smoothness of the flows can be developed by noting first that the 
flow arising from each flagellum, beating close to the no- slip surface of the colony, will fall off only 
as an inverse power of distance  r  from the flagellum. Thus, the superposition of the flows from many 
flagella will be sensitive to contributions from distant neighbors (Boselli et al., 2021) and will tend 
to wash out local variations in flagellar actuation. This argument can be made quantitative using two 
different models for the motility of such flagellates. The first is the ‘squirmer’ model (Lighthill, 1952), 
in which the flagellate is characterized by a tangential ‘slip’ velocity  u(θ)  on the surface, which can be 
thought of as corresponding to the mean motion of the flagella tips. Here,  θ ∈ [0,π]  is the polar angle 
with respect to the AP axis. In this approach the details of the fluid velocity profile below the tips 
are not resolved, and in particular the no- slip condition at the surface of the ECM is ignored. In the 
second approach (Ishikawa et al., 2020), which builds on earlier work (Short et al., 2006) that spec-
ified a force density at the colony surface instead of a slip velocity, there is a specified force density 
applied at some small distance above the no- slip colony surface, and the flow field below that locus 
is resolved. This approach, termed the ‘shear stress, no- slip’ model, captures the very large viscous 
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dissipation that occurs in the region between the ECM and the locus of forcing. Within either of these 
two approaches above the effects of area inhomogeneities can be investigated by coarse- graining the 
flagella dynamics; either the local slip velocity  u(θ)  or the local tangential force density  f(θ)  has noise.

In the squirmer model, the swimming speed  U   is (Lauga, 2020)

 
U = 1

2

ˆ π

0
dθ sin θ uθ(θ)V1(θ),

  
(5)

where

 
Vn(θ) = 2

n
(

n+1
)P

′
n
(
cos θ

)
sin θ,

  (6)

 Pn  is the Legendre polynomial, and the prime indicates differentiation with respect to its argument. 
If we represent the effects of area inhomogeneities as noise in the slip velocity, then it is most natural 
to use  Vn  as the basis functions for the tangential slip velocity, expressed as

 uθ(θ) =
∑∞

n=1 unVn(θ),  (7)

where  Vn(0) = Vn(π) = 0 , guaranteeing that the slip velocity vanishes at the anterior and poste-
rior poles (Short et al., 2006). Accurate experimental measurements of the azimuthal velocity field 
of Volvox (Drescher et al., 2010b) show that it is well- captured by that lowest mode, leading to a 
modest anterior- posterior asymmetry. From the orthogonality relation for the  Vn ,

 

ˆ
dθ sin θV1(θ)Vn(θ) = 2n(n + 1)

2n + 1
δ1n,

  
(8)

we see immediately that the contributions from all modes  n > 1  vanish identically, and thus the 
swimming speed is given identically by the amplitude of the lowest mode  V1(θ) = sin θ ,

 U = 2
3 u1.  (9)

Thus, within the squirmer model, motility is essentially insensitive to area inhomogeneities. This 
result does not preclude effects of those higher modes, only that such effects will be on quantities 
other than the swimming speed, such as the nutrient uptake rate (Magar et al., 2003).

In the shear- stress, no- slip model, the velocity field in the region between the colony radius  R  and 
the radius  R(1 + ϵ)  at which the shear stress is applied is solved separately from that for  r > R(1 + ϵ)  
and the two flow fields are matched at  R(1 + ϵ)  through boundary conditions of continuity in velocity 
and normal stress and the specified discontinuity in shear stress. Analogously to the expansion of the 
slip velocity in the squirmer model (7), noise in that discontinuity can be expressed by assuming that 
the coarse- grained shear force applied by the flagella has spatial variations, and can be expanded in 
the form

 fθ(θ) =
∑∞

n=1 fnVn(θ).  (10)

The swimming speed again depends only on the lowest- order mode in this expansion,

 U = 2ϵR
3µ f1,  (11)

and we again have insensitivity of  U   to inhomogeneities in the area per somatic cell.

Discussion
In this paper, we demonstrated that universal cellular packing geometries are an inevitable conse-
quence of noisy multicellular assembly. We measured the distribution of Voronoi polytope sizes in both 
nascent and extant multicellular organisms, and showed that they are consistent with the k- gamma 
distribution, which arises via maximum entropy considerations. Using simulations, we demonstrated 
that k- gamma distributions arise in many different growth morphologies, and do so requiring only a 
relatively small amount of structural randomness. Further, we showed that the distribution of cell neigh-
borhood sizes can be used to distinguish the effects of randomness from the effects of developmental 
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patterning. Finally, we demonstrated that consistent packing statistics can lead to highly reproducible, 
and thus heritable, multicellular traits, such as group size in snowflake yeast. Altogether, these results 
indicate that entropic cell packing is a general organizing feature of multicellularity, applying to multi-
cellular organisms with varying growth morphologies, connection topologies, and dimensionalities.

One of the strengths of the packing- based maximum entropy framework employed here is its 
simplicity. We have demonstrated that the distribution of cell neighborhood sizes can be predicted 
with high accuracy, in many different multicellular morphologies, from only the first two moments of 
the distribution. Deviations from maximum entropy predictions therefore encode important infor-
mation about additional correlations that can arise via a variety of sources, such as developmental 
regulation or interactions with the environment. These additional correlations could be explored via, 
for example, higher order structures to the maximum entropy model (Schneidman et  al., 2003). 
Relatedly, it would be interesting to extend our analysis to include topological information, which has 
recently been applied to theoretical and experimental systems (Skinner et al., 2021; Jeckel et al., 
2021). Developing methods to incorporate these higher- order effects may prove especially useful 
when assessing the importance of random fluctuations in organisms with structures more complex 
than those studied here.

