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ABSTRACT Here we report on a generalized theory of spatial patterns of intracellular organelles, which are controlled by cells
using cytoskeleton-based movements powered by molecular motors. The theory reveals that organelles exhibit one of the four
distinct, stable patterns, namely aggregation, hyperdispersion, radial dispersion, and areal dispersion. Existence of specific
patterns is determined by the contributions from three transport mechanisms, characterized by two Peclet numbers. The
predicted patterns compare well with experimental data. This study provides a firm theoretical ground for classification of spatial
patterns of organelles and understanding their regulation by cells.
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Spatial organization and compartmentalization of intra-

cellular organelles such as endocytic vesicles (endosomes,

lysosomes), mRNA granules, and mitochondria are central to

many cellular functions, including trafficking of nutrients.

To regulate spatial distribution of intracellular vesicles,

cells utilize motor-assisted transport on cytoskeletal filam-

ents, namely microtubules and actin filaments (1,2). At the

operational level, the spatial distribution of organelles is

controlled by activities of three motor proteins—kinesins,

dyneins, and myosins—which are globally regulated by

elaborate biochemical networks. In other words, a specific

organization of organelles is a ‘‘signature’’ of complex in-

teractions among many motors, organelles, and cytoskeletal

filaments. Numerous studies have been performed to explore

the biochemical and physical aspects of organelle transport;

however, a global, quantitative relationship between spatial

patterns of organelles (the effect) and motor activities (the

cause) is not to be found in the literature. In this Letter, we

report a generalized theory that establishes the cause-effect

relationships of spatial organelle patterns. We show that all

organelle patterns in nature can be characterized by two

dimensionless parameters, the one- and two-dimensional

Peclet numbers. A regime map of distinct organelle patterns

is then constructed and compared to a broad range of ex-

perimental observations.

The focus is placed on organelle transport in nonpolarized

cells. The system under consideration is illustrated in Fig. 1.

Since cell thickness under culture conditions is often much

smaller than other dimensions, cells can be approximated as

two-dimensional circular disks. Organelles are allowed to

move between the cell boundary (RC) and the nuclear

boundary (RN). Viewing from the top, microtubules (MTs)

grow radially from the microtubule-organizing center lo-

cated at the cell center, creating a uniform two-dimensionsal

array (1). Retrograde and ante-retrograde movements on

MTs are mediated by dyneins and kinesins, which transport

organelles toward and away from the cell center, respec-

tively. Actin filaments (AFs) are shorter, and their distribu-

tion and orientation are random throughout the cytoplasm

(3). Myosin-driven transport on randomized networks of AFs

is often regarded as a form of facilitated diffusion (4).

To devise the equations for nonequilibrium motor-driven

transport, we approximate the movements of organelles as

stochastic trajectories of independent discrete particles, which

continuously undergo first-order transitions from one trans-

port state to another (5–7). For most intracellular organelles,

this approximation is reasonable. The simplest state map that

captures the key features of organelle transport reported in

literature is depicted in Fig. 1 b. An organelle can switch

intermittently between four distinct transport states, namely

s ¼ 0, free diffusion in cytosol; s ¼ 11, kinesin-driven trans-

port toward MT plus-ends; s ¼ �1, dynein-driven transport

toward MT minus-ends; and s ¼ 2, myosin-driven transport

on AFs. The state diagram implies that an organelle must

detach from a filament before binding to another filament of

the same or different type. Although direct switching

between filaments is theoretically possible, no firm exper-

imental evidence exists to support this behavior as a general

rule. The assumption made here represents a reasonable

approximation that is consistent with experimental data. The

activities of molecular motors are represented by the rates of

organelle binding to and detachment from the filaments, ks
and k9s; respectively. These rates are lumped representations

of complex interactions among motors, filaments and

organelles. ks and k9s can be directly estimated from the run

lengths and the motility fractions, often reported in particle-

tracking experiments. The affinity constant, Ks ¼ ks=k9s;
reflects the likelihood that an organelle associates with a

certain transport state.

Based on the depicted transition map and following the

modeling approach reported in (1,7–9), we obtain a system
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of macroscopic mass conservation equations for organelle

density cc̃csðr; tÞ (No. of organelles at state s per unit area of

cell, at radial position r and time t) as follows:

@tcc̃c0 ¼ ðk9�1cc̃c�1 1 k911cc̃c11 1 k92cc̃c2Þ
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In most cells, the velocities of microtubule-dependent trans-

port of organelles are roughly equal in both directions,

V11 � �V�1 � V (1,3,10). The above system of equations

can be approximated with an advection-diffusion equation

for the total density of organelles, c̃ðr; tÞ ¼ +cc̃csðr; tÞ(9). After
nondimensionalization, this equation yields
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where

j ¼ r=RC; jN¼RN=RC; t¼ tV=RC; c ¼ c̃=C0;
P ¼ 11K111K�11K2; F ¼ K�1 � K11; D ¼ D̃2K21D̃0;
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D̃2 ¼ D2=VRC and D̃0 ¼ D0=VRC:

FIGURE 1 (a) Two-dimensional representation of cells. RC and

RN represent the cell and nuclear boundaries, respectively. (b)

Transition betweenmotion states (s5 0, free diffusion in cytosol;

s 5 11, kinesin-driven transport toward MT plus-ends; s 5 �1,

dynein-driven transport toward MT minus-ends; and s 5 2,

myosin-driven transport on AFs). V1 and V- are the velocities of

MT-dependent movements. ks and k9s are the rates of organelles

binding to and detachment from filaments. D0 and D2 are

coefficients of free diffusion in cytoplasm and AF-dependent

quasidiffusion.

