
Motility of Colonial Choanoflagellates and the Statistics of Aggregate Random Walkers

Julius B. Kirkegaard, Alan O. Marron, and Raymond E. Goldstein
Department of Applied Mathematics and Theoretical Physics, Centre for Mathematical Sciences,

University of Cambridge, Wilberforce Road, Cambridge CB3 0WA, United Kingdom
(Received 16 September 2015; published 22 January 2016)

We illuminate the nature of the three-dimensional random walks of microorganisms composed of
individual organisms adhered together. Such aggregate random walkers are typified by choanoflagellates,
eukaryotes that are the closest living relatives of animals. In the colony-forming species Salpingoeca
rosetta we show that the beating of each flagellum is stochastic and uncorrelated with others, and the
vectorial sum of the flagellar propulsion manifests as stochastic helical swimming. A quantitative theory for
these results is presented and species variability discussed.
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Active microparticles, self-propelled by stored energy
or that available from the environment, typically exhibit
directedmotility combinedwith rotational diffusion, leading
to randomwalks that at large times are statistically similar to
their equilibrium counterparts. For artificial swimmers such
as Janus particles [1], powered by inhomogeneous surface
chemical reactions, the source of randomness is the same
thermal fluctuations that translate Brownian particles, but
here rotate them [2]. In biology, several paradigms for
stochastic locomotion exist. For single-celled organisms,
stochastic beating leads to noisy swimming paths [3], and
active processes such as flagellar bundling or unbundling
by bacteria [4] and synchronization or desynchronization in
algae [5] enhances this stochasticity. “Obligate” eukaryotic
polyflagellates such as the ciliate Paramecium [6] and
the alga Volvox carteri [7], exhibit large-scale flagellar
coordination, and increased regularity of motion.
Here we study motility in an important example of

a “facultative” colonial organism, the choanoflagellate
Salpingoeca rosetta (Fig. 1), which exhibits uni- and
multicellular forms with variable cell number. Single
cells of S. rosetta, like other microorganisms, are random
walkers (see the Supplemental Material [8]). We report
three main experimental results: (i) individual flagella of
the constituent cells beat stochastically, (ii) flagella on a
given colony display negligible cross-correlation, and
(iii) the swimming trajectories of colonies are stochastic
helices. These results suggest a hitherto unrecognized class
of microorganisms, here called aggregate random walkers
(ARWs): those built by stitching together individual ran-
dom walkers [9]. We construct a minimal model to explain
this motility.

Choanoflagellates are the closest unicellular relatives
of animals [10]. They filter feed by using their flagellum
to drive fluid through an eponymous funnel-shaped collar
[11]. This beating also confers motility. Figure 1 shows a
rosette colony of S. rosetta which is held together by an
extracellular matrix, filopodia, and intercellular bridges
[12]. Colonies form by cell division, not aggregation [13].
The evolutionary advantage of the colonial form is not fully
understood, but it is triggered by certain bacteria [12,14],
and theory suggests that chainlike colonies have enhanced
nutrient uptake [15].
S. rosetta (obtained from Dr. Barry Leadbeater,

University of Birmingham, UK) were cultured in artificial
seawater [36.5 g=L Marin Salts (Tropic Marin, Germany)].
To provide a food source for prey bacteria, organic enrich-
ment [4 g=L Proteose Peptone (Sigma-Aldrich, USA),
0.8 g=L Yeast Extract (Fluka Biochemika)] was added to
the cultures at 15 μl=ml. Cultures were grown at 22 °C and
split every 4–7 days. To study the flagella beat dynamics,
colonies were stuck to poly-L-lysine (0.01%, Sigma)
treated microscope slides and flagella beats imaged at
500 fps (Fastcam SA3, Photron, USA) in bright field.
Image template matching was employed to track the motion

