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Abstract
In previous work we have shown that the quantum potential can be derived from
the classical kinetic equations both for particles with and without spin. Here,
we extend these mappings to the relativistic case. The essence of the analysis
consists of Fourier transforming the momentum coordinate of the distribution
function. This procedure introduces a natural parameter η with units of angular
momentum. In the non-relativistic case the ansatz of either separability, or
separability and additivity, imposed on the probability distribution function
produces mappings onto the Schrödinger equation and the Pauli equation,
respectively. The former corresponds to an irrotational flow, the latter to a fluid
with non-zero vorticity. In this work we show that the relativistic mappings
lead to the Klein–Gordon equation in the irrotational case and to the second-
order Dirac equation in the rotational case. These mappings are irreversible;
an approximate inverse is the Wigner function. Taken together, these results
provide a statistical interpretation of quantum mechanics.

PACS numbers: 03.65.Ta, 05.20.Dd, 45.05.+x, 03.65.Sq

1. Introduction

In recent years there has been a tremendous resurgence of interest in the hydrodynamic
formulation of quantum mechanics, in large part due to its applications in semiclassical physics.
This hydrodynamic representation dates back to the work of Madelung in 1926 [1] and has
been extended to particles with spin, and to relativistic particles [2, 3]. The only difference
between the classical Euler equations of fluid mechanics and these quantum hydrodynamic
equations is the particular form of the pressure, arising from what is known as the quantum
potential. A physical interpretation of the quantum potential has been lacking, primarily
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because it has essentially been a curiosity obtained by manipulation of the wave equations
of quantum mechanics. It would seem more natural to seek a physical interpretation directly
within the context of the fluid equations, for, as is well known, all fluid equations have an
underlying kinetic theory. Indeed, we have recently shown [4, 5] that the hydrodynamic
equations corresponding to non-relativistic quantum mechanics are no exception to this rule,
implying a statistical origin of quantum mechanics.

In those previous studies we found that it is possible, depending on the requirements
imposed on the Fourier transform of the one-particle probability function, to map the first
balance equations obtained from the classical Boltzmann equation onto either the Schrödinger
equation or the Pauli equation for a particle with spin 1

2 . We have also shown that the rules
to obtain the hydrodynamic averages associated with the fluid equations obtained from the
balance equations read like the postulates of quantum mechanics, provided the parameter η

introduced in our mapping as a consequence of the Fourier transform is identified with h̄.
It seems natural to wonder if analogous mappings with equivalent ansatz for the one-particle
probability function can be produced that lead to the Klein–Gordon and Dirac equations. As we
show below, this is indeed the case. When we use the ansatz corresponding to irrotational flow
it is rather straightforward to obtain the Klein–Gordon equation by following closely the steps
that lead to the Schrödinger equation in the non-relativistic case. Obtaining the Dirac equation
is somewhat more complex, and instead of obtaining it in standard form we are led to the
second-order version of the operator. As we shall see, this outcome derives from the fact that a
Lagrangian formalism is the natural framework for rotational flows. As explained previously by
Feynman [6,7], the Klein–Gordon equation is easily handled within the Lagrangian formalism,
but the Dirac equation is very hard to represent directly in this framework and one is always
led first to its second-order version. This particular issue is also connected to the fact that it
is possible to use a simple two-component spinor for the wave function as long as we work
with the second-order Dirac equation. These facts, even though of great importance when
finding the mappings, do not have any bearing on the results, since the full equivalence of the
first- and second-order formulations of the Dirac equation has been proved by Feynman and
Gell-Mann [8]. We also extend our previous non-relativistic results to shed light on the origin
of the Wigner function and the coherent states.

2. The mapping

We start as usual by noting [9] that the covariant one-particle distribution function f (xµ, pµ)

has the properties f � 0, f → 0 as pµ → ∞, and the normalization∫
�x

∫
1

c
f vµ dσµd4p = const, (1)

where �x is a hypersurface in four-dimensional x-space, with differential element dσµ, and

1

c
vµ dσµd4p (2)

is the invariant phase space element, and vµ = dxµ/dτ , with τ being the proper time. Note that
for this choice of phase space element, p0 is considered to be an independent variable, while
other representations [10] incorporate directly the constraint pµpµ = −mc2. Here, we have
chosen the Kursunoglu representation for the one-particle distribution function because of its
straightforward connection to the non-relativistic one, namely

fNR(x, p) d3xd3p = lim
c→∞

vµ

c
dσµ d3p

∫ ∞

−∞
f dp0 (3)
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and also because it is the one that leads to the standard representation of the relativistic Wigner
function [11]. For simplicity of notation, we shall henceforth denote the four-vector xµ as x

and pµ as p.
With these definitions, it is possible to derive the Boltzmann equation with a generic

collision term [9]

pµ ∂f

∂xµ
+ Gµ(x, p)