FIGURE 2 (a) Regime map of organelle patterns. Data points labeled [1–3] represent endosomes containing dextran [1], low density

lipoprotein [2], polyethylenimine-DNA [3] in human fibroblasts (1); [4] free (nonperinuclear) lysosomes in human fibroblasts; [5]

peroxisomes in COS-7 and HepG2 (9); [6] secretory vesicles in PC12 cells (10); [7–8] exocytotic vesicles in control [7] and tau-

transfected [8] CHO cells (11); [9–10] mitochondria in control [9] and tau-transfected [10] CHO cells (11), [11–12] melanosomes in frog

melanophores when stimulated for areal dispersion [11] and aggregation [12] (2,8,12); [13–14] melanosomes in fish melanophores

when stimulated for areal dispersion [13] and aggregation [14] (2,8,12); [15] melanosomes in fish melanophores treated with an AF-

disrupting drug and stimulated for areal dispersion [3]. The large error bars on points [1–5] are due to the logarithmic nature of the

regime map. Shaded regions correspond to limiting stationary patterns (A, aggregation; AD, areal dispersion; HD, hyperdispersion;

and RD, radial dispersion). Open regions represent transitions among these patterns and cannot be assigned to any particular pattern.

(b–g) Comparison between predicted (right) and experimentally observed organelle patterns (left) for (b) melanosomes in fish

melanophores when stimulated with melatonin (3), (c) mitochondria in tau-transfected CHO cells (11), (d) melanosomes in fish

melanophores after treated with an AF-disrupting drug and stimulated for areal dispersion (3), (e) melansomes in Xenopus

melanophores when stimulated for areal dispersion (3), (f) endosomes in human fibroblasts (1), and (g) peroxisomes in Drosophila S2

(13). See Supplementary Material for more information.
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Equation 2 demonstrates contributions of three principal

types of organelle motions: i), biased directed motions on

MTs, represented byF; either toward (F. 0) or away (F,

0) from the nucleus; ii), dispersive motions of organelles

along the radial coordinate originating from their random

walks in both directions on MTs (1), represented by V; and

iii), dispersive motions of organelles over the cell surface due

to combined actions of diffusion in cytosol and myosin-

dependent movements on AFs, represented by D. The

equilibrium spatial distribution of organelles is determined

by the relative contributions of each type of motion. To

quantify this, we define two dimensionless groups. The first

group, one-dimensional Peclet number Pe1D ¼ F=V; com-

pares the timescales of convective and diffusive motion on

MTs. The second group, two-dimensional Peclet number

Pe2D ¼ F=D; compares the time scales of convective motion

on MTs and diffusive motion over cell surface. Parameters

necessary to calculate both Peclet numbers are obtained from

independent experiments in literature (see Supplementary

Material).

Equation 2 was numerically solved for a wide range of

Peclet number values to determine the patterns at steady-

state. We identify four distinct limiting patterns: i), aggre-

gation, accumulation of organelles near the cell center (Fig.

2, b and c); ii), hyperdispersion, concentration of organelles

near the cell periphery (Fig. 2 d); iii); areal dispersion,

uniform distribution of organelles over the cell surface area

(Fig. 2 e); and iv), radial dispersion, uniform distribution of

organelles along the radial coordinate (Fig. 2, f and g). We

then construct a regime map for the patterns based on quan-

titative characterization of the organelle distributions (e.g.,

mean distance to the cell center, or deviations from the uni-

form distribution; see Supplementary Material). The regime

map, depicted in Fig.2 a, establishes a simple relationship

between motor activities (the cause), represented here by the

two Peclet numbers, and intracellular distributions of or-

ganelles (the effect). It provides a quantitative and direct

method for classifying patterns of many important organelles

inside cells. The patterns predicted by the model were found

to be in good agreement with those occurring in nature,

showing that organelle organization in cells is indeed an

emergent property of interactions of components at micro-

scopic/molecular level.

In summary, we report a generalized theoretical model for

‘‘flows’’ of organelles inside cells and identify two dimen-

sionless numbers that control the regimes of the flow pat-

terns. Using three fundamental motions, mediated by kinesin,

dynein, and myosin, cells elegantly generate a variety of

organelle organization at a microscopic level, adapted to the

needs of the organisms. Interestingly, the regime map reveals

that radial dispersion is the desired distribution of many

intracellular organelles under normal operating conditions.

Such a simple organization principle, based on a delicate

balance between kinesin and dynein activities, allows the cell

to maintain a robust and well-defined spatial organization of

organelles against perturbations in operating environments.

Interactions between organelles, such as fusion and mutual

exclusion, are not considered in the theory presented here

and can give rise to interesting, nonlinear behaviors (5).

Further work can provide important clues about the under-

lying principles of organelle organization and a better

understanding of diseases related to organelle transport. In

this sense, the theory provides a stepping stone toward a

realistic, systematic, and quantitative description of intracel-

lular transport.

SUPPLEMENTARY MATERIAL

An online supplement to this article can be found by visiting

BJ Online at http://www.biophysj.org.
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