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Many active fluid systems encountered in biology are set in total geometric confinement. Cyto-
plasmic streaming in plant cells is a prominent and ubiquitous example, in which cargo-carrying
molecular motors move along polymer filaments and generate coherent cell-scale flow. When fila-
ments are not fixed to the cell periphery, a situation found both in vivo and in vitro, we observe
that the basic dynamics of streaming are closely related to those of a dipolar microswimmer suspen-
sion. This paradigm is used to demonstrate that confinement brings about a qualitative change in
behavior; a linear stability analysis and numerical studies show that there is an activity threshold
for spontaneous auto-circulation. Analysis of the long-time behavior reveals a phenomenon akin to
defect separation in nematic liquid crystals, and a high-activity bifurcation to an oscillatory regime.

PACS numbers: 87.16.Wd, 87.16.Ln, 47.63.-b, 47.54.-r

Cytoplasmic streaming is the deliberate, driven mo-
tion of the entire contents of large eukaryotic cells. It is
effected by cargo-laden molecular motors walking along
polymer filaments and entraining the surrounding fluid
(Figure 1a); the combined action of many of these mo-
tors can generate flow speeds in excess of 100 µm/s for
certain freshwater algae. While inroads are being made
into understanding its function [1, 2], surprisingly little
is known about how it is initially established within cells.

In a remarkable, yet apparently little-known investiga-
tion into the development of streaming, Yotsuyanagi [3]
in 1953 examined isolated droplets of cytoplasm forcibly
extracted from algal cells. He observed a progression
from isolated Brownian fluctuations to a coherent, global
circulation of the entire droplet contents (Figure 1b).
However, we need not limit ourselves to ex vivo exper-
iments: Kamiya [4] describes a similar blooming of ro-
tational cyclosis in the development of Lilium pollen
cells, and Jarosch [5] quantitatively analyzed the same
disorder-to-order transition occurring within Allium cells
over the course of a few hours. Based on these observa-
tions, one is led to ask: is it possible that a simple self-
organization process could lie at the heart of streaming?

When the filaments are not locked in position, as is
likely in Yotsuyanagi’s experiments, a cargo-carrying mo-
tor walking on a free filament constitutes a force dipole.
Therefore, these cytoplasmic dynamics belong to the bur-
geoning field of active fluids. At its simplest, an active
fluid is a continuum suspension of force dipoles interact-
ing via short- and long-range forces, leading to a system
like a liquid crystal, but with continuous injection of en-
ergy at the microscale. Such systems can exhibit complex
patterns and flows [6], including asters and vortices [7–
9], laning [10] and density waves [9, 10]. While various
complex short-range interactions can be included in these
formulations, it is hydrodynamics that drives many of the
pattern formation behaviors.

Despite the ubiquity of relevant situations, of which

streaming is a major example, the influence of total
confinement is relatively little-studied. Recent work by
Fürthauer et al. [11] used spontaneous flow of generic
active polar fluids to construct theoretically a ‘Taylor–
Couette motor’ that can be used to do work against two
cylindrical boundaries. However, this is topologically dis-
tinct from a single confined chamber. Schaller et al. [12]
underline the critical importance of long-range hydrody-
namics in confined systems: swirling patterns were ob-
served experimentally in a totally confined actin motility
assay, but no such circulation was reproduced in sim-
ple actin-substrate cellular automaton computer simula-
tions. They concluded that confined flows are responsible
for the formation and stability of the global circulation.

Through theory and simulation, we demonstrate here
that only two key ingredients are required to capture the
spontaneous emergence of self-organized stable rotational
flow in biological systems: activity and confinement. Our
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FIG. 1. (color online). Cytoplasmic streaming in vivo and ex
vivo. (a) A molecular motor attached to a vesicle (i) encoun-
ters a filament, (ii) binds and walks along it, entraining fluid,
before (iii) unbinding stochastically. (b) A drop of cytoplasm
extracted from a plant cell transitions from random Brownian
fluctuations to ordered circulation [3].
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model assumes that short, rigid filaments are suspended
in a Newtonian, zero Reynolds number fluid. The fila-
ments are assumed to exert extensile, or ’pusher’, dipo-
lar forces on the fluid; this can be viewed as the effect
of processive molecular motors landing randomly along
a filament and walking toward one end, implying an av-
erage motor location forward of the filament midpoint.
Additionally, the suspension is taken to be dilute, so fil-
aments interact via hydrodynamics only, and is confined
within a no-slip sphere of diameter L.

