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Coiling, Entrainment, and Hydrodynamic Coupling of Decelerated Fluid Jets
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From algal suspensions to magma upwellings, one finds jets which exhibit complex symmetry-breaking
instabilities as they are decelerated by their surroundings. We consider here a model system—a saline jet
descending through a salinity gradient—which produces dynamics unlike those of standard momentum
jets or plumes. The jet coils like a corkscrew within a conduit of viscously entrained fluid, whose upward
recirculation braids the jet, and nearly confines transverse mixing to the narrow conduit. We show that the
underlying jet structure and certain scaling relations follow from similarity solutions to the fluid equations
and the physics of Kelvin-Helmholtz instabilities.
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FIG. 1. Left: Each half of the stereoscopic Schlieren system
has 6-inch F=10 parabolic mirrors, light-emitting diode illumi-
nation, and a knife edge at the focus. 12 bit digital CCD cameras
(Hamamatsu C7300) with 80–200 mm f=2:8 lenses acquire
images to a personal computer. The chamber is a parallelipiped
18� 18� 61 cm of 6 mm plate glass. Jets exit a nozzle of
radius a � 0:025 cm attached to a syringe pump (New Era Pump
Systems N1000). Salinity gradients were produced by the ‘‘two-
bucket’’ method, measured in situ by suspending 5 mm floats
(American Density Materials). Particle imaging velocimetry was
performed with a He-Ne laser sheet, suspended microspheres
(Sphericel, Potters Ind., � � 1:1 g=cm3, mean diameter
11:7 �m), and software analysis (Dantec). Right: Flow features,
with 5 mm scale.
The broad range of physical and biological systems
which exhibit fluid jets and plumes often display
symmetry-breaking instabilities as the injected fluid inter-
acts viscously with its surroundings. Examples include
helical jets outflowing from a galactic nucleus [1], upwell-
ing magma conduits [2], plumes from hydrothermal vents
[3], and filamentary downwellings in algal suspensions [4].
Key issues in all are mixing and entrainment by the jet and
the nonlinear regime far beyond the instabilities. Here we
study a jet, which, unlike momentum jets (e.g., the Bickley
jet [5]), has a different density than the surrounding fluid,
which in turn is stratified. Specifically, we study a fluid jet
that decelerates by descent through a linear density gra-
dient, differing from the surround only by the concentra-
tion of the solute that defines the gradient. This system
operates at modest Reynolds numbers, quite distinct from
turbulent plumes such as smoke stacks, effluent discharges,
and volcanic eruptions [6]. In our system, the dynamics of
single jets and pairs derive from a complex flow field
created as they penetrate the gradient (Fig. 1), organized
around a conduit of entrained fluid [2,7,8] braiding the jet,
supporting wavelike or singular excitations on its wall [9].
This conduit is composed primarily of fresher water, vis-
ible by its index contrast with the stratified surroundings.
We show that the coiling instability is a bifurcation which
can be understood through similarity solutions of the fluid
equations and the physics of Kelvin-Helmholtz instabil-
ities. Like coordinated flapping of nearby filaments in a
flowing soap film [10] which depends strongly on their
separation, we also find coupled, synchronized coiling
which varies with the separation of nearby jets.

An experimental control parameter is the flux Q of the
pump driving the flow or the average velocity u � Q=�a2

of the fluid exiting the nozzle of radius a. Over the
range studied 0:02 � Q � 5 cm3=hr (0:003 cm=s � u �
0:7 cm=s) and with � � 0:01 cm2=s the kinematic viscos-
ity of water, the jet Reynolds number is Re � ua=��
05=95(18)=184501(4)$23.00 18450
0:01–2, well in the laminar regime. The diffusion constant
of salt D � 1:5� 10�5 cm2=s gives a Schmidt number
Sc � �=D� 103; mechanical dissipation dominates diffu-
sion, and the Peclet number Pe � Re� Sc is very large, so
advection also dominates diffusion. This latter aspect, the
stratification, and finite Reynolds number effects together
make this problem unlike pure momentum jets or diffusive
plumes. A jet introduced into the fluid produces a steady
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FIG. 2. Coiling instability. With increasing velocity (see Fig. 3), the jet penetrates further into the gradient and then coils. Bar is
5 mm.
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conduit in 5–10 s, as entrained flow builds around the jet
through vorticity diffusion. The conduit edge, clearly seen
in Fig. 1, has a width & 0:01 cm. The jet, inside the
conduit, remains straight until the velocity exceeds a criti-
cal value u�, beyond which it becomes helical (Fig. 2). The
conduit hugs a straight jet tightly beyond �5 mm below
the nozzle but flares out closer. When coiling begins, the
conduit widens so the jet is inscribed on it, like the buck-
ling of constrained elastica [11]. The frequency f, wave-
length �, and wave speed c are finite at u�, increasing
slowly beyond [Figs. 3(c) and 3(d)].