∂f

∂pµ
= C(f ), (4)

where C(f ) is the collision integral and Gµ represents the external force, given by

Gµ = e

c
Fµνpν, (5)

where Fµν is the electromagnetic tensor in the absence of dipole interaction, and

Gµ = e

c
Fµνpν +

e

2c
Nαβ∂µFαβ, (6)

which corresponds to the dipole interaction, where Nαβ is the magnetic moment tensor.
We should point out that the Liouville equation can be viewed as the particular case in

which the collision integral vanishes. Here, we will make use of the crucial role the Boltzmann
equation plays in fluid dynamics to find the quantum fluid equations in the relativistic case.
In the standard derivation of hydrodynamics, the first two moments of the Boltzmann equation
with respect to the momentum coordinate give rise to the continuity and Euler equations with
an unknown pressure term, and the contribution from the collision integral vanishes due to
conservation laws. To find the pressure we must determine the distribution function f , either
by perturbative methods or through an ansatz. In this work we follow the analogous path in
Fourier space. To calculate the Fourier space equivalent of the pressure tensor, we impose
the ansatze that will lead either to the Klein–Gordon or the Dirac equations, which involve,
respectively, the force laws in (5) and (6).

Let us now proceed to calculate the moments of equation (4) by averaging it with
respect to p (conservation of number of particles), multiplying by pσ and averaging over
p (conservation of momentum–energy). In all cases, the right-hand side vanishes and thus the
first two balance equations read∫ +∞

−∞
d4ppµ ∂f

∂xµ
= 0 (7)

and ∫ +∞

−∞
d4ppσ

(
pµ ∂f

∂xµ
+ Gµ(x, p)

∂f

∂pµ

)
= 0. (8)

Here, we have assumed that any surface terms vanish due to the convergence properties of f .
We now introduce into (7) and (8) the following representation for f ,

f (x, p) = 1

(2πη)4

∫ +∞

−∞
exp

(
−i

pµyµ

η

)
f̂ (x, y)d4y (9)

and f̂ (x, y) is given by

f̂ (x, y) =
∫ +∞

−∞
exp

(
i
pµyµ

η

)
f (x, p)d4p. (10)

With these definitions and some straightforward algebra, equations (7) and (8) become [4]

lim
y→0

η

i

∂

∂xµ

∂f̂

∂yµ

= 0 (11)
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and

lim
y→0

[
−η2 ∂

∂xµ

(
∂2f̂

∂yµ∂yσ

)
− eη

ic
F σµ ∂f̂

∂yµ
− e

2c
Nαβ∂σF αβf̂

]
= 0.

These two limits correspond to the following averages:

lim
y→0

f̂ = lim
y→0

∫ +∞

−∞
exp

(
i
pµyµ

η

)
f (x, p)d4p

=
∫ +∞

−∞
f (x, p)d4p = ρ(x)

m
, (12)

lim
y→0

∂f̂

∂yσ
= lim

y→0

∂

∂yσ

∫ +∞

−∞
exp

(
i
pµyµ

η

)
f (x, p)d4p

= i

η

∫ +∞

−∞
pσf (x, p)d4p

= i

η
ρ(x)uσ (x), (13)

where we have defined the mean 4-velocity u as the average, over the momentum only, of
p/m, with m being the rest mass. We can see from these expressions that f̂ is the generating
function for the averages with respect to p. Replacing these values in the balance equations
we obtain the fluid equations:

∂µ(ρuµ) = 0 (14)

and

lim
y→0

−η2 ∂

∂xµ

(
∂2f̂

∂yµ∂yσ

)
− e

c
ρFσµuµ − e

2mc
ρNαβ∂σF αβ = 0. (15)

The tensor in equation (15) has been evaluated in great detail for the non-relativistic
case [4, 5]. Since the calculation in the relativistic case is identical, except for the use of
4-vector notation, we will only summarize the procedure. First, we introduce the canonical
change of variables y = x ′−x ′′ and x = (x ′+x ′′)/2, which satisfies the following relationships:

x ′ = x +
y

2
, x ′′ = x − y

2
,

∂

∂y
= 1

2

(
∂

∂x ′ − ∂

∂x ′′

)
,

∂

∂x
=

(
∂

∂x ′ +
∂

∂x ′′

)
.