The effect of random noise has been an important area of research in developmental biology 
(Tsimring, 2014; Lander, 2011). During development, cellular growth, reproduction, differentiation, 
and patterning combine to form a multicellular organism. Random noise introduced at any stage in 
this process can result in phenotypic variability, which may affect an organism’s fitness (Waddington, 
1957). But while some multicellular traits exhibit high variability, others are tightly conserved, 
leading to a wide body of research addressing the origin of mechanisms underlying robustness and 
stability, and the nature of feedback mechanisms that must be present to manage the large number 
of stochastic fluctuations in gene expression and growth (Gregor et al., 2007; Haas et al., 2018; 
Hong et al., 2016; Sampathkumar, 2020; Deneke and Di Talia, 2018). In this context, our results 
demonstrate that random noise can itself lead to highly reproducible multicellular traits such as the 
cell packing distribution.

Our observation that heritable properties can arise from random processes is reminiscent of the 
reproducible structures and phenomena generated by random noise in a wide range of physical (Shin-
brot and Muzzio, 2001; Manoharan, 2015) and biological systems (Tsimring, 2014; Lander, 2011). 
While it may be surprising that the distribution of free space in snowflake yeast and Volvox follow the 
same k- gamma distributions despite the many differences between these organisms, this universality 
actually extends beyond multicellular organisms to non- living materials, such as those seen in gran-
ular materials and foams (Katgert and van Hecke, 2010; Varadan and Solomon, 2002; Aste and 
Di Matteo, 2008). This broad universality likely arises due to the simple requirements for application 
of the maximum entropy principle to packing; specifically, there must be a total volume, individual 
volumes cannot overlap, and volumes must be determined independently (subject to the total volume 
constraint). It is thus important to note that entropic packing is not necessarily adaptive; it can readily 
emerge as a consequence of random cellular reproduction or interactions. While entropic packing 
statistics may produce advantages in some cases, they could be neutral or detrimental in others.

An example of one possible advantage granted by entropic packing is the parent- offspring 
fidelity that arises from its ensemble statistics. Since both parents and their offspring are assembled 
through similar noisy processes, they achieve similar cell packing distributions. This statistical similarity 
therefore details at least one heritable multicellular trait that does not rely on genetically regulated 
multicellular development. Other multicellular traits that build on the cell packing distribution are 
similarly affected by this emergent process and could become heritable as well. Such parent- offspring 
heredity could play a crucial role in the evolutionary transition to multicellularity, providing a mecha-
nism for nascent multicellular organisms to participate in the evolutionary process without first having 
to possess genetically regulated development. Over time, developmental innovation may arise via 
multicellular adaptation, modifying or replacing entropic cell packing as a mechanism of multicellular 
heredity. Consistent with this hypothesis, maximum entropy retains considerable predictive power in 
extant multicellular organisms such as Volvox, animal embryos (Alsous et al., 2018), and epithelial 
tissue monolayers (Atia et al., 2018), each of which have canalized development. There may be other 
examples of organisms with highly regulated development which pack cells according to maximum 
entropy predictions, and future work could address cell packing in, for example, animal embryos, 
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brain tissue, and more. Finally, as fragmentation is a common mode of multicellular reproduction 
(Larson et al., 2020; Prakash et al., 2021; Angert, 2005; Keim et al., 2004; Koyama et al., 1977), 
fracture driven by maximum entropy packing statistics may be relevant to organisms other than snow-
flake yeast.

The broad distributions in cellular volumes we have found in two very different types of organisms, 
with two very different modes of reproduction and growth, suggest that noise in developmental geom-
etry may be an inevitable consequence of almost any microscopic mechanism. In this sense, they may 
be just as unavoidable in biological contexts as thermal fluctuations are in systems that obey the rules 
of equilibrium statistical physics. As an example, we recall the ‘flicker phenomenon’ of erythrocytes, 
in which the red blood cell membrane exhibits stochastic motions around its equilibrium biconcave 
discoid shape. Thought for many years to be a consequence of specific biochemical processes associ-
ated with living systems, flickering was eventually shown by quantitative video microscopy (Brochard 
and Lennon, 1975) to be consistent with equilibrium thermal fluctuations of elastic biomembranes 
immersed in water. This was later confirmed by similar studies of shape fluctuations exhibited by 
large lipid vesicles (Schneider et al., 1984). The generalization of these considerations to homeo-
static tissues with cell division, rearrangements and apoptosis has also been considered (Risler et al., 
2015; Kalziqi et al., 2018). While such membrane systems may differ greatly in the specific values of 
their elastic modulus (and, indeed, of their microscopic membrane constituents), the viscosity of the 
surrounding fluid, and their physical size, the space- time correlation function of fluctuations about the 
equilibrium shape adopts a universal form in appropriately rescaled length and frequency variables.

These results on equilibrium fluctuations provide a conceptual precedent for the results reported 
here. A central issue that then arises from our results is how to connect any given stochastic biochem-
ical growth process defined at the microscopic level to the more macroscopic probability distribution 
function observed for cellular volumes. Mathematically, this is the same question that arises in the 
theory of random walks, wherein a Langevin equation defined at the microscopic level leads, through 
suitable averaging, to a Fokker- Planck equation for the probability distribution function of displace-
ments. Can the same procedure be implemented for growth laws?

Materials and methods
Yeast genotypes and growth morphology
Snowflake yeast genotypes
Multicellular yeast groups were constructed from initially unicellular Saccharomyces cerevisiae. Petite 
yeast groups (P-) were used in all experiments except those noted below. Snowflake yeast were engi-
neered by replacing a functional copy of ace2 with a nonfunctional version as described in Ratcliff 
et al., 2015 (these modified genotypes will be referred to as either snowflakes or Ace2KO). Under 
daily selection for large size through settling in liquid media, groups can arise via a single mutation 
in the ace2 gene (Ratcliff et al., 2012; Ratcliff et al., 2015). When the ace2 gene is not expressed, 
the final stage of cell division is not completed, and mother- daughter cells remain attached at the 
chitinous bud site. Since all cells are attached directly to their mothers, snowflake groups form a 
fractal- like branched tree collective. To measure bud scar size, we used a unicellular strain of Y55 
yeast; these measurements were only used to pick parameters for snowflake yeast simulations.