Consider first the regime u < u� and the termination
length z�, the distance between the injector and the location
at which image analysis can no longer differentiate the jet
from its surroundings. Even when the jet density exceeds
that of the surroundings at the chamber bottom, z� is much
less than the overall fluid depth H, so diffusional spreading
of the jet clearly diminishes its density as it descends.
Apart from an offset at small u, Fig. 3(a) shows that z� �
u1=2, and, apart from a transition zone very near the nozzle,
the jet width collapses onto a common line versus z=z�

[Fig. 3(b)]. To explain these results, consider an incom-
pressible axisymmetric flow u�r; z� � u�r; z�ẑ	 v�r; z�r̂
and salt concentration S�r; z�. For a slender jet, the leading
terms in the Navier-Stokes and advection-diffusion equa-
tions are [12,13]
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FIG. 3. Jet data. (a) Square of the termination length z� versus no
function of z=z�. Oscillations near z=z� � 1 show emergence of a
influence of the flaring conduit. Coiling frequency and wavelength (c)
line is the identity expected from the Kelvin-Helmholtz physics, wh
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where the constant � relates salinity and density changes.
Far from the jet, the salinity asymptotes to the gradient:
limr!1S�r; z� � S0 	 SGz=H. If Sj is the jet salinity, the
existence of a stratification length ‘G � �SG=Sj�H elimi-
nates the possibility that (1) and (2) possess a strict simi-
larity solution. Since ‘G 
 z�, we explore the notion of a
local similarity solution to (1) and (2) in the absence of a
gradient. Computing the velocity from a stream function,
u � �1=r�@ =@r and v � ��1=r�@ =@z, we propose

 � �z�f���; S �
�2

g
d4z	
���; � � d

r

z�
: (3)

The dimensionless factor d is found below. Equations (1)
and (2) reduce to ordinary differential equations if � � 1
and 	 � �� 4�. Unlike free diffusion [12,13], here, as in
the Bickley jet [5], the nozzle is a source of momentum,
whose conservation constrains the exponents. For the mo-
mentum flux M�

R
drru2 � z2�����

R
d��f02=�� to be

conserved, the z dependence must vanish, yielding � �
1, 	 � �3.

Define the edge of the jet by the radius rj at which S is
some fraction of its center line value, hence at some � � ~�.
With � � 1, the edge is the straight line rj � �~�=d�z, like
the data in Fig. 3(b), but the role of z� in collapsing the data
is not yet shown. We can find d by noting [13] that, if at
some z0 we know the flux Q and integrated salt concen-
tration C, then the similarity solutions yield Q �
2��z0f�1� and C � 2�d4��2=gz0�

R
d��
. Hence, d�

Q1=2���j�
1=2, where ��j is the density difference between

the jet and pure water. We hypothesize that z� can be found
zzle velocity, showing linear relationship. (b) Jet width rj as a
n axisymmetric instability; deviations at small z=z� reflect the
and wave speed (d) as functions of jet velocity. In (d), the dashed
ich is accurately obeyed at onset.
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FIG. 4 (color online). (a) Critical buckling velocity as a func-
tion of the relative density offset of the jet, rescaled by dimen-
sionless gradient: G � 2 (black circles), G � 1 (blue squares),
and G � 0:5 (red diamonds). (b) Velocity profile in 3-fluid
model, with jet (dotted line) and conduit (dashed line) locations
shown.
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from the difference �S between the falling salinity at the
jet center line, computed from the similarity solution, and
the rising salinity of the background,

�S�
�2d4
�0�

gz3 � SG
z
H
: (4)

When �S � 0, the descending jet terminates at z� � d.
Using the above results for d, we conclude also z� �
Q1=2���j�1=2, the dependence on Q (hence on u) being
in agreement with data in Fig. 3(a). The half-width of the
jet thus obeys a scaling form, rj � z=z� independent of the
flux Q, consistent with the data [Fig. 3(b)].

The coiling instability exhibits a scaling law for the
buckling velocity u�=G� ���j���, with �� 1:5
[Fig. 4(a)], where G is the dimensionless maximum salin-
ity in the gradient, SG, measured in M=l. We find that an
explanation for this centers around the flow field in the
conduit. Particle imaging velocimetry (PIV) analysis
[Fig. 5(a)] reveals that there is a strong return flow within
the conduit and small flow beyond it. A simple model of
this involves three fluids: a jet of radius a, density �j, a
conduit of radius b with pure water, within a surround of
FIG. 5 (color online). Flow imaging and measurement. (a) PIV-de
periods, showing opposite senses of recirculation on either side of
coiled regime, (c) vorticity map in coiled regime, about one half-per
two separate jets which have merged inside a shared conduit; (f) fr
mirror images, and (h) front view of distant nested jets.
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density �s in a cylindrical tank of radius R. Assuming near-
parallelism of the flow and solving r2ui�r� � Ki, with
Ki � �@pi=@z	 �ig�= in each domain, with continuity
in velocity and viscous stress at the two interfaces, we
obtain the full flow field. For a given jet radius a and
parameters fKig, the conduit radius b follows from mass
conservation. Using representative parameters, Fig. 4(b)
shows the very strong velocity gradient within the conduit
and the clear return flow along the outer edge and beyond.
The relative smallness of the velocity at the conduit edge
implies that this geometry is akin to two-phase pipe flow
with a no-slip boundary condition at the wall: the ‘‘core-
annular’’ flow of lubricated pipelines [14], the inner jet
playing the role of the oil, the outer fluid, the water.
Stability analysis for that flow shows that, when b *