(16)

Note that the limit y → 0 corresponds to x ′ → x ′′ and x ′ = x ′′ ≡ x. It is at this point that
we need to make some assumptions on the properties of f̂ to continue our calculation. As is
standard in the study of linear PDEs, we shall examine the possibility of separable solutions,
a linear combination of which would constitute the general solution. We concentrate on two
different ansatze:

(a) in the limit x ′ → x ′′, the function f̂ is fully separable in the variables x ′ and x ′′,

f̂ (x ′, x ′′) = h′(x ′)h′′(x ′′) (17)

and
(b) in the limit x ′ → x ′′, the function f̂ is the sum of two separable functions of the variables

x ′ and x ′′,

f̂ (x ′, x ′′) = h′(x ′)h′′(x ′′) + g′(x ′)g′′(x ′′). (18)
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It is important to note that f̂ must be real in the limit y → 0: therefore, case (a), i.e. full
separability, corresponds to h′ and h′′ being complex conjugates of each other, leaving only two
independent real functions, and case (b), i.e. the sum of two separable functions, corresponds
to h′ and g′ being complex conjugates of h′′ and g′′, respectively, leaving four independent
real functions. Thus, adopting the ansatz of case (a) will give us enough degrees of freedom
to treat irrotational flows in the context of the fluid equations (14) and (15), while adopting the
ansatz of case (b) will give us enough degrees of freedom to work with vortical flows with the
same equations. As has been mentioned before [4] these solutions, were they to exist, would
just be a very particular subset of the solutions to the original Boltzmann equation and their
importance would lie in the fact that they would be the only ones that led to the Klein–Gordon
and Dirac operators, respectively. The separable solutions are of course basis functions like
those that any PDE would generate. In quantum mechanics, they are known as ‘pure states’.
We will return to this point in the discussion of the Wigner function below.

3. The Klein–Gordon equation

In order to obtain the Klein–Gordon equation we proceed by imposing ansatz (a) on f̂ , then
calculating the limit y → 0 of the tensor in (15), using (5) for Gµ.

As shown previously [4], the limit y → 0 with the ansatz of case (a) corresponds to

lim
y→0

∂2

∂yµ∂yσ
mf̂ (x ′, x ′′) = 1

4
ρ

∂2 ln ρ

∂xµ∂xσ
− ρ

m2

η2
uµuσ , (19)

where we have defined

lim
y→0

√
mh′(x ′) = ψ(x),

lim
y→0

√
mh′′(x ′′) = ψ∗(x)

(20)

and the density ρ can be easily verified to be given by ρ = ψ∗ψ . Replacing this result in (15)
with the appropriate expression for Gµ we obtain from

lim
y→0

[
−η2 ∂

∂xµ

(
∂2f̂

∂yµ∂yσ

)
− eη

ic
F σµ ∂

∂yµ
f̂

]
= 0 (21)

the Euler equation that together with continuity reads [14]

∂µ(ρuµ) = 0, (22)

muµ∂µuσ − η2

2m
∂σ

(
∂µ∂µρ1/2

ρ1/2

)
− e

c
Fσνu

ν = 0,

where we have reduced the second equation of this pair making use of continuity and the
identity

1

ρ
∂µ

(
ρ

∂2 ln ρ

∂xµ∂xσ

)
= 2∂σ

(
∂µ∂µρ1/2

ρ1/2

)
. (23)

Since we are working under the assumption that the Euler equations we have generated
correspond to an irrotational flow, it is natural to introduce the generalized average 4-velocity
muµ = ∂µS + (e/c)Aµ. Taking advantage of the expression for the electromagnetic tensor
as a function of the vector potential, Fσµ = (∂σAµ − ∂µAσ ), and defining a new function
R = ρ1/2, the fluid equations can be rewritten as

2∂µR
(
∂µS +

e

c
Aµ

)
+ R∂µ

(
∂µS +

e

c
Aµ

)
= 0 (24)
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and

R
(
∂µS +

e

c
Aµ

) (
∂µS +

e

c
Aµ

)
− η2∂µ∂µR + Km2 = 0, (25)

where we have a yet undetermined constant K as a consequence of having integrated the
second equation once. Now, multiplying the first equation by (i/η) and the second one by
−1/η2 and adding them it is easy to see that we can use the standard Hopf–Cole transformation
� = ln R + (i/η)S = ln  to rewrite the pair of equations (24) and (25) as[(

iη∂µ − e

c
Aµ

)2
− Km2

]
 = 0. (26)

It is apparent that the choices K = c2 and η = h̄ would make (26) the Klein–Gordon equation.
Note that the solutions generated by (26) are only guaranteed to hold in the limit y → 0.