FIG. 1. The choanoflagellate S. rosetta. (a) Bright field image
(5 μm scale) and (b) schematics of ‘slow-swimmer’ single cell,
base angle θ, and rosette colony.
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of the only slightly moving colonies, and in the local frame
of the organism, the bases of the flagella were tracked
by techniques similar to that of the active contour model
[16], yielding as a readout of beating the angle θðtÞ defined
in Fig. 1(b).
Figures 2(a) and 2(b) show θðtÞ from two flagella on the

same colony, and it is clear that they have distinct frequen-
cies. In general, the beating frequencies f, found by Fourier
transforming θðtÞ, show a surprisingly high variability
[Fig. 2(e)]. The normalized autocorrelation CθðΔtÞ ¼
hθðtÞθðtþ ΔtÞit=hθðtÞ2it for a single flagellum is plotted
in Fig. 2(c). Similar to the function discussed [3,17] in the
context of flagellar beating in Chlamydomonas, the data are
consistent with Cθ ¼ expð−jtj=τÞ cosð2πftÞ, the envelope
of which is shown in the figure. The decay time τ also shows
a very high degree of variability [Fig. 2(f)], but all are
< 1 s, suggesting high stochasticity. Within colonies, the
cross correlation between flagella Cθ;θ0 ðΔtÞ ¼ hθðtÞθ0ðtþ
ΔtÞit=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
hθðtÞ2ithθ0ðtÞ2it

p
[Fig. 2(d)] is negligible (only a

very slight signal can be made out, which we attribute to the
overall wiggling of the colony—see Supplemental Material
[8], Video 1). All cross-correlation signals were found to be

less than 0.05 [Fig. 2(g)]. The lack of correlation between
beating flagella in colonies makes S. rosetta an ideal model
organism for ARWs.
In studying the swimming trajectories of S. rosetta,

ensemble averages taken over many colonies will eliminate
features related to colony-specific morphology (cell loca-
tion and flagella orientation). To overcome this lack of
“ergodicity,” we obtained long tracks of 36 individual
colonies. In-house software logged and synchronized the
position of the xy stage (MS-2000, ASI, USA) to a camera
(Imaging Source, Germany) filming in bright field at
15 fps. This enabled tracking of colonies moving in three
dimensions at distances much longer than the field of view.
To track the particles a Gaussian-mixture model [18] was
applied to estimate the moving background and, sub-
sequently, the tracks were manually controlled. Figure 3(a)
shows three examples, all ∼20 min in length. On close
inspection [inset of Fig. 3(a)] we observe that the trajecto-
ries are noisy helices. The mean squared displacement
hΔr2i ¼ h½xðsþ tÞ − xðsÞ�2is [Fig. 3(b)], shows an early
time ballistic ∼t2 behavior (for t < 1 s) and late time
diffusive ∼t form (inset) similar to that of Janus particles

FIG. 2. Flagellar beating dynamics. (a,b) Time series of the base angle θðtÞ on two flagella within a single colony. (c) Autocorrelation
function of θ for one flagellum, with fit of the envelope to an exponential decay (dashed red). (d) Cross correlation of θ between two
flagella on the same colony. (e) Peak frequencies of n ¼ 23 tracked flagella. (f) Decay time of autocorrelation in single flagella.
(g) Magnitude of cross correlations between flagella in same colonies.

FIG. 3. Random walks. (a) Long tracks of swimming S. rosetta. Inset scale bar is 10 μm. (b) Projected mean squared displacement for
individual walks (solid, error shaded) and fits of model (dashed). Inset shows a zoom-out with late-time linear behavior ∼4D∞t (dashed,
gray). (c) Velocity autocorrelation (solid, error shaded) and model (dashed) with parameters as in (b). Fitted parameters (red curve):
ω0 ¼ 1.63 s−1, vp ¼ 9.0 μm=s, vω ¼ 12.1 μm=s, Dr ¼ 0.09 s−1.
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[2]. However, comparing these curves to those of conven-
tional active Brownian particles (see the Supplemental
Material [8]), we observe a different intermediate time
behavior. These bumps [Fig. 3(b)] appear precisely because
some of the constituent cells may beat off center and induce
internal (effective) torques producing stochastic helical
trajectories. To highlight the underlying regularity of this
helical swimming, we calculate the velocity autocorrelation
CvðtÞ ¼ hvðsþ tÞ · vðsÞis [Fig. 3(c)], which oscillates at
the frequency of the induced rotation and decays on a time
scale of several oscillation periods.
Active random walks have been the attention of much