Yeast growth morphology
S. cerevisiae cells reproduce by budding, a type of asexual reproduction where a new cell extrudes 
from the surface of the parent cell. During budding, mother and daughter cells remain attached via 
a rigid chitinous bond; in unicellular yeast, chitinase will degrade this bond as the last step in cell 
division, releasing the daughter cell and leaving behind a ‘bud scar’ on the mother surface and a 
‘birth scar’ defining the proximal hemisphere on the daughter’s cell surface. In all experiments, we use 
yeast expressing bipolar budding patterns (Chant and Pringle, 1995). The bipolar budding pattern 
is characterized by bud sites that typically do not form along the equator of the cell. Usually, the 
first daughter buds near the distal pole. Subsequent budding sites are typically positioned along a 
budding ring defined by a polar angle  θ  ( Figure 1—figure supplement 1). Some buds will ‘backbud’ 
toward the mother cell (i.e. on the proximal end of the cell), but most buds are placed on the distal 
side. By contrast, the azimuthal positions of all buds appears to be randomly distributed.
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Growth conditions
All experiments were performed on yeast grown for approximately 24 hr in 10 mL of yeast peptone 
dextrose (YPD, 10 g/L yeast extract, 20 g/L peptone, and 20 g/L dextrose) liquid medium at 30 C, and 
shaken at 250 rpm in a Symphony Incubating Orbital Shaker model 3,500I. All cultures were therefore 
in the stationary phase of growth at the time of experiments.

Scanning electron microscopy to measure group structure
Since yeast cells have thick cell walls that limit the effectiveness of optical microscopy, we used a 
Zeiss Sigma VP 3View scanning electron microscope (SEM) equipped with a Gatan 3View SBF micro-
tome installed inside a Gemini SEM column to obtain high resolution images of the internal structure 
of snowflake yeast groups and locate the positions of all cells. All SEM images were obtained in 
collaboration with the University of Illinois’s Materials Research Laboratory at the Grainger College of 
Engineering. Snowflake yeast clusters were grown overnight in YPD media, then fixed, stained with 
osmium tetroxide, and embedded in resin in an eppendorf tube. A cube of resin  200 m  x  200 m  x  200 m  
(with an isotropic distribution of yeast clusters) was cut out of the resin block for imaging. The top 
surface of the cube was scanned by the SEM to acquire an image with resolution  50 nm  per pixel (4000 
× 4000 pixels). Then, a microtome shaved a 50- nm- thick layer from the top of the specimen, and the 
new top surface was scanned. This process was repeated until 4000 images were obtained so that the 
data cube had equal resolution in  x, y, z  dimensions.

Custom image analysis scripts were written for the SEM datasets. First, a local adaptive threshold 
was used to binarize the image. A distance transform was used to identify the center of each cell slice 
in a particular 2d image. A watershed algorithm was then seeded with the cell slice centers, followed 
by a particle tracking algorithm to label cells across image slices. After labeling, the boundary for each 
cell was found, resulting in a point cloud of the exterior of each cell. Each cell was then fitted with an 
ellipsoid with nine fit parameters:  (x0, y0, z0)  cell center,  (a, b, c)  cell radii, and  (θ,φ,ψ)  for cell orienta-
tion. The net rotation matrix  R  was then found, where each column of  R  corresponds to the direction 
vector of one principal axis of the ellipsoid. We consider the radii of the principal axes  (a, b, c)  to be 
part of a diagonal scaling matrix  S  which sets the ellipsoid size. Since the SEM images only capture the 
cell cytoplasm, each principal axis was increased in size by an additional  100 nm  to account for the cell 
wall during visualization. Last, although there is no possible 3d 3 × 3 translation matrix, a 4 × 4 transla-
tion matrix  T   can capture the position of the cell center  (x0, y0, z0) . Adding one additional column and 
row to the matrices  R  and  S  with the diagonal element being 1 and all other elements being 0 then 
means that a unit sphere centered at the origin can be mapped to any specific cell by a surface matrix 
 M = TRS , and furthermore any point on the cell’s surface can be mapped back to the unit sphere 
by the inverse of  M  . Then, the surface matrices are the only information that must be stored. From 
this dataset, 20 clusters of  105 ± 51  cells in each cluster were identified along with their intercellular 
mother- daughter chitin bonds. We chose to stop at  N = 20  clusters due to the expensive nature of 
hand- identifying mother- daughter bonds, and since  N = 20  clusters gave over 2000 measurements of 
single cells in the clusters. In following experiments with different organisms and in following simula-
tions of different growth morphologies, we always made at least as many measurements as for these 
experiments of snowflake yeast.

Petite yeast cell size and shape
We measured cellular volumes from SEM images by ellipsoid fits. The average cellular volume of 
petite yeast was  vc =17.44 m3±7.33 m3 . This measurement was used in our Voronoi distribution deriva-
tions. We measured the mean cellular aspect ratio to be  α ≡ a/b = 1.28 ± 0.20 .

Bud scar size
We next measured the typical size of bud scars on the surface of Y55 yeast cells. Single cells were 
stained with calcafluor to highlight the chitinous bud scars (Figure 1—figure supplement 1). Confocal 
 z - stacks were obtained on a Nikon A1R confocal microscope equipped with a 40× oil immersion 
objective. These images were visualized using the image processing software FIJI, and the 3d volume 
viewer plugin. To track the location and size of bud scars, a custom MatLab script was written to map 
the strongest calcafluor signals, since calcafluor makes bud scars brighter than other portions of the 
cell wall. Brightness isosurfaces then isolated the bud scars from the cell wall. Next, the isosurface 
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points were rotated to the  x − y  plane by finding its principal components in a principal component 
analysis. The rotated surface points were then fit with an ellipse, returning the major and minor axes. 
The average of the major and minor axes returned an average interior bud scar diameter of  1.2 m . This 
value was later used in simulations of yeast groups.

Bud scar locations
We measured bud scar positional distributions for petite yeast Ace2KO. Since the SEM does not 
image chitinous bud scars, we approximated bud scar positions as the closest point on a mother cell’s 
surface to the corresponding daughter cell’s proximal pole. We recorded 1990 bud scar positions 
in polar coordinates, as defined in Figure 1—figure supplement 1. There is a clearly defined polar 
angle for the budding ring, while the azimuthal angle is uniformly distributed. The mean and standard 
deviations of the two angular coordinates were  θ = 42% ± 23% , and  φ = 180% ± 104% .