Working in d dimensions we generalize the standard
kinetic approach to these systems [13]. The spatial and
angular distribution function Ψ(x,p, t) of the filaments,
where |p| = 1, satisfies a Smoluchowski equation

∂Ψ

∂t
= −∇x · (ẋΨ)−∇p · (ṗΨ) (1)

where ∇x ≡ ∂/∂x and ∇p ≡ (I−pp)·∂/∂p. The spatial
and rotational fluxes are

ẋ ≡ u + V p−D(s) ·∇x log Ψ,

ṗ ≡ (I − pp) · (γE + W) · p−D(r)∇p log Ψ,

where V is a self-advection speed, γ ∈ [−1, 1] is a shape

parameter (γ → 1 for a slender rod), D(s) is a spatial dif-
fusion tensor and D(r) is a rotational diffusion constant.
The fluid has velocity field u, rate-of-strain tensor E ≡
(∇u+∇uT)/2 and vorticity tensor W ≡ (∇u−∇uT)/2.
The filament pusher stresslet of strength σ > 0 generates
a stress tensor Σ ≡ −σ

∫
p
dp (pp − I/d)Ψ that drives

fluid flow by the Stokes equation −µ∇2u + ∇Π = ∇ ·Σ
with viscosity µ and pressure Π, subject to incompress-
ibility ∇ · u = 0. Confinement induces the no-slip
boundary condition u = 0 on |x| = L/2.

While simulations of the full system (1) are possible
[13–15], here we develop evolution equations for the pri-
mary orientation moments [16–18]. Given the orienta-
tional average 〈φ〉 ≡

∫
p
dpφΨ, define the concentration

c ≡ 〈1〉, polar moment P ≡ 〈p〉 and nematic moment
Q ≡ 〈pp− I/d〉. Equations of motion for these fields in
terms of higher moments can then be derived by taking
appropriate weighted integrals of Eq. (1) [19].

We pare down complications by specializing to two di-
mensions (d = 2), rodlike particles (γ = 1) and isotropic

diffusion (D(s) = D(s)I), and neglect self-advection (V ≡
0). This last assumption decouples the c dynamics into
pure advection-diffusion and eliminates all polar interac-
tions, so we take a constant concentration c ≡ c0 and
neglect P. However, the remaining Q dynamics still de-
pends on the fourth moment contraction 〈pppp〉 : E, and
a closure is needed. Typically this is done by taking the
distribution Ψ to be a functional purely of the first three
moments, yielding a closure linear in Q [18]. In dense
active systems this is permissible, owing to the presence
of local interaction terms; here, however, it is the above

fourth moment term which provides all stabilizing non-
linearities, so greater care must be taken. Instead we
adapt a closure of Hinch and Leal [20] to d = 2, yielding

〈pppp〉 : E ≈ 1

4c
[4Q · E ·Q + 2c(E ·Q + Q · E)

+ c2E− 2IQ2 : E
]
.

After non-dimensionalizing by rescaling x → Lx, t →
(c0L

2/µ)t, u → (µ/c0L)u, Π → (µ2/c0L
2)Π, Σ →

(c0L
2/µ2)Σ and Q→ c0Q, the final model reads

DQ

Dt
= d(s)∇2Q− 4d(r)Q + 1

2E− 2Q · E ·Q (2)

where D/Dt ≡ ∂/∂t + u · ∇, with non-dimensional
diffusion constants d(s) ≡ (c0/µ)D(s) and d(r) ≡
(c0L

2/µ)D(r). This is subject to the Stokes equation
−∇2u+∇Π = −σ0∇ ·Q and incompressibility ∇ ·u = 0
with non-dimensional dipole stress σ0 ≡ (c0L/µ)2σ. The
fluid boundary condition reads u = 0 on |x| = 1/2.
Among the variety of admissible boundary conditions on
Q we focus here on the natural condition N ·∇Q = 0,
where N is the boundary normal vector. Qualitatively
similar results are found with fixed boundary-parallel or
boundary-perpendicular conditions [19].

The model (2) has the structure of a Landau theory
for the order parameter Q. As E is linear in the veloc-
ity u, and u is (nonlocally) linear in σ0Q via the Stokes
equation, the term (1/2)E ∝ σ0Q. It follows in the usual
manner that there is an effective linear term in Q that will
become positive for sufficiently large activity σ0 relative
to −4d(r). If this is sufficient to overcome the diffusive
stabilization d(s) then the amplitude of the ensuing insta-
bility will be limited by the nonlinear term 2Q·E·Q ∝ Q3.