research [19,20], but only recently have rotational torques
been incorporated. External torques appear on, e.g.,
magnetotactic bacteria in the presence of magnetic fields
[21] and gyrotactic organisms such as certain algae in
gravitational fields [22] and can be treated analytically [23].
However, the present internal torques can be treated
analytically only in two dimensions [24] and numerical
[25] or approximative [26] methods are needed in three
dimensions. Below, we develop an approximate 3D theory
with the goal of simple analytical functions that can be used
to extract physical quantities and interpret the data.
The diffusion of a random walker can be described

by the Langevin equation dxðtÞ ¼ vðtÞdtþ ffiffiffiffiffiffiffi
2D

p
dWðtÞ,

where D is the translational diffusion constant and WðtÞ a
standard vector Wiener process with hdWiðtÞdWjðt0Þi ¼
δijδðt − t0Þ. The case vðtÞ ¼ 0 is a passive particle and
leads to the projected mean squared displacement hΔr2i≡
hΔx2 þ Δy2i ¼ 4Dt. Building an ARW from passive
particles leads to no new behavior, but motile particles
also have a stochastic velocity term. In the simplest case
in two dimensions, the speed v is constant and vðtÞ ¼
v( cos θðtÞ; sin θðtÞ) evolves stochastically through θðtÞ.
The choice dθ ¼ ffiffiffiffiffiffiffiffi

2Dr
p

dWrðtÞ leads to the conventional
result hΔr2i ¼ ð2v2=D2

rÞðDrtþ e−Drt − 1Þ þ 4Dt, which
behaves ballistically, hΔr2i ∼ t2, at early times, but dif-
fusively, hΔr2i ∼ t, at longer times (see the Supplemental
Material [8]) with an enhanced diffusion constant D∞ ¼
Dþ v2=2Dr. Contrary to passive random walkers, active
random walkers’effective diffusion constant can vary with
dimension. The 3D result is D∞ ¼ Dþ v2=3Dr for rota-
tional diffusion around a random vector orthogonal to v and
D∞ ¼ Dþ v2=6Dr for diffusion around three orthogonal
directions. Typically,D ≪ v2=Dr and passive diffusion can
be ignored.
The Reynolds number for S. rosetta is Re ∼ 10−4. At

such low Reynolds numbers, inertia is negligible and the
fluid dynamics becomes governed by the linear Stokes
equation. Accordingly, self-propelled choanoflagellates are
both force- and torque-free. We assume that S. rosetta are
spherelike such that couplings between translations and
rotations can be ignored. Heuristically then, the velocity
of a colony vðtÞ is approximately a linear sum of the

velocities that the constituents would have had swimming
independently, vðtÞ ≈ η

P
viðtÞ, the factor η accounting

for the change in drag with the radius a of the colony, as
η ∼ a−1. If some of the walkers comprising the colony,
placed at positions frig, beat off center, an angular velocity
ωðtÞ ≈ ηr

P
ri × vi will also be induced, where ηr ∼ a−3.

Since fvig and frig are given in the local coordinate system
of the particle, they must be rotated along with the particle.
For a two dimensional ARW, this motion is described
by vðtÞ¼vðtÞðcosθðtÞ;sinθðtÞÞ, where vðtÞ ¼ jvðtÞj, dθ ¼
ωðtÞdtþ ffiffiffiffiffiffiffiffi

2Dr
p

dWðtÞ, ωðtÞ ¼ �jωðtÞj, and Dr is an
effective rotational diffusion constant which can be calcu-
lated if the individual stochastic processes are prescribed.
With vðtÞ constant, constant ωðtÞ yields circles in the
absence of noise. In three dimensions, such motion leads to
helices, making (2D projected) three-dimensional ARWs
behave very differently from 2D ones and necessitating a
full 3D theory.
In three dimensions we let the velocity evolve according

to dvðtÞ ¼ dΩðtÞ⊗ vðtÞ∼ dΩðtÞ× vðtÞ− 2DrvðtÞdt, where
dΩðtÞ ¼ ωðtÞdtþ ffiffiffiffiffiffiffiffi