Imaging Volvox
Cultivation and selective plane illumination microscopy
The V. carteri f. nagariensis strain HK10 (UTEX 1885) was obtained from the Culture Collection of 
Algae at the University of Texas at Austin and cultured as previously described (Brumley et al., 2014). 
To visualise somatic cells, V. carteri spheroids were embedded in 1% low- melting- point agarose, 
suspended in liquid medium and imaged using a custom- built Selective Plane Illumination Microscope 
(Haas et al., 2018). Each somatic cell is mostly filled with a single chloroplast. Chlorophyll autofluo-
rescence was excited at  λ =561 nm  and detected at  λ =570 nm . To increase the accuracy with which 
we identify somatic cell positions,  z - stacks of six spheroids were acquired from three different angles 
(0, 120, 240 degrees) and fused as described in the following paragraph. We used data from  N = 6  
different Volvox organisms, which gave us  ∼ 6000  measurements of single- cell positions. This gave us 
more data than what we measured for snowflake yeast clusters.

Registration of cell positions
Positions of cells were registered based on fluorescence intensity using custom Matlab scripts. This was 
achieved by carrying out a 2D convolution of each frame of the  z - stack with a basic kernel modeling 
the appearance of a cell – this was set to be an asymmetric double sigmoidal function. Cell segmenta-
tion was corrected manually.  Z  - stacks taken from different angles were roughly aligned using Fiji and 
the Matlab function fminsearch to minimise distances between the reproductive cells. This alignment 
was used as starting point for alignment of the somatic cells again using fminsearch. The positions of 
somatic cells were merged and averaged.

Voronoi tessellation
We used a Voronoi tessellation algorithm to measure the distribution of cell neighborhood sizes in 
groups. We computed both 3D and 2D Voronoi tessellations.

3D voronoi tessellations
First, we computed 3D Voronoi tessellations within a defined boundary. These tessellations were 
performed for experimental snowflake yeast data from the SEM and simulations of 3D groups using 
the open- source Voronoi code Voro++ (Rycroft, 2009), wrapped in a custom MatLab script. Voro ++ 
takes as input the Cartesian coordinates of the cell centers and the boundary of the shape within which 
to compute the tessellation. Without a boundary, all of the Voronoi cells located on the periphery 
would extend to infinity. We started the tessellation process by setting the input boundary to be a 
sphere; the Voronoi algorithm tessellated space within the spherical boundary. Then, pieces of the 
sphere were pared away until a Voronoi tessellation within the group’s convex hull was obtained, as 
described in the next paragraph.

The boundary sphere was centered on the cluster’s center of mass. Its radius was the distance to 
the farthest cell center plus an additional  5 m . Upon tessellation within the sphere, each Voronoi poly-
hedron is defined by Cartesian vertices  rj . We group these preliminary vertices by the cells to which 
they correspond, so that  Qi = {r1, r2, ..., rm}  is a list of the  m  vertices corresponding to cell  i ∈ [1, N] , 
 N   being the total number of cells in the organism. We next computed the cluster’s convex hull, which 
is the smallest convex polyhedron that contains all cell centers. We then extended the vertices of 
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the convex hull by  3 m  outwards from the cluster center of mass so the boundary contained the 
entirety of each cell. This new boundary polyhedron, whose vertices are labeled  B , defines the cluster 
boundary. We then found the intersection polyhedron,  Zi = Qi ∩ B  by taking the union of the dual of 
their vertices. This process thereby trims all Voronoi polyhedra to lie exclusively within the cluster’s 
convex hull. The polyhedra  Zi  were the final Voronoi polyhedra used for the remaining data analysis.

Voronoi tessellation on a sphere
For Voronoi tessellations of cells on the surface of simulated spheres (see Figure 3 and Figure 4 of 
the main text), we used a built- in Matlab function called ‘voronoisphere’ for Voronoi tessellations on 
a sphere.

Voronoi tessellation on non-spherical surfaces
We also computed 2D Voronoi tessellations on surfaces embedded in 3D space using custom- written 
MatLab functions. This approach was used for Volvox experimental data. Performing this computation 
with Volvox experiments presented a challenge as Volvox are roughly spherical, but with varying local 
curvature. It was therefore necessary to compute a Voronoi tessellation on an arbitrary surface.

The first step toward generating the proper Voronoi tessellation was computing the Delaunay trian-
gulation of the cells on the surface (the Voronoi tessellation is the dual of the Delaunay triangulation). 
First, we found the Cartesian coordinates of each somatic cell (as described above), and normalized 
these coordinates so that all cell centers laid on the unit sphere. Then, a Delaunay triangulation of the 
normalized points was calculated. Edges of the triangulation that cut through the unit sphere were 
eliminated, and edges that laid along the sphere surface were kept. This Delaunay triangulation there-
fore mapped out the connectivity of the somatic cells. We then projected that triangulation onto the 
lumpy surface. The Voronoi polygon vertices are the circumcenters of each Delaunay triangle. Further, 
any edge shared between two Delaunay triangles denotes an edge shared between the Voronoi 
vertices associated with those two triangles. We found all edges connecting the Voronoi vertices. 
Next, connected edges were flattened so that each Voronoi cell was a 2D polygon. This step elimi-
nates the curvature associated with the surface of the organism. However, we found that the distribu-
tion of Voronoi areas was unaffected by taking either the planar approximation or by approximating 
the area by taking the local curvature into account – the average difference between Voronoi areas 

Figure 4. Introducing correlations and structure can break the maximum entropy distribution. In A- C are PP plots of the observed vs. predicted 
cumulative distribution function for three different simulations. The colors correspond to increasing levels of noisiness in the simulations, from 
red (strongest correlations/determinism) to blue (strongest noise). The dashed black line in each represents  y = x , or exact predictive efficacy. 
(A) Aggregative groups with bimodal size polydispersity; noise is introduced by varying the probability that small cells reproduce into small or large 
cells, and vice versa. (B) Tree- like groups with persistent intercellular bonds that grow according to a growth plan modified by noise in cell placement. 
(C) Surface- bound groups with programmed cell death events that may be localized or randomly dispersed. (D) The root mean square deviation from 
predicted values for each simulation case. Circles are aggregative simulations from A, triangles are tree- like simulations from B, and squares are surface- 
bound simulations from C. Note: the discrete points in (B) arise because absent randomness in the cell locations the exact same cellular structure is 
achieved by every simulation. Therefore, the observed distribution of Voronoi volumes is noticeably discrete for this case. Upon adding randomness, the 
cellular structure is altered between successive simulations, and the distribution of Voronoi volumes becomes less discrete.

