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Abstract. We have previously analyzed a mapping of the first two kinetic
balance equations derived from the Boltzmann equation. Here we extend this
mapping to the relativistic case. The essence of this mapping consists of applying a
Fourier transform to the momentum coordinate of the distribution function. This
procedure introduces a natural parameter η with units of angular momentum.
In the non-relativistic case the ansatz of either separability, or separability and
additivity, imposed on the probability distribution function produces mappings
onto the Schrödinger equation and the Pauli equation respectively. The case
leading to the Schrödinger operator corresponds to an irrotational flow, while
the ansatz leading to the Pauli equation corresponds to a fluid with non-zero
vorticity. In this work we show that the relativistic mappings lead to the Klein-
Gordon equation in the irrotational case and to the second-order Dirac equation
in the rotational case.
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1. Introduction

As we have shown in previous works [1, 2] it is possible, depending on the requirements
imposed on the Fourier transform of the one particle probability function, to map the
first balance equations obtained from the classical Boltzmann equation onto either
the Schrödinger equation or the Pauli equation for a particle with spin 1/2. We have
also shown in our previous work that the rules to obtain the hydrodynamic averages
associated with the fluid equations obtained from the balance equations read like the
postulates of quantum mechanics, provided the parameter η introduced in our mapping
as a consequence of the Fourier transform is identified with ~. It seems natural to
wonder if analogous mappings with equivalent ansatzes for the one particle probability
function can be produced that lead to the Klein-Gordon and Dirac equations. As we
will show this is indeed the case. When we use the ansatz corresponding to irrotational
flow it is rather straightforward to obtain the Klein-Gordon equation by following
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closely the steps that lead to the Schrödinger equation in the non-relativistic case.
Obtaining the Dirac equation is somewhat more complex, and instead of obtaining it
in standard form we are lead to the second-order version of the operator. As we will
see later in this work, the reason for this outcome relates to the fact that a Lagrangian
formalism is the natural framework for rotational flows. As explained previously by
Feynman [3, 4] the Klein-Gordon equation is easily handled within the Lagrangian
formalism, but the Dirac equation is very hard to represent directly in this framework
and one is always lead first to its second-order version. This particular issue is also
connected to the fact that it is possible to use a simple two-component spinor for the
wave function as long as we work with the second-order Dirac equation. These facts,
even though of great importance when finding the map, do not have any bearing on
the results since the full equivalence of the first- and second-order formulations of the
Dirac equation was proven by Feynman and Gell-Mann [5].

2. The Mapping

We start as usual by noting that the motion of an ensemble of N particles governed
by the relativistic Liouville equation can be recast in a hierarchy of non-linear partial
differential equations (PDEs) for the reduced probability functions defined as follows:

fN (x1, p1, . . . , xN , pN ) =
D

∫

Ω
DdΩ

, (1)

and for 1 ≤ j < N

fj(x
N ,pN ) =

∫

Ω

fN (xN ,pN )

N
∏

l=j+1

dxldpl , (2)

where D represents the number density of points in phase space, Ω is the volume
in phase space and (xN ,pN ) = (x1, p1, . . . , xN , pN ). These functions correspond to
the probability of finding the subsystem of j < N particles in the phase volume
∏j

l=1 dxldpl about the state (x1, p1, . . . , xj , pj). The N PDEs generated are known as
the BBKGY hierarchy [6], the first two members of which (i.e. the equations for f1
and f2) determine the kinetic and potential energy of an aggregate of particles, and
have a crucial role in fluid dynamics. These equations can be decoupled in several
different ways by introducing a particular ansatz for the probability functions. Since
we are interested in the relationship between the Klein-Gordon and Dirac equations
and the relativistic fluid equations we adopt the ansatz that leads to the relativistic
Boltzmann equation for f1 ≡ f :

pµ
∂f

∂xµ
+Gµ(xµ, pµ)

∂f

∂pµ
= C(f) , (3)

where C(f) is the collision integral, Gµ represents the external force averaged over
the coordinates of all particles except one and we have dropped the subindex 1 since
there is now a single set of coordinates. Here we are interested in two particular cases
of Gµ,