If we ignore the constraint of the limit and simply assume that the Fourier-transformed
distribution function remains separable for all y, then the original distribution function would
be obtained by the inverse transform,

FW(x, p) =
(

1

2πη

)4 ∫ ∞

−∞
†

(
x +

y

2

)


(
x − y

2

)
exp

(
−i

pµyµ

η

)
d4y, (27)

which is nothing other than the relativistic scalar generalization of the standard Wigner
function [11].

Such Wigner functions are not proper probability distributions because they are not positive
definite (although there have been some attempts to circumvent this problem in the relativistic
case [12]). In the present framework, the pure states also do not necessarily satisfy the minimum
uncertainty condition �x�p = η/2, which is a direct consequence of the Fourier transform
applied to the distribution function. If, instead, we construct a linear combination of these
separable solutions that at all times obeys the minimum-uncertainty condition, then the anti-
transform does yield an acceptable distribution function. These combinations are, of course,
the coherent states. A well-known non-relativistic example of this is provided by the harmonic
oscillator, whose coherent state distribution function is not only positive definite, but also
satisfies the Boltzmann equation.

4. The Dirac equation

Here, we consider the case of vortical flows. As mentioned above, the outcome of this mapping
leads to the second-order Dirac equation. In the non-relativistic case, vortical flows can only be
treated in all generality by using a Lagrangian formalism [5]. This is also true in the relativistic
case. Thus, following closely the steps for the non-relativistic calculation, the relativistic
mapping begins by invoking ansatz (b) for our function f̂ . Then, we evaluate the tensor in the
momentum balance equation including the dipole interaction term, i.e. using the expression (6)
for the external force, and recast the whole expression as the Euler fluid equations. Next, we
introduce the action corresponding to the fluid equations and perform the variation to prove that
this Lagrangian density indeed corresponds to the equations of motion. Finally, we introduce
a change of variables and when the variation is performed on the new variables the resulting
equation of motion is indeed the second-order Dirac equation when η is set equal to h̄.

Under ansatz (b), the tensor of (15) in the limit y → 0 has the value [5]

lim
y→0

∂

∂yµ

∂

∂yσ

mf̂ (x ′, x ′′) = lim
x ′,x ′′→x

1

4

(
∂

∂x ′µ − ∂

∂x ′′µ

) (
∂

∂x ′
σ

− ∂

∂x ′′
σ

)
m[h′h′′ + g′g′′]

= 1

4

[
ρ

∂2 ln ρ

∂xµ∂xσ

− 4ρ
m2

η2
uµuσ − ρ

∂�i

∂xµ

∂�i

∂xσ

]
, (28)
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where we have defined

lim
y→0

√
mh′(x ′) = ψ1(x),

lim
y→0

√
mh′′(x ′′) = ψ∗

1 (x),

lim
y→0

√
mg′(x ′) = ψ2(x),

lim
y→0

√
mg′′(x ′′) = ψ∗

2 (x)

(29)

introduced the notation

�i = ψ†σiψ

ψ†ψ
, (30)

where

ψ =
(

ψ1

ψ2

)
, ψ† = (ψ∗

1 , ψ∗
2 ) (31)

and σi are the Pauli matrices, and then used (12) and (13) for the density ρ and the mean
4-velocity uµ, which can be rewritten as a function of ψ as ρ = ψ†ψ and uµ =
−(η/2mi)(ψ†∂µψ − ψ∂µψ†). Expression (28), even though formally correct, is not very
useful in its present form since �, as presented in (30), reads like a 3-vector (note that all three
components �i are real). This problem can be easily solved by introducing the 4-spinor

 =
(

ψ

−ψ

)
, † = (ψ†, −ψ†). (32)