1:2a, the most unstable mode is helical with wavelength
�� 7:5b [15], and the axisymmetric mode is also unstable.
That �� b is expected, since the width of the shear layer
sets the scale of the unstable mode [16]. Although this
coiling is superficially similar to that of a viscous jet
impinging on a surface [17–19], it is distinguished by the
role of shear.

We propose that the coiling instability occurs when the
advected vertical momentum flux balances the radial flux,
u2=�� v2=a. The similarity solution yields v=u� d�
���jQ�

1=2, and the three-fluid model shows that, when
the outer fluid is in hydrostatic equilibrium (Ks � 0) and
the container is large (R=a
 1), then b=a ’ ���j � �s�=
��s � �c��

1=2. Evaluating this at z � z� and using �� b,
we find Q� � ���j��3=2, in agreement with the results in
Fig. 4(a). In shear-driven instabilities, the wave speed c is
generally the velocity at the junction between the two
opposing flows. Identifying that point with the edge of
the jet, Fig. 4(b) shows that the velocity there is just slightly
less than the average velocity u in the jet. The data in
Fig. 3(d) show that c is indeed very nearly equal to u near
the instability onset, deviating downward at much higher
velocities. This would appear to follow from the ever larger
backflow in the conduit.
rived toroidal vorticity near nozzle, averaged over many coiling
jet. (b) Streak image of suspended microspheres in the strongly
iod shifted from (b). (d),(e) Front and side views, respectively, of
ont and (g) side views of two nearby jets which synchronize as
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Using suspended microspheres, we obtained both streak
images and vorticity (from PIV) of a coiled jet. The streak
image in Fig. 5(b) shows the jet is braided by a helical
vortex; when visualized in cross section, regions of clock-
wise and counterclockwise circulation appear to alternate
down the jet [Fig. 5(c)], analogous to flows in the serpen-
tine instability of two-dimensional plumes [20]. The cir-
culation in the conduit—down along the jet, up at the
conduit edge—is shown by the vorticity in Fig. 5(a), aver-
aged over several periods, consistent with the model profile
in Fig. 4. The coupling between nearby jets expected from
these flows was studied with an apparatus which holds two
nozzles at a variable center line separation s, each fed from
a syringe pump. If nearly touching, the two jets share a
single conduit, appearing almost as one from the front
[5(d)] or side [5(e)]. If farther apart, yet closer than a
conduit diameter, the dynamics (not shown) is unsteady.
Once the separation exceeds a conduit diameter, there is
striking synchronization of phase; from the front [5(f)] the
jets are mirror images, while from the side [5(g)] they are
perfectly aligned. Beyond a critical separation s� which
varies with velocity (s� � 10 mm for u� 5 mm=s), the
jets instead are nested [5(h)] and exhibit slow oscillations
in the width of their conduits.

These complex coupled dynamics may arise from com-
peting viscous and inertial effects. Studies of elastic sheets
with sinusoidal traveling-wave deformations [21] and ro-
tating rigid helices [22,23] show that the rate of viscous
dissipation is greatly reduced in nested configurations, with
their smaller velocity gradients. Although minimization of
dissipation is not, in general, a mechanical driving force, it
might explain why, at least at large separations, the jets
arrange themselves to be nested [Fig. 5(h)]. It would not
appear to explain why the two jets adopt mirror-image
configurations when close. A possible explanation for the
latter stems from the fact that the Reynolds number in this
regime is on the order of unity, so inertial effects may
compete with dissipation. When the jets are precisely out
of phase, as in Fig. 5(f), the fluid in the regions of closest
approach of the jets flows rapidly, reducing the pressure
there through the Bernoulli effect, possibly driving the jets
together. A detailed theory of these effects remains an open
problem.

The complex flow fields shown here arise from remark-
ably simple ingredients—a saline fluid jet descending into
density-stratified surroundings—which produce a conduit
with counterpropagating shear flow, dynamical instabili-
ties, and coupling between nearby jets. The dynamics
18450
neither conforms exclusively to standard momentum jet
nor plume conceptualizations. With small modifications,
this experiment can include baroclinic effects, providing a
simple model to address mixing in oceanic flows, such as
gravity currents along undersea canyons [24].
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