The online version of this article includes the following source data for figure 4:

Source data 1. This figure was generated from the data provided through simulations of aggregative growth with size polydispersity, tree- like growth 
with noise in cell position, and growth on a spherical surface with planned apoptosis.
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when approximating the surface as a plane  Ap  vs. approximating the surface as a spherical cap  As  was 
found to be  ⟨

Ap−As
Ap

⟩ = 0.001 , measured for one organism. Therefore, we used the flattened Voronoi 
polygons as the final tessellation shapes.

Data analysis of voronoi measurements
In all cases, the output of the Voronoi algorithm is a list of Voronoi polytope sizes: in 3D, the measure-
ments were the final Voronoi polyhedron volumes, while in 2D the measurements were polygon areas. 
Histograms of these sizes were generated to compare with the k- gamma distribution. As we observe 
cells in direct contact with each other, the minimum size of a Voronoi volume or area was defined by 
single cell measurements. For petite yeast cells, the mean cell size was calculated from the ellipsoid 
fits described above to be  vc =17.44 m3±7.33 m3 . In simulations, the minimum volume was set by the 
defined cell radius; in bidisperse simulations, the minimum size was set by the volume of the smallest 
cells.

We then calculated the expected maximum entropy distribution using only the mean and variance 
of the observed Voronoi volumes,  ̄v  and  σ2 , as inputs. Together with the minimum volume vc, these 
measurements define  k = (v̄ − vc)2/σ2

 , a dimensionless shape parameter (Aste and Di Matteo, 2008). 
The maximum entropy distribution was therefore not fit to the data using, for example, a least squares 
method, but inferred from the first two moments of the distribution.

Volvox
Along the surface of the Volvox organisms, there are gaps between some of the somatic cells due to 
the gonidia that lie beneath, but near the surface of the organism. These gonidia effectively occupy 
space on the surface, making it inaccessible to somatic cells. We excluded all Voronoi cells that inter-
sected these gonidia gaps. We identified gaps in the soma cells by flagging Delaunay triangles with 
exceptionally high aspect ratios. Any Voronoi polygons that intersect the flagged Delaunay triangles 
were then flagged and later excluded from the dataset. The polygons were generally spatially clus-
tered, indicating that the gonidial gaps were being correctly isolated. Roughly 90 polygons were 
excluded from each organism.

In Volvox organisms, each cell is surrounded by extracellular matrix, so cells do not contact each 
other. Furthermore, each of the six organisms studied varied in diameter (standard deviation in diam-
eter was  28.2 m ), yet all contained roughly the same number of somatic cells, leading to systematic 
differences in average surface area per cell across the organisms. Quantitatively, the coefficient of 
variation of the diameter of the groups was  CVD = 0.05 , while the coefficient of variation in the number 
of cells in each group was roughly 10 times smaller,  CVN = 0.006 . To counter the systematic size differ-
ences between organisms, we converted the Voronoi polygon areas into solid angles by dividing 
by the total surface area of each organism,  Ωi = Ai/S ; we then grouped all six organisms together 
into one histogram. We allowed the minimum solid angle, used in the k- gamma equation, to be a 
fit parameter in a least squares minimization procedure. There was one outlier cell with solid angle 
 Ω = 0.0048  steradians; the next two smallest cells had solid angles 0.0068 and 0.0069 steradians. 
We removed the outlier; the least squares minimization procedure then fit a minimum solid angle 
 Ωc = 0.0070  steradians. We used this value for all further calculations. Just as in the 3D case, the mean 
and variance of the solid angle were measured to set the expected maximum entropy distribution.

Goodness-of-fit analysis
To test how well the k- gamma distribution performed as a predictive distribution, we systemati-
cally compared its performance to three other distributions: the normal (Gaussian) distribution, the 

Table 1. Model parameters for distribution comparisons.

K-gamma ( µ, k )  µ = V̄   k = (V̄ − vc)2/s2
 

Normal ( µ,σ )  µ = V̄   σ = s 

Log-normal ( µ,σ )  µ = exp(V̄ + s2/2)  σ = (exp(s2) − 1) exp(2V̄ + s2) 

Beta prime ( α,β )  α = V̄(V̄ + V̄2 + s2)/s2
  β = (V̄ + V̄2 + 2s2)/s2
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log- normal distribution, and the beta prime distribution. We used two of our datasets for this compar-
ison: experimental values of Voronoi volumes for snowflake yeast, and simulations of snowflake yeast 
(which provided us with more datapoints for comparison). First, we used the measured mean  ̄V   and 
standard deviation  s  of the datasets to estimate each distribution’s parameters. In Table 1 are the two 
parameters of each distribution and how they are calculated from the measured mean and variance 
of the dataset.

The three distributions that we used to compare to the k- gamma distribution were chosen based 
upon their properties. For instance, all three comparison distributions have two parameters; also, all 
three chosen distributions have either semi- infinite or infinite domain. We chose the Normal distribu-
tion because it is the centrally- limiting distribution for a process with summative random errors. We 
chose the Log- normal distribution because it is the centrally- limiting distribution for a process with 
multiplicative random errors. Last, we chose the beta prime distribution arbitrarily; the goal was to 
make comparisons to a distribution which we have no reason to believe would accurately describe 
this dataset.