These definitions allow us also to rewrite (28) in a much more convenient and
instructive way:

lim
y→0

∂

∂yµ

∂

∂yσ

mf̂ (x ′, x ′′) = 1

4

[
ρ

∂2 ln ρ

∂xµ∂xσ

− 4ρ
m2

η2
uµuσ − 1

4
ρ

∂Mαβ

∂xµ

∂M∗
αβ

∂xσ

]
, (33)

where ρ = (1/2)† and uµ = −(η/2mi)(1/2)(†∂µ − ∂µ†). The tensor Mαβ is
defined as

Mαα = 0, Mαβ = 1

2
i
†[γαγβ − γβγα]

†
, (34)

where the γµ are the gamma matrices,

γt =
(

1 0
0 −1

)
, γi =

(
0 σi

−σi 0

)
. (35)

The explicit expression for the tensor M is then

M =




0 �z −�y i�x

−�z 0 �x i�y

�y −�x 0 i�z

−i�x −i�y −i�z 0


 . (36)

Introducing these definitions into equations (14) and (15), with the force Gµ given by (6),
we obtain after some lengthy, but straightforward, algebra the following fluid equations

∂µ(ρuµ) = 0,

muµ∂µuσ − η2

2m
∂σ

(
∂µ∂µρ1/2

ρ1/2

)
+

η2

4mρ
∂µ

(
ρ

4

∂Mαβ

∂xµ

∂M∗
αβ

∂xσ

)
− e

c
Fσνu

ν

− eη

4mc
Mαβ∂σFαβ = 0,

(37)
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where once again we have used identity (23) and continuity and identified the tensor M with
the magnetic moment tensor through the relationship N = (η/2)M . The motivation to make
this identification between M and N lies in the fact that both quantities transform in the same
manner and have the exact number of powers of η/2 to ascribe to them units of angular
momentum. Moreover, from equation (36) we see that there are only three non-zero elements
in M that are different from each other. Since these three elements are equal to the non-
relativistic components of the vector angular momentum in three dimensions it is natural to
think of (η/2)M (and also N ) as the relativistic tensor that corresponds to the axial 3-vector Σ.
As we have shown before [5], it is possible to express these quantities in a more physical con-
text by introducing the Clebsch variables ζ and ω [15]. As a consequence of representing Σ
with the Pauli matrices, ζ corresponds to the z-component of the vector Σ and ω corresponds
to the azimuthal angle, i.e. the canonical conjugate variable of �z. Then, as a function of the
components of Σ (or equivalently the elements of the tensor M), the expressions for ζ and ω are

ζ = η

2
�z, ω = tan−1

(
�x

�y

)
. (38)

If we also introduce the angle θ to represent the angle that � makes with the z-axis the three
distinct elements of M can be expressed as

�x = sin θ sin ω,

�y = sin θ cos ω,

�z = cos θ.

(39)

We can now rewrite the last term in equation (33) as a function of the Clebsch variables. After
some algebra, it is easy to verify that

∂Mαβ

∂xµ

∂M∗
αβ

∂xσ

= ∂µζ∂σ ζ

q
+

4

η2
q∂µω∂σω, (40)

where we have defined q as

q(ζ ) ≡ q = η2

4
− ζ 2, (41)

a function of ζ only.
Now, we show that the action that corresponds to the equations of motion (37) is

A = −
∫

d4x

[
ρ

2m

(
∂µS + ζ∂µω +

e

c
Aµ

)2
− mc2ρ +

η2

8m

∂µρ∂µρ

ρ
+

η2

8m

×
(

(∂µζ )2

q
+

4

η2
q(∂µω)2

)
− eη

4mc
ρMαβFαβ

]
, (42)

where we have already substituted into (42) the expression uµ = 1/m(∂µS +ζ∂µω+(e/c)Aµ),
which is the result of the variation of A with respect to uµ, i.e. (δA/δuµ). The remaining
variations are given by
δA
δω

: uµ∂µζ +
1

m
∂µ (ρq∂µω) +

eη

4mc

∂Mαβ

∂ω
Fαβ = 0,

δA
δζ

: uµ∂µω − η2

8m

q ′

q
(∂µζ )2 +

1

2m
q ′(∂µω)2 − η2

4m
∂µ

(
ρ

∂µζ

q

)
− eη

4mc

∂Mαβ

∂ζ
Fαβ = 0,

δA
δS

: ∂µ

[
ρ

1

m

(
∂µS + ζ∂µω +

e

c
Aµ

)]
≡ ∂µ(ρuµ) = 0,

δA
δρ

:
1

2m

(
∂µS + ζ∂µω +

e

c
Aµ

)2
− η2

2m

∂µ∂µρ1/2

ρ1/2
− mc2 +

η2

8m

(
(∂µζ )2

q
+

4

η2
q(∂µω)2

)
− eη

4mc
MαβFαβ = 0.