Gµ =
e

c
Fµνpν , (4)
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which is the electromagnetic force, where F µν is the electromagnetic tensor, and

Gµ =
e

c
Fµνpν +

e

2c
Nαβ∂

µFαβ (5)

which corresponds to the dipole interaction, where Nαβ is the magnetic moment
tensor. We will use these expressions in the case of irrotational and rotational flow
respectively. For convenience we use (5) to calculate the conservation laws that lead to
the fluid equations. When the case of irrotational flow arises (Klein-Gordon mapping)
we shall ignore the last term of (5), so that we recover (4).

The conservation laws of the system are then obtained by averaging (3) with
respect to p (conservation of number of particles), multiplying by pσ and averaging
over p (conservation of momentum) and multiplying by pσpσ and averaging over p
(conservation of energy). In all three cases the right hand side vanishes and thus the
first two balance equations read:

∫ +∞

−∞

dp pµ
∂f

∂xµ
= 0 , (6)

and
∫ +∞

−∞

dp pσ

(

pµ
∂f

∂xµ
+Gµ(x, p)

∂f

∂pµ

)

= 0 . (7)

Here we have assumed that any surface terms vanish due to the convergence properties
of f . We now introduce into (6) and (7) the following representation for f ,

f(x, p, t)=
1

(2πη)4

∫ +∞

−∞

exp

(

−ipµy
µ

η

)

f̂(x, y, t)dy , (8)

and f̂(x, y, t) is given by

f̂(x, y, t) =

∫ +∞

−∞

exp

(

i
pµy

µ

η

)

f(x, p, t)dp . (9)

With these definitions and some straightforward algebra, Eqs. (6) and (7) become [1]

lim
y→0

η

i

∂

∂xµ
∂f̂

∂yµ
= 0 (10)

and

lim
y→0

[

−η2 ∂

∂xµ
·
(

∂2f̂

∂yµ∂yσ

)

− eη

ic
F σµ ∂f̂

∂yµ
− e

2c
Nαβ∂

σFαβ f̂

]

= 0 .

These two limits correspond to the following averages:

lim
y→0

f̂ = lim
y→0

∫ +∞

−∞

exp

(

i
pµy

µ

η

)

f(x, p, t)dp

=

∫ +∞

−∞

f(x, p, t) dp =
ρ(x, t)

m
, (11)

lim
y→0

∂f̂

∂yσ
= lim

y→0

∂

∂yσ

∫ +∞

−∞

exp

(

i
pµy

µ

η

)

f(x, p, t)dp

=
i

η

∫ +∞

−∞

pσf(x, p, t)dp

=
i

η
ρ(x, t)uσ(x, t) , (12)
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where we have defined the mean 4-velocity u as the average, over the momentum
only, of p/m, with m the rest mass. We can see from these expressions that f̂ is the
generating function for the averages with respect to p. Replacing these values into the
balance equations we obtain the fluid equations:

∂µ(ρu
µ) = 0 . (13)

and

lim
y→0

−η2 ∂

∂xµ

(

∂2f̂

∂yµ∂yσ

)

− e

c
ρFσµu

µ − e

2mc
ρNαβ∂

σFαβ = 0 .

The tensor in equation (14) has been evaluated in great detail for the non-
relativistic case [1, 2]. Since the calculation in the relativistic case is identical, except
for the use of 4-vector notation, we will only summarize the procedure. First we
introduce the canonical change of variables y = x′ − x′′ and x = (x′ + x′′)/2, which
satisfies the following relationships:

x′ = x+
y

2
, x′′ = x− y

2
(14)

∂

∂y
=

1

2

(

∂

∂x′
− ∂

∂x′′

)

,
∂

∂x
=

(

∂

∂x′
+

∂

∂x′′

)

.