2Dr
p

dWrðtÞ, ⊗ is the Stratonovich
cross product and 2DrvðtÞ is the noise induced drift in
the Itō interpretation, ensuring the correct magnitude of vðtÞ
(see the Supplemental Material [8]). With the goal of a
minimal model, we take the swimming speed constant in
the approximation to follow. Likewise, we have dωðtÞ ¼ffiffiffiffiffiffiffiffi
2Dr

p
dWrðtÞ ⊗ ωðtÞ, and, similarly, we will assume

the magnitude of ωðtÞ constant. The simultaneous update
of the translation and rotational velocity makes the
system analytically quite intractable and thus we shall
seek an approximate solution. As motivation, consider the
case Dr ¼ 0 with specified initial conditions vð0Þ ¼ v0,
ωð0Þ ¼ ω0. This system can be solved exactly to yield
xðtÞ ¼ x0 þ fω0ðω0 · v0Þω0tþω0 × ðv0 × ω0Þ sinðω0tÞþ
ω0ðω0 × v0Þ½1 − cosðω0tÞ�g=ω3

0, or

xðtÞ ¼
Z

t

0

vðt0Þdt0; vðtÞ ¼ R ·

0
B@

vω cosω0t

vω sinω0t

vp

1
CA; ð1Þ

where vω ¼ jω0 × v0j=ω0, vp ¼ ω0 · v0=ω0, ω0 ¼ jω0j,
and R is some orthogonal matrix. Equation (1) describes
a helix of radius vω=ω0 and mean speed vp (averaged over
2π=ω0). The form of (1) inspires an approximative solution
in the presence of noise in which the deterministic helix
parameters define a continuous-time random walk with
helixlike steps, the matrix R becoming a stochastic matrix
process. As an effective description we assume RðtÞ ¼
RxðαÞ · RyðβÞ · RzðγÞ, where the matrix factors are rotations
around the x, y, z axes and α, β, γ are taken independent
and identically distributed with dα ¼ ffiffiffiffiffiffiffiffi

2Dr
p

dWαðtÞ, which
strictly speaking is only valid at t ¼ 0. While the approach
breaks x-y symmetry, the approximation makes the system
much more manageable, and simulations show it to be an
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overall good approximation for the statistics of interest at
early times.
In the stationary limit we find for the 2D projected result

(see the Supplemental Material [8]):

hvðΔtÞ · vð0Þi ¼ e−2DrjΔtj

6
½2v2pð1þ eDrjΔtjÞ

þ v2ωð3þ e−DrjΔtjÞ cosðω0ΔtÞ�: ð2Þ
The 2D-projected mean squared displacement becomes

hΔr2ðtÞi¼v2pe−2Drt

6D2
r

ð1þ4eDrtÞþ4D∞t−a0

þv2ωe−2Drt

�
4D2

r−ω2
0

ð4D2
rþω2

0Þ2
þð9D2

r−ω2
0Þe−Drt

3ð9D2
rþω2

0Þ2
�
cosω0t

−v2ωe−2Drt

�
4ω0Dr

ð4D2
rþω2

0Þ2
þ2ω0Dre−Drt

ð9D2
rþω2

0Þ2
�
sinω0t; ð3Þ

where the constant a0 enforces hΔr2iðt ¼ 0Þ ¼ 0. As
t → ∞ we obtain hΔr2i ¼ 4D∞t, where

D∞ ¼ v2p
4Dr

þ v2ωDr

4

�
1

9D2
r þ ω2

0

þ 2

4D2
r þ ω2

0

�
: ð4Þ

These results have been verified by simulations using the
Euler-Maruyama method. It has previously been shown
that reciprocal swimming enhances diffusion [20], and the
last terms of Eq. (4), which are major contributions to the
diffusion constant, embody this phenomenon.
Equations (2) and (3) describe the approximate functions