We first seek a steady non-flowing axisymmetric state
Q0. In polar coordinates α = (r, θ) the tensor Laplacian
of Q has primary components

(∇2Q)rα = LQrα ≡
1

r

∂

∂r

(
r
∂Qrα
∂r

)
− 4

r2
Qrα ,

while the others follow from symmetry and the trace-
lessness of Q. Eq. (2) therefore implies Q0

rr and Q0
rθ

each satisfy a (modified) Bessel equation in z ≡ 2∆r,
viz. z2∂2zQ

0
rα + z∂zQ

0
rα − (z2 + 4)Q0

rα = 0, where
∆2 ≡ d(r)/d(s). Thus Q0

rα ∝ I2(2∆r); since I2 is mono-
tonic, the boundary conditions imply Q0 = 0 everywhere.

Now, perturb axisymmetrically: let Q = εR, ε � 1,
and write u = εvθ̂, E = εe for the induced flow (which
has no radial component by incompressibility). Seek an
exponentially growing state such that ∂tR = sR. Then to
O(ε), the perturbation obeys sR = d(s)∇2R−4d(r)R+ 1

2e.
To determine e we employ the technique of Kruse et al.
[7] and write the Stokes equation as ∇ · (−Π̃I + 2e −
σ0R) ≡ ∇ · Σtot = 0. The r-component determines Π.
The θ-component reads ∂rΣ

tot
rθ +(2/r)Σtot

rθ = 0, so for Σtot
rθ

analytic at r = 0 we find Σtot
rθ = 0, i.e. erθ = (σ0/2)Rrθ.
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FIG. 2. (color online). Numerical results beyond the sponta-
neous circulation threshold. (a,b,c) Simulated schlieren tex-
tures of nematic order director n (i.e. density plot of (nxny)2).
Lighter corresponds to diagonally-oriented filaments, darker
to horizontal or vertical. (a) Steady circulation with a cen-
tral spiral defect at low activity, (b) steady central defect
separation into a pair of hyperbolic defects, (c) snapshot of
oscillatory behavior with widely separated mobile defects. (d)
Flow streamlines for low activity, showing circulation about
the system center; darker streamlines indicate faster flow. (e)
Enlargement of nematic director field structure in texture (b),
showing two hyperbolic defects. (f) Flow streamlines for high-
activity oscillation associated with texture (c) exhibiting off-

center flow circulation. In all cases, d(r) = d(s) = 0.025.

Finally, err = 0 as there is no radial velocity component.
The perturbation therefore satisfies

d(s)LRrr = (4d(r) + s)Rrr, (3)

d(s)LRrθ =
(

4d(r) + s− σ0

4

)
Rrθ, (4)

which are still of Bessel form. When s > −4d(r), Eq. (3)
has a solution in terms of I2, so boundary conditions im-
ply Rrr = 0. Now, let λ ≡ (4d(r) + s − σ0/4)/d(s) and
write Eq. (4) as LRrθ = λRrθ. For λ > 0 this again
gives solutions in terms of I2 and so Rrθ = 0. How-
ever, for λ < 0 (i.e. σ0 sufficiently large) the solution is
instead Rrθ ∝ J2(

√
−λr). Applying the boundary con-

dition R′rθ(1/2) = 0 yields the eigenvalue λ = −4y20 in
terms of y0 ≈ 3.054, the first positive point satisfying
J ′2(y0) = 0. This implies that the homogeneous disor-
dered state is unstable to a spontaneously flowing mode
when σ > σ∗, where (in physical units)

σ∗ =
16µ

c0

(
9.33

D(s)

L2
+D(r)

)
, (5)

a criterion we have verified numerically by full simula-
tions of Eq. (2). To lend perspective, we consider typical
values of the material properties. The stress amplitude
can be expressed as σ = f`, where f is the (typically pN)
force exerted by motors and ` is the (typically µm) sepa-
ration of the opposing forces of the stresslet. For micron-
size rods we expect D(r) ∼ 0.01 s−1 and D(s) ∼ 10−9

cm2/s, so for system sizes L >∼ 10 µm rotational diffusion
dominates the parenthetical term in Eq. (2). Then for a
fluid of the viscosity of water the instability will set in at
concentrations greater than ∼ 108 cm−3, corresponding
to a volume fraction well below 10−3.

