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ABSTRACT: Surprisingly, macroscopic objects such as melting ice cubes and
growing stalactites approach nonintuitive geometric ideals. Here we investigate the
shape of dissolving cylinders in a large volume of water. The cylinders are oriented
vertically and consist of amorphous glucose or poly(ethylene glycol). The
dissolution causes density differences in the surrounding fluid, which induce
gravity-driven convection downward along the object. The resulting concentration
gradient shapes the cylinder according to fast dissolution at the tip and slow
dissolution at the base. The contour of the object approaches a power law of the
form z ∝ R2, where z is the vertical distance from the tip and R is the corresponding
radius. We suggest that this paraboloidal shape is the geometric attractor for the
dissolution of noncrystalline objects in the presence of gravity.

■ INTRODUCTION

Nature creates a wealth of macroscopic objects that are shaped
by the interplay of mass transport and local processes such as
phase transitions and chemical reactions.1 Familiar examples
include dendrites,2 icicles,3 and speleothems,4 which feature
characteristic shapes that are easily recognized but typically
difficult to explain in quantitative terms. Other examples are
generated by specific chemical reactions such as tubular
precipitation structures in “silica garden” systems5,6 and
ultrasharp tips produced for scanning tunneling microscopy
(STM) by electrochemical etching.7

The past decade has seen much progress toward
mathematical models that are based on realistic physicochem-
ical processes and are capable of describing the dynamics and
shape selection in such systems. Perhaps