Notice that the limit y → 0 corresponds to x′ → x′′ and x′ = x′′ ≡ x. It is at this
point that we need to make some assumptions on the properties of f̂ to continue our
calculation. We concentrate on two different ansatzes:

a) f̂ is fully separable in the variables x′ and x′′,

f̂(x′, x′′, t) = h′(x′, t)h′′(x′′, t) , (15)

and
b) f̂ is the sum of two separable functions of the variables x′ and x′′,

f̂(x′, x′′, t) = h′(x′, t)h′′(x′′, t) + g′(x′, t)g′′(x′′, t) . (16)

It is important to notice that f̂ must be real in the limit y → 0: therefore case (a),
i.e. full separability, corresponds to h′ and h′′ being complex conjugates of each other,
leaving only two independent real functions, and case (b), i.e. sum of two separable
functions, corresponds to h′ and g′ being complex conjugates of h′′ and g′′ respectively
leaving four independent real functions. Thus, adopting the ansatz of case (a) will
give us enough degrees of freedom to treat irrotational flows in the context of the fluid
equations (13) and (14), while adopting the ansatz of case (b) will give us enough
degrees of freedom to work with vortical flows with the same equations.

As has been mentioned before [1] these solutions, were they to exist, are just a
very particular subset of the solutions to the original Boltzmann equation and their
importance lie in the fact that they are the only ones that lead to the Klein-Gordon
and Dirac operators respectively.

3. The Klein-Gordon equation.

In order to obtain the Klein-Gordon equation we proceed by imposing ansatz (a) on

f̂ , then calculate the limit y → 0 of the tensor in (14), using (4) for Gµ.
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As shown previously [1], the limit y → 0 with the ansatz of case (a) corresponds
to

lim
y→0

∂2

∂yµ∂yσ
mf̂(x′, x′′, t) =

1

4
ρ
∂2 ln ρ

∂xµ∂xσ
− ρm

2

η2
uµuσ (17)

where we have defined

lim
y→0

√
m h′(x′, t) = ψ(x, t)

lim
y→0

√
m h′′(x′′, t) = ψ∗(x, t) (18)

and the density ρ can be easily verified to be given by ρ = ψ∗ψ. Replacing this result
into (14) with the appropriate expression for Gµ we obtain from

lim
y→0

[

−η2 ∂

∂xµ

(

∂2f̂

∂yµ∂yσ

)

− eη

ic
F σµ ∂

∂yµ
f̂

]

= 0 , (19)

the Euler equation that together with continuity reads [7]

∂µ(ρu
µ) = 0 (20)

muµ∂µuσ −
η2

2m
∂σ

(

∂µ∂
µρ1/2

ρ1/2

)

− e

c
Fσνu

ν = 0 ,

where we have reduced the second equation of this pair making use of continuity and
the identity

1

ρ
∂µ

(

ρ
∂2 ln ρ

∂xµ∂xσ

)

= 2∂σ

(

∂µ∂
µρ1/2

ρ1/2

)

. (21)

Since we are working under the assumption that the Euler equations we have generated
correspond to an irrotational flow, it is natural to introduce the generalized average
4-velocity muµ = ∂µS + (e/c)Aµ. Taking advantage of the expression for the
electromagnetic tensor as a function of the vector potential, Fσµ = (∂σAµ − ∂µAσ),
and defining a new function R = ρ1/2, the fluid equations can be rewritten as

2∂µR
(

∂µS +
e

c
Aµ
)

+R∂µ

(

∂µS +
e

c
Aµ
)

= 0 (22)

and
R
(

∂µS +
e

c
Aµ
)(

∂µS +
e

c
Aµ

)

− η2∂µ∂µR+Km2 = 0 , (23)

where we have a yet undetermined constant K as a consequence of having integrated
the second equation once. Now multiplying the first equation by (i/η) the second one
by −1/η2 and adding them it is easy to see that we can use the standard Hopf-Cole
transformation Ω = lnR + (i/η)S = lnΨ to rewrite the pair of equations (22) and
(23) as

[

(

iη∂µ −
e

c
Aµ

)2

−Km2

]