To systematically compare the distributions, we sampled  N   datapoints, with replacement, from 
the original datasets. We varied  N   to test the effect of finite datasets. Each time we sub- sampled the 
dataset, we calculated the mean and variance of the new data sample, then used those measured 
values to estimate the parameters of the four distributions. We then recorded the root- mean- square 
residual for all four cases. We plotted the root- mean- square residual for each distribution as a function 
of the data sample size,  N  , in Figure 2. We observed that the k- gamma distribution outperformed the 
other distributions at every sample size.

Next, we used the four distributions to predict the skewness of the simulation data. We empiri-
cally determined the first two moments of the dataset: we take these to be the first two moments 
for each of our distributions. Then, we used the first two moments to predict the skewness, which 
is related to the third moment of the distribution. We then compared this value to experimentally- 
measured skewness, finding that the k- gamma distribution estimated the experimentally observed 
skewness with only a 7% error; the other three distributions estimated the skewness with percent 
errors of  −100%, 96%, and 174%  for the normal, log- normal, and beta- prime distributions, respectively 
(Figure 2).

As an additional test, we used least- squares fitting to test the performance of the k- gamma distri-
bution compared to the other three distributions for simulation data. In this case, we let the least- 
squares fitting algorithm find the best parameters to fit each distribution; then, we compared the 
least- squares- achieved mean and standard deviation of the fit distribution to the measured mean and 
standard deviation of the population. We found that the k- gamma fit reproduced the closest values to 
the measured mean and standard deviation (Figure 2).

Cluster size distribution measurements
Cluster sizes were measured using a Beckman Coulter Multisizer 4e particle analyzer in the Cellular 
Analysis and Cytometry Core of the Shared User Management System located at the Georgia Insti-
tute of Technology. Petite Ace2KO clusters were taken from steady state concentration in YPD 
and then submerged in electrolytic fluid and passed through a  100 m  aperture tube. The volume 
measured on the multisizer corresponds to the volume of electrolyte displaced by the cluster. The 
number of cells in each cluster was then estimated by  N = V/vc , where  V   is the volume of organism 
measured by the Coulter Counter, and vc is the average cell volume from SEM measurements, 
 vc =17.44 m3 .

Cumulative distribution function statistics
To quantify goodness- of- fit for predicted maximum entropy distributions, we compared the predi-
cated cumulative distribution function (CDF),  F(x) , to the empirical CDF,  Fi , using P- P plots. Exactly 
predicted points will lie on the line  y = x  in these plots. We measured the root- mean- square residual 
from the line

 rRMS =
√

⟨(Fi − F(x))2⟩ ,  (12)
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Measurements of  Ψ6  in V. carteri
From the light sheet images of Volvox, we obtained the Cartesian coordinates of each somatic cell. 
From Delaunay triangulation, we then obtained a list of every cell’s closest neighbors. Each cell and 
its  NN   nearest neighbors did not generally lie in a plane due to local curvature of the Volvox surface. 
We therefore calculated in- plane and out- of- plane components using principal component analysis. 
The in- plane components were then used to write the positions of each nearest neighbor in polar 
coordinates. The formula for calculating  Ψ6  is

 Ψ6 = |⟨ 1
NN

∑NN
j=1 e6iθj⟩|  (13)

where  θj  defines the polar angle coordinates around the cell of interest and  ⟨...⟩  denotes aver-
aging over all cells. We calculated  Ψ6  separately for each of six different organisms; we report 

 Ψ6 = 0.03 ± 0.01 .

Correlation of voronoi areas
In Volvox organisms, we calculated the spatial correlation of polygon areas. First, we extracted the list 
of cell neighbors from the Delaunay triangulation of the organism surface. Nearest neighbors were 
designated as living a network distance of 1 away from a cell of interest; next nearest neighbors live a 
network distance of 2 away from the cell of interest, etc. The number of neighbors a network distance 
of  Q  away is then  J(Q) , which is empirically determined. The network correlation function is then

 
C(Q) = ⟨(Ω−⟨Ω⟩)YQ⟩

σΩσYQ   (14)

where  YQ = J(Q)−1 ∑
j(Ωj − ⟨Ω⟩)  is the average deviation of the solid angle of a given polygon’s 

neighbors from the mean. The standard deviation of the solid angle across the population is  σΩ , and 

 σYQ  is the standard deviation of  YQ  across the population.

Simulation methods
Simulations of snowflake yeast groups
Simulations of snowflake yeast groups were adapted from previously published work by Jacobeen 
et al., 2018a; Jacobeen et al., 2018b that found simulations of snowflake yeast growth morphology 
accurately replicated experimentally measured cellular packing fractions and average group sizes. 
In the present work, cells were modeled as prolate ellipsoids of revolution with a semi- major axis 
 a =2.88 m  and semi- minor axis  b =2.29 m , characterized by the aspect ratio  α ≡ a/b = 1.26 . Each gener-
ation, every cell attempted to reproduce; however, if new cells closely overlapped with existing cells 
(i.e. their bud scars are closer than  1.2 m ), they were eliminated. Setting the number of generations 
(for example, 7) sets the maximum possible number of cells in the group at the end of the simulation 
( 27 = 128 ), and roughly sets the expected number of cells in the group ( ∼ 100 ). In our simulations, cells 
were 80% likely to bud first from the distal pole (i.e.  θ = 0 ± 10  degrees). Subsequent cells budded at 
a polar angle  θ , and with an azimuthal angle randomly chosen from a uniform distribution  φ ∈ [0, 2π] ; 
in other words, after the first bud, cells generally appeared along a ‘budding ring’. There was a 20% 
chance that the first bud would appear along this budding ring instead of exactly at the pole. After 3 
bud scars, there was a 50% chance that new cells bud on the proximal side ( π − θ ) instead of the distal 
side. The orientation of the new cell is determined by the surface normal to the mother cell at the 
position of the bud site; the major axis of the new cell lies along the surface normal.