(43)
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Now, we take the derivative ∂σ (δA/δρ) = 0 and substitute uµ = 1/m(∂µS +ζ∂µω−(e/c)Aµ).
Then, we use continuity and replace the values of the variations with respect to ω and ζ to
finally obtain (37). Note also that continuity is simply given by the variation of A with respect
to S, (δA/δS) = 0.

Finally, to show that the action A also gives rise to the second-order Dirac equation we
introduce the following expression for the 4-spinor  [16]:

 =
(

ψ

−ψ

)
with ψ = ReiS/η

(
cos θ

2 eiω/2

i sin θ
2 e−iω/2

)
. (44)

In this representation, the action (42) becomes

A = −1

2

∫
d4x

[
1

2m

(
iη

∂†

∂xµ
+

e

c
†Aµ

) (
−iη

∂

∂xµ

+
e

c
Aµ

)
− mc2†

− eη

2mc

(
1

2
MαβFαβ

)
†

]
. (45)

Then, taking the variation with respect to † [16] we obtain[(
−iη

∂

∂xµ
+

e

c
Aµ

)2

− m2c2 − eη

2c
σαβF αβ

]
 = 0, (46)

where σαβ = (i/2)(γαγβ −γβγα). As with the Klein–Gordon equation, if we choose to identify
η = h̄, then equation (46) reads[(

ih̄
∂

∂xµ
− e

c
Aµ

)2

− eη

2c
σαβF αβ

]
 = m2c2, (47)

which is the second-order Dirac equation in the Feynman–Gell-Mann formulation [8].

5. Conclusions

In this work we have performed the relativistic extension of previous results connecting the
Boltzmann equation to the Schrödinger and Pauli operators. We have found that the Fourier
transform of the one-particle distribution function of the classic relativistic Boltzmann equation
with respect to the momentum variable can be mapped either onto the Klein–Gordon or the
Dirac equations. As in the non-relativistic case, the first part of the mapping leads to a set of
Euler equations for a compressible fluid. From them, the analysis of irrotational flows coupled
to the ansatz of separability applied to the one-particle probability function leads to the Klein–
Gordon equation for particles with no spin. A similar analysis for rotational flows and the
ansatz of separability and addition leads to the Dirac equation for particles with spin η/2.
The rules to calculate the averages of physical quantities in the p-conjugate space are the four
vector versions of the rules found in the non-relativistic case, which read like the postulates
of quantum mechanics with η replaced by h̄ [4]. In addition, by observing that pure states
generally violate the constraints of the Fourier transform, we have provided an explanation
for the shortcomings of their Wigner distribution and how imposing Fourier constraints is
equivalent to the requirement of minimum uncertainty in quantum mechanics, both leading to
coherent states.

There is a very interesting consequence to the ansatze (a) and (b) imposed on f̂ .
As emphasized previously, these solutions form a very small subset of all possible solutions
to the balance equations. Returning to the original Boltzmann equation, we see that its
right-hand side is the collision integral that includes a first approximation to the two-particle
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probability function f2(x1, p1, x2, p2) constructed as a combination of products of one-particle
probability functions. Independent of the approximation used, f2 must be symmetric under
the exchange of coordinates 1 ↔ 2, so f2(x1, p1, x2, p2) = f2(x2, p2, x1, p1) [13]. When the
approximation for f2 used in the Boltzmann equation is adopted this symmetry will also hold
true for its Fourier transform f̂2(x1, y1, x2, y2). If we now invoke the separability condition
f̂2 = †(x ′′

1 , x ′′
2 )(x ′

1, x
′
2) [4], and note that we are working with identical particles, the

functions  must be either symmetric or antisymmetric under the exchange of variables
1 ↔ 2 so that f̂2 will be symmetric. It may be possible to prove that the case which
maps onto the Klein–Gordon equation requires  to be symmetric, while the Dirac case
requires antisymmetry. Such a proof would need a detailed study of the Bogoliubov hypothesis
that leads to the Boltzmann equation.

One last issue that we would like to mention relates to the Proca equations that govern
particles of spin 1 or higher. Since these can be developed from the Dirac equation [17] it seems
reasonable to think that there might be a new ansatz for f̂ that would lead to the equations
for higher spin. Unfortunately, we have not yet been able to find a satisfactory derivation that
would settle the issue either way. Perhaps these issues should be the subject of further work.
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