Ψ = 0 . (24)

It is apparent that the choices K = c2 and η = ~ would make (24) the Klein-Gordon
equation.
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4. The Dirac equation

Here we consider the case of vortical flows. As mentioned above, the outcome of
this mapping leads to the second-order Dirac equation. In the non-relativistic case,
vortical flows can only be treated in all generality by using a Lagrangian formalism [2].
This is also true in the relativistic case. Thus, following closely the steps for the non-
relativistic calculation, the relativistic mapping begins by invoking ansatz (b) for our

function f̂ . Then we evaluate the tensor in the momentum balance equation including
the dipole interaction term, i.e. using the expression (5) for the external force, and
recast the whole expression as the Euler fluid equations. Next, we introduce the action
corresponding to the fluid equations and perform the variation to prove that indeed
this Lagrangian density corresponds to the equations of motion. Finally, we introduce
a change of variables and when the variation is performed on the new variables the
resulting equation of motion indeed is the second-order Dirac equation when η is set
equal to ~.

Under ansatz (b), the tensor of (14) in the limit y → 0 has the value [2]

lim
y→0

∂

∂yµ
∂

∂yσ
mf̂(x′, x′′, t) =

lim
x′,x′′→x

1

4

(

∂

∂x′µ
− ∂

∂x′′µ

)(

∂

∂x′σ
− ∂

∂x′′σ

)

m [h′h′′ + g′g′′]

=
1

4

[

ρ
∂2 ln ρ

∂xµ∂xσ
− 4ρ

m2

η2
uµu

σ − ρ∂Σi

∂xµ
∂Σi

∂xσ

]

(25)

where we have defined

lim
y→0

√
m h′(x′, t) = ψ1(x, t)

lim
y→0

√
m h′′(x′′, t) = ψ∗

1(x, t)

lim
y→0

√
m g′(x′, t) = ψ2(x, t)

lim
y→0

√
m g′′(x′′, t) = ψ∗

2(x, t) , (26)

introduced the notation

Σi =
ψ†σiψ

ψ†ψ
, (27)

where

ψ =

(

ψ1
ψ2

)

, ψ† = (ψ∗
1 , ψ

∗
2) , (28)

and σi are the Pauli matrices, and then used (11) and (12) for the density ρ and
the mean 4-velocity uµ, which can be rewritten as a function of ψ as ρ = ψ†ψ and
uµ = −(η/2mi)(ψ†∂µψ − ψ∂µψ

†). Expression (25), even though formally correct, is
not very useful in its present form since Σ, as presented in (27), reads like a 3-vector
(notice that all three components Σi are real). This problem can be easily solved by
introducing the 4-spinor

Ψ =

(

ψ

−ψ

)

, Ψ† =
(

ψ†,−ψ†
)

. (29)
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These definitions allow us also to rewrite (25) in a much more convenient and
instructive way

lim
y→0

∂

∂yµ
∂

∂yσ
mf̂(x′, x′′, t) =

1

4

[

ρ
∂2 ln ρ

∂xµ∂xσ
− 4ρ

m2

η2
uµu

σ − 1

4
ρ
∂Mαβ

∂xµ
∂M∗

αβ

∂xσ

]

(30)

where ρ = (1/2)Ψ†Ψ and uµ = −(η/2mi)(1/2)(Ψ†∂µΨ−Ψ∂µΨ
†). The tensor Mαβ is

defined as

Mαα = 0

Mαβ =
1

2
i
Ψ† [γαγβ − γαγβ ] Ψ

Ψ†Ψ
, (31)

where the γµ are the gamma matrices,

γt =

(

1 0
0 −1

)

γi =

(

0 σi
−σi 0

)

(32)

The explicit expression for the tensor M is then

M =









0 Σz −Σy iΣz

−Σz 0 Σx iΣy

Σy −Σx 0 iΣz

−iΣx −iΣy −iΣz 0









(33)

Introducing these definitions into Eqs. (13) and (14), with the force Gµ given by (5),
we obtain after some lengthy but straightforward algebra the following fluid equations