To compare exhaustively the distribution of Voronoi volumes between simulations and the 
k- gamma distribution, we simulated  9, 100  clusters. In each simulation, clusters were allowed to grow 
for 7 generations of cell division, corresponding to an average of  94.2 ± 10.9  cells per cluster. The 
budding ring was defined by the polar angle  θ = 45% , a close approximation to the experimentally 
measured mean polar angle. These simulations did not include intercellular forces. The cell centers 
were recorded and then Voronoi tessellations were made within each cluster’s convex hull.

Simulations of V. carteri
We simulated 10 Volvox- like groups with  N = 1000  cells confined to the surface of a sphere. Cells were 
placed on the surface of a sphere of unit radius by randomly selecting polar and azimuthal coordinates 
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in a Poisson point process. The process proceeds as follows: each new cell was randomly placed, and 
its distance from all other cells was calculated. If the new cell is within a threshold distance  d  from 
any existing cell, it was removed and a new cell was placed elsewhere on the spherical surface. This 
process was iterated until all 1000 cells were placed. We chose a minimum separation distance of 
 d = 0.088 , which allowed reasonably rapid convergence. We then calculated the Voronoi tessellation 
and the correlation function as described above. The  N = 10  groups, each with 1000 cells, returned 
10000 single cell measurements.

Simulations of two additional growth morphologies
We next sought to model two additional classes of growth morphologies: sticky aggregates and cells 
contained within a maternal membrane. In both simulations, cells were modeled as spheres with unit 
radius.

Aggregative groups
First, we considered a multicellular model of sticky aggregates, mimicking group formation in, for 
example, flocculating yeast and bacterial aggregates. In our simulations, groups were grown from 
a single cell. New spherical daughters appeared at a polar angle  θ  and azimuthal angle  φ . Within 
each step, there was stochasticity in the budding location: cells would appear at  θ = θ0 ± 15% . The 
azimuthal angle was always drawn from a uniform distribution on the interval  [0%, 360%] . We simulated 
 N = 50  aggregative groups, each with 64 cells, for a total of gt3000 measurements of single- cell volume.

Cells interacted with both steric and attractive interactions in overdamped dynamics. Steric inter-
actions were modeled through a harmonic potential when two cells overlapped, with a cutoff once 
cells were no longer overlapping. That is, for two cells    and  j  (radii  Ri  and  Rj ) separated by the vector 

 rij = rj − ri , the steric force acting on cell    from cell  j  is

 

Fij =





0 |rij| > (Ri + Rj)

κs
(
|rij| − (Ri + Rj)

)
r̂ij |rij| ≤ (Ri + Rj)  

(15)

Attractive interactions (i.e. sticky, aggregative bonds) were also modeled through a harmonic 
potential, but these interactions had both a lower bound and upper bound cutoff.

 

Gij =





0 |rij| > 2(Ri + Rj)

−κa(|rij| − a(Ri + Rj))r̂ij (Ri + Rj) ≤ |rij| ≤ 2(Ri + Rj)

0 |rij| < (Ri + Rj),   

(16)

where  a  sets the location of the attractive well minimum. We used  a = 0.9 , so that the attractive 
interactions allow a small amount of cell overlap.

Size polydispersity
In simulations in which we introduced size polydispersity, cells were allowed to reproduce into two 
separate sizes,  R1 = 1  and  R2 = 2 . The probability of budding cells of the same size as the mother cell 
is denoted  ξ . When  ξ = 1 , the mother cell always produces cells of the same size, while when  ξ = 0.5 , 
there is a 50% chance that the mother cell produces a cell of size R1 or R2, independent of the radius 
of the mother. Simulations were seeded with a pair of contacting cells, one each of the two radii. 
The simulation then proceeded with subsequent rounds of cell division and mechanical relaxation. 
We varied the polydispersity parameter  ξ  in even increments from  ξ = 0.5  to  ξ = 1.0  for a total of 6 
different simulations. In each simulation, we simulated  N = 50  organisms, each with 64 cells, for a total 
of 3200 cells per simulation, and almost 20,000 cells total.

Groups confined within a membrane
In another common mode of group formation, cells divide repeatedly within a confining membrane. 
This type of group formation has been observed in experimentally- evolved multicellular algae derived 
from unicellular Chlamydomonas reinhardtii (Herron et al., 2019), and is reminiscent of both baeocyte 
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production in Stanieria bacteria (Angert, 2005), and neoproterozoic embryo fossils (Xiao et al., 1998). 
In a simulation model, we adopted the essential components of this class of growth: groups grow from 
a single spherical cell, cells divide stochastically, and cells interact sterically with both a maternal cell 
wall and each other. Typically, palintomic cell division occurs rapidly, meaning that the packing fraction 
remains the same within the maternal cell wall. We simulated this by increasing the radius of the cell 
membrane after each cell division, but before allowing any mechanical relaxations.

Steric forces between a cell and the maternal cell wall were modeled as being proportional to the 
non- overlapping volume of the cell and the maternal cell wall. In other words, if a cell is not contacting 
the membrane, there is no force acting on it. However, if the cell is contacting the membrane, the force 
is proportional to how much of the cell volume lies outside the membrane. Each cell was assigned 
volume  vc = 4/3 ∗ pi . The overlapping volume of the cell and the membrane is labeled vi. The force the 
cell experiences from the membrane is then

 Fi = κm(vc − vi )̂ri,  (17)

where  ̂ri  is a unit vector pointing to the center of the maternal membrane. Additionally, steric inter-
actions between cells were calculated as described above for aggregative groups.

We simulated  N = 200  groups growing in a confining membrane, each with 64 cells in the group, 
for a total of 12800 measurements of single cells.

Groups confined to a spherical surface
Some groups form by arranging cells around a central core of extracellular matrix (ECM). To simulate 
such groups, we modeled a sphere of ECM with cells arranged randomly along the surface. Cell posi-
tions were chosen by selecting a position in spherical coordinates from uniform polar  θ ∈ [0,π]  and 
uniform azimuthal  φ ∈ [0, 2π]  distributions. The only rule implemented in cell placement is that no two 
cells can be located closer than two cell radii from one another. If a new cell is chosen to be located 
too close to any existing cells, it is eliminated and a new position is chosen. We iterated this process 
until  N   cells were placed on the ECM surface.