corresponding to the data of Figs. 3(c) and 3(b), respectively.
The diffusion constant D∞ can be extracted from the linear
late-time behavior of hΔr2i [dashed gray in inset of
Fig. 3(b)], and can be used in Eq. (4) to fix one of the model
parameters in terms of the others. The remaining three are
fitted simultaneously to the curves of Figs. 3(b) and 3(c). The
experimental data are well described by the model as shown
by the dashed lines in the figures. The relative magnitudes of
the extracted velocities, vp and vω, reveal how much energy
the organisms spent on effective (vp) and circular (vω)
swimming, for example, the blue curve in Fig. 3 has vp ¼
11.4 and vω ¼ 13.6 μm=s. While not producing the precise
morphologies of the colonies, the fitted velocities combined
with the extracted frequency ω0, do constrain the possible
configurations.Using the fitted velocities and a colony radius
a ∼ 5 μm, we find an effective translational force of ∼1 pN,
and using ω0, an effective torque ∼4 pN · μm: the small
residual forces that propel and rotate a colony are on the
order of that of a single cell.
Just as flagella beating in S. rosetta varies between cells,

morphology varies between colonies as a result of the
cell division process [13]. This stochasticity enables two
colonies of similar size to swim very differently. To
quantify this, we used in-house software to track ∼750
colonies of varying size swimming in quasi-two

dimensions between two cover slips, and when a colony
was in focus the area of an ellipse fitted to its outline served
as an estimator of size (see Supplemental Material [8],
video 2). This method, while introducing uncertainty in
area, enables high throughput. The speed of these versus
size is shown in Fig. 4. To obtain model parameters, long
tracks are needed. The parameters for 36 such tracks are
given in the Supplemental Material [8], and the speedffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
v2p þ v2ω

q
of those tracks is shown in Fig. 4 as green circles.

There is a slow increase in speed with colony size. This trend
can be explained by simple ad hoc models such as random
orientation of cells in a spherelike structure: drag scales
linearly with radius a but maximum propulsive force (the
casewhere all propulsive forces point in one direction) scales
like a2. However, there is an intriguing lack of very slow
swimmers which would be predicted by such a model.
Indeed, giving cells an orientation more parallel with its
location would only yield slower swimming speeds. More
importantly, Fig. 4 shows just how different colonies of
similar size are: the stochastic processes underlying colony
formation have high variances. From fits of the long tracks
this stochasticity seems to apply to all model parameters
(SupplementalMaterial [8]). This is contrary to, e.g., bacterial
clumps where rotation rate clearly decreases with size [9].
Contrary to the phototactic response of Chlamydomonas and
Volvox, in which the time scale of rotation is matched to inner
chemistry [27], or the chemotactic response of sperm cells in
which curvature and torsion of swimming paths are directly
manipulated by the single beating flagellum [26], due to this
stochastic morphology of S. rosetta, knowledge of the overall
colony morphology and motion (e.g., ω0) is arguably not
available at the single-cell level, rendering “deterministic”
chemotactic strategies difficult. Thus, one of the most

FIG. 4. Speed vs size for∼750 colonies. Colony size is estimated
by median xy-projected area. Colonies are blue and green circles,

green speed being
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
v2p þ v2ω

q
from model fits to the long tracks.

Green crosses are single-celled fast swimmers [12]. Colored
background indicates running mean and standard deviation.
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important issues is the possibility of chemotaxis in aggregate
random walks through suitable modulation of the indepen-
dent constituents [28].
A fundamental operation in the theory of stochastic proce-

sses is their summation to yield a single effective process.
The corresponding operation for randomwalkers, “stitching”
them together, yields ARWs. As we have shown, there is a
crucial complexity for random walkers: the underlying
flagellar beating can also yield rotations, so the “summation
rules” differ. Our results suggest that for simple random
walkers the ARWs can be described approximately through
four numbers: vω, vp, ω0, and Dr. The question of the
correct summation rules for general random walkers (e.g.,
anisotropic, hydrodynamically translation-rotation coupled)
remains open. Likewise, the transition, via, e.g., self-
assembly or flagella growth, from high to low stochasticity
in ARWs with nonindependent constituents is intriguing.
The present exemplar, S. rosetta, is a very good approxi-
mation to what one might call an ideal biological ARW:
independent constituents and a roughly spherical shape.
Its mode of swimming raises many interesting questions
about the evolution of multicellularity and on the nature and
origin of noise, both internal and environmental.
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