∂µ(ρu
µ) = 0

muµ∂µuσ −
η2

2m
∂σ

(

∂µ∂
µρ1/2

ρ1/2

)

+
η2

4mρ
∂µ

(

ρ

4

∂Mαβ

∂xµ
∂M∗

αβ

∂xσ

)

−e
c
Fσνu

ν − eη

4mc
Mαβ∂σFαβ = 0 . (34)

where once again we have used identity (21) and continuity and identified the tensor
M with the magnetic moment tensor through the relationship N = (η/2)M . The
motivation to make this identification between M and N lies in the fact that both
quantities transform in the same manner and have the exact number of powers of η/2
to ascribe to them units of angular momentum. Moreover, from equation (33) we see
that there are only three non-zero elements in M that are different from each other.
Since these three elements are equal to the non-relativistic components of the vector
angular momentum in three dimensions it is natural to think of (η/2)M (and also
N) as the relativistic tensor that corresponds to the axial 3-vector Σ. As we have
shown before [2] it is possible to express these quantities in a more physical context
by introducing the Clebsch variables ζ and ω [8]. As a consequence of representing
Σ with the Pauli matrices, ζ corresponds to the z-component of the vector Σ and ω
corresponds to the azimuthal angle, i.e, the canonical conjugate variable of Σz. Then,
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as a function of the components of Σ (or equivalently the elements of the tensor M),
the expressions for ζ and ω are

ζ =
η

2
Σz

ω = tan−1
(

Σx

Σy

)

. (35)

If we also introduce the angle θ to represent the angle that Σ makes with the z-axis
the three distinct elements of M can be expressed as

Σx = sin θ sinω

Σy = sin θ cosω

Σz = cos θ (36)

We can now rewrite the last term in equation (30) as a function of the Clebsch
variables. After some algebra it is easy to verify that

∂Mαβ

∂xµ
∂M∗

αβ

∂xσ
=
∂µζ∂

σζ

q
+

4

η2
q∂µω∂

σω , (37)

where we have defined q as

q(ζ) ≡ q =
η2

4
− ζ2 , (38)

a function of ζ only.
Now we show that the action that corresponds to the equations of motion (34) is

A = −
∫

d4x

[

ρ

2m

(

∂µS + ζ∂µω +
e

c
Aµ

)2

−mc2ρ

+
η2

8m

∂µρ∂
µρ

ρ
+

η2

8m

(

(∂µζ)
2

q
+

4

η2
q(∂µω)

2

)

− eη

4mc
ρMαβF

αβ

]

, (39)

where we have already replaced into (39) the expression uµ = 1
m (∂µS + ζ∂µω + e

cAµ)
which is the result of the variation of A with respect to uµ i.e. δA/δuµ. The remaining
variations are given by:

δA
δω

: uµ∂µζ +
1

m
∂µ (ρq∂

µω) +
eη

4mc

∂Mαβ

∂ω
Fαβ = 0

δA
δζ

: uµ∂µω −
η2

8m

q′

q
(∂µζ)

2 +
1

2m
q′(∂µω)

2

− η2

4m
∂µ

(

ρ
∂µζ

q

)

− eη

4mc

∂Mαβ

∂ζ
Fαβ = 0

δA
δS

: ∂µ

[

ρ
1

m
(∂µS + ζ∂µω +

e

c
Aµ)

]

≡ ∂µ(ρu
µ) = 0

δA
δρ

:
1

2m
(∂µS + ζ∂µω +

e

c
Aµ)

2 − η2

2m

∂µ∂µρ
1/2

ρ1/2

−mc2 + η2

8m

(

(∂µζ)
2

q
+

4

η2
q(∂µω)

2

)

− eη

4mc
MαβF

αβ = 0 . (40)
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Now we take the derivative ∂σ(δA/δρ) = 0 and substitute uµ = 1
m (∂µS+ζ∂µω− e

cAµ).
Then use continuity and replace the values of the variations with respect to ω and ζ
to obtain finally (34). Notice also that continuity is simply given by the variation of
A with respect to S, δA/δS = 0.