First, we chose to place  N = 50  cells on the surface. Therefore, the maximum cell radius allowing all 
50 cells to be placed is 0.283 units (where the total sphere has unit radius). We chose the cell radius 
to be 0.1980 units, which allowed for reasonably rapid random placement of all 50 cells (other choices 
of cell radii demonstrate qualitatively similar results).

Simulated cellular apoptosis
In simulations with apoptosis events, cell death occurred after group generation. Briefly, groups were 
generated by iterated generations of cell division starting from a single cell. After this process, one 
cell was chosen at random to die. Then, all cells within a localization radius  R  were flagged. Of the 
flagged cells, 9 more were chosen at random to die. Therefore, small localization radii correspond to 
highly localized death events, where 10 juxtaposed cells may die together. As the localization radius 
increases, there are more flagged cells, and therefore more randomness in cell death. All other cells 
were unaffected by the cell death process. We simulated six different cell death radii. Each cell death 
radius simulation included 100 organisms simulated, each with 43 cells after the cell death process. 
Therefore, each cell death radius  R  includes 4300 single cell measurements, for a total of 25,800 
measurements.

Tree-like groups with precisely defined cell placement/location
We also investigated groups with precisely defined growth patterns. The spherical cells were held 
together with fixed, chitin- like bonds. The first cell was placed at the origin. It then proceeded to bud 
3 daughter cells, each of which also budded subsequent cells. The exact budding pattern is described 
below.

Daughter cells were placed as follows. In spherical coordinates on the surface of the mother cell, 
the first daughter cell was placed at  (θ = 0 ± η ,  ϕ = 0 ± η) , the second at  (θ = 90 ± η ,  ϕ = 90 ± η) , and 
the third at  (θ = 90 ± η ,  ϕ = 270 ± η) , where  η  is the strength of random noise added.

The first daughter cell’s coordinate system was rotated  90% ± η  around the  z - axis from the mother 
cell; in other words, for the first daughter cell,  x −→ x′ ,  y −→ y′ , and  z −→ z′ , where  x′ = Rz(π/2 + η)x , 

 y′ = Rz(π/2 + η)y , and  z′ = Rz(π/2 + η)z , and  Rz  is the rotation matrix around the  z - axis. This daughter 

https://doi.org/10.7554/eLife.72707


 Research article Physics of Living Systems

Day et al. eLife 2022;11:e72707. DOI: https:// doi. org/ 10. 7554/ eLife. 72707  23 of 28

cell then proceeded to bud daughters in the exact same pattern as its mother; however, because 
its local coordinates were rotated, the budding positions were also rotated 90% with respect to the 
mother cell’s buds. This process was iterated for five generations of cell division. When  η = 0 , this 
corresponds to only three cells overlapping three other cells. The three overlapping cells were then 
removed.

After each round of cell division, cells were allowed to relax mechanically in overdamped dynamics 
according to steric repulsive interactions and sticky, rigid bond interactions to their mother cell. The 
steric interactions were the same as described above. Fixed bond interactions were modeled as 
follows. When new cells appear, they incur a bud scar on the mother cell’s surface and a birth scar on 
the daughter cell’s surface. The positions  rbu  and  rbi  of the bud scar and the birth scar were recorded 
and tracked. The vector pointing from the bud scar (on the mother’s surface) to the birth scar (on the 
daughter’s surface) is  r = rbi − rbu . Then, the force acting on a cell from it’s mother cell is

 Fmother = κ
(
|r| − 2

)
r̂  (18)

where  κ  was the chitin bond strength. In addition, cells experienced forces from all of their daughter 
buds (given by the same relationship and the same chitin bond strength). The initially seeded cell did 
not experience forces from a mother cell.

For  η = 0  (i.e. no noise), the distribution of Voronoi volumes was visually discontinuous, since 
cells could only access a finite number of local configurations. As the noise strength increased, the 
maximum entropy predictions were gradually recovered. We simulated 11 different noise strenths, 
each with 150 organisms, each with 28 different cells simulated, for a total of 46,800 measurements.
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Appendix 1
It may appear surprising that the distribution of cell volumes is not governed by the Central Limit 
Theorem (CLT), i.e. the volumes are not distributed normally. After all, Voronoi polytope volumes 
are generated from many randomly interacting pieces - should not these many different random 
fluctuations sum to a CLT- like scenario? A simple comparison between the modified gamma 
distribution, a normal distribution, and a log- normal distribution shows in fact that both the normal 
distribution and the log- normal distribution fail to capture essential characteristics of the volume 
packing, while the k- gamma distribution does. For snowflake yeast, the reason for this disagreement 
is that as each new cell is added to a cluster, it changes the entire volume distribution, since the 
new cell occupies space which was previously unoccupied. It therefore changes the volumes of all 
its nearest neighbors; if they flex to accommodate the new cell, then those neighbors change the 
Voronoi volumes of their neighbors, and so on. Therefore, adding a new cell does not sample the 
same distribution as before - the distribution itself changes, rendering the limit inapplicable.

In the case of the Volvox, the somatic cells are originally connected together only by cytoplasmic 
bridges, forming a small sphere. As the ECM is generated the sphere “inflates”. This process, in 
which many random fluctuations in the amount of ECM excreted by each cell over time can integrate 
together, seems appropriate for CLT- like arguments. However, it is worth noting that the cells are 
generally locally oriented with a hexagonal symmetry. In order to maintain a non- wrinkled surface, 
more ECM must be secreted in some local regions, such as the corners of the hexagons, than in other 
places, such as at the hexagon edges. Since there is no local wrinkling observed, the secretion of 
ECM from the somatic cells cannot be a completely random process orientationally. In other words, 
the ECM excretion process is controlled, which implies that the CLT does not properly capture the 
sampling space. Instead, the cells inevitably occupy positions on the surface of the sphere that vary 
from organism to organism; the maximum entropy distribution of their Voronoi areas is then the k- 
gamma distribution.
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