In numerical studies of the fully nonlinear dynamics
we vary the dipolar activity σ0 while fixing the diffusion
constants at d(r) = d(s) = 0.025, and use the eigende-
composition Q = S(nn − I/2), where the order param-
eter S and (headless) director n are the degree of local
alignment and the average alignment direction, respec-
tively. For sufficiently weak activity above σ∗, a stable
steady state emerges of circulation about the system cen-
ter (Figure 2a&d). The spiral pattern of the nematic
director field is reminiscent of the predictions of Kruse
et al. [7] for unconfined active systems [see also 8, 21].
As σ0 is increased, stronger contributions emerge from
higher radial modes in the spectrum of the order param-
eter. Indeed, expanding the order parameter S(r, θ) in a
Fourier series as S(r, θ) =

∑
n Sn(r)einθ, the axisymmet-
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FIG. 3. (color online). Details of the bifurcation to circu-
lation. (a) Numerically-evaluated steady state amplitudes

|S(m)
0 | of Bessel series expansion for axisymmetric part of or-

der parameter S at varying activity σ0, with d(r) = d(s) =
0.025. (b-d) Profiles of S at indicated points (b-d) in (a).
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FIG. 4. (color online). Secondary bifurcation to oscilla-
tory dynamics. (a) Amplitude of oscillation of the veloc-
ity autocorrelation function Ξ(τ) as a function of σ0, with

d(r) = d(s) = 0.025, showing a bifurcation from steady defect
separation to oscillatory behavior at a critical value of σ0. (b)
Ξ(τ) for σ0 = 32 showing periodic oscillatory behavior. (c)
Position of flow circulation center over time for σ0 = 32.75
during one oscillation period.

ric stability analysis suggests an n = 0 mode expansion of

the form S0(r) =
∑∞
m=0 S

(m)
0 J2(2ymr) where J ′2(ym) = 0

and ym < ym+1. Mode amplitudes then read

S
(m)
0 =

1

Nm

∫ 2π

0

dθ

∫ 1/2

0

dr rJ2(2ymr)S(r, θ)

with normalizationNm ≡ (π/4)(1−4/y2m)[J2(ym)]2. Fig-
ure 3 shows the steady-state values of the first three mode

amplitudes |S(0)
0 |, |S

(1)
0 |, |S

(2)
0 | as functions of σ0. Observe

the non-zero contributions from modes with m > 0 in the
steady state despite only the m = 0 mode being initially
excited when σ0/16 < y21d

(s) + d(r).
At larger values of σ0, the steady state exhibits de-

fect separation: the central axisymmetric spiral defect in
the nematic director field (with topological charge +1)
splits into two closely spaced hyperbolic defects (each of
charge +1/2). The system still possesses fluid circulation
about the central axis, due to the symmetric positioning
of the defects. Such a configuration is illustrated in Fig-
ure 2b&e. The emergence of the defect separation phe-
nomenon is perhaps unsurprising if we make contact with
classical liquid crystal theory; for approximately isolated
defects, the free energy penalty per defect is proportional
to the square of its topological charge [22], rendering two
+1/2 defects favorable over a single +1 spiral. Indeed, de
las Heras et al. [23] recently investigated the equivalent
confined setup for a microscopic two-dimensional liquid
crystal and always encountered defect separation.

As σ0 is increased beyond a new critical value, the sys-
tem bifurcates into a regime of periodic oscillation, where
the time symmetry has been broken and a steady state is

now unstable. The +1/2 defect pair (Figure 2c) execute
periodic ‘orbits’ around each other, with the flow circu-
lation center offset from the origin (Figure 2f) and fol-
lowing an approximately circular trajectory (Figure 4c).
These states can be analyzed by examining the velocity
autocorrelation function [12]

Ξ(τ) ≡
〈
〈v(x, t) · v(x, t− τ)〉x
〈v(x, t) · v(x, t)〉x

〉
t

where the temporal average is taken over late times when
the oscillatory state is fully established. Extracting the
amplitude A of oscillation of Ξ (Figure 4b) we numeri-
cally determine a bifurcation diagram as a function of σ0
as in Figure 4a. There is a clear threshold for the onset
of periodic oscillations.

Motivated by principles of cytoplasmic streaming, we
have constructed a clean, simple model for a dilute sus-
pension of extensile force-generating filaments in total
geometric confinement, and have demonstrated that the
inclusion of elementary hydrodynamics is entirely suffi-
cient to yield spontaneous self-organization behavior, in
spite of the absence of more complex local interaction
terms. In an experimental realization, the prediction of
a critical activity for transition from quiescence to cir-
culation can be tested by varying the chamber size or
the motor activity, perhaps through temperature or ATP
concentration. Modern realizations of the experiment of
Yotsuyanagi will likely provide a wealth of information
on this type of bifurcation.
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