Finally to show that the actionA also gives rise to the second-order Dirac equation
we introduce the following expression for the 4-spinor Ψ [9]:

Ψ =

(

ψ

−ψ

)

with ψ = ReiS/η
(

cos θ
2
eiω/2

i sin θ
2
e−iω/2

)

(41)

In this representation the action (39) becomes

AΨ = − 1

2

∫

d4x

[

1

2m

(

iη
∂Ψ†

∂xµ
+
e

c
Ψ†Aµ

)

×
(

−iη ∂Ψ
∂xµ

+
e

c
AµΨ

)

−mc2Ψ†Ψ

− eη

2mc

(

1

2
MαβF

αβ

)

Ψ†Ψ

]

(42)

Then taking the variation with respect to Ψ† [9] we obtain

[

(

−iη ∂

∂xµ
+
e

c
Aµ

)2

−m2c2 − eη

2c
σαβF

αβ

]

Ψ = 0 (43)

where σαβ = (i/2)(γαγβ − γβγα). As with the Klein-Gordon equation, if we choose to
identify η = ~ then Eq. (43) reads

[

(

i~
∂

∂xµ
− e

c
Aµ

)2

− eη

2c
σαβF

αβ

]

Ψ = m2c2Ψ (44)

which is the second-order Dirac equation in the Feynman-Gell-Mann formulation [5].

5. Conclusions

In this work we have performed the relativistic extension of previous results connecting
the Boltzmann equation to the Schrödinger and Pauli operators. We have found that
the Fourier transform of the one-particle distribution function of the classic relativistic
Boltzmann equation with respect to the momentum variable can be mapped either
onto the Klein-Gordon or the Dirac equations. As in the non-relativistic case, the first
part of the mapping leads to a set of Euler equations for a compressible fluid. From
them, the analysis of irrotational flows coupled to the ansatz of separability applied to
the one-particle probability function leads to the Klein-Gordon equation for particles
with no spin. A similar analysis for rotational flows and the ansatz of separability and
addition leads to the Dirac equation for particles with spin η/2. The rules to calculate
the averages of physical quantities in the p-conjugate space are the four vector versions
of the rules found in the non-relativistic case and which read like the postulates of
quantum mechanics with η replaced by ~ [1].

There is a very interesting consequence to the ansatzes (a) and (b) imposed

on f̂ . As emphasized previously, these solutions form a very small subset of all
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possible solutions to the balance equations. Returning to the original Boltzmann
equation, we see that its right hand side is the collision integral that includes a first
approximation to the two-particle probability function f2(x1, p1, x2, p2) constructed
as a combination of products of one-particle probability functions. Independent of
the approximation used, f2 must be symmetric under the exchange of coordinates
1 ↔ 2, so f2(x1, p1, x2, p2) = f2(x2, p2, x1, p1) [6]. When the approximation for f2
used in the Boltzmann equation is adopted this symmetry will also hold true for
its Fourier transform f̂2(x1, y1, x2, y2). If now we invoke the separability condition

f̂2 = Ψ†(x′′1 , x
′′
2)Ψ(x′1, x

′
2) [1], and note that we are working with identical particles,

the functions Ψ must be either symmetric or antisymmetric under the exchange of
variables 1 ↔ 2 so that f̂2 will be symmetric. It may be possible to prove that the
case which maps onto the Klein-Gordon equation requires Ψ to be symmetric, while
the Dirac case requires antisymmetry. Such a proof would need a detailed study of
the Bogoliubov hypothesis that leads to the Boltzmann equation.

One last issue that we would like to mention relates to the Proca equations that
govern particles of spin 1 or higher. Since these can be developed from the Dirac
equation [10] it seems reasonable to think that there might be a new ansatz for f̂ that
would lead to the equations for higher spin. Unfortunately, we have not yet been able
to find a satisfactory derivation that would settle the issue either way. Perhaps these
issues should be the subject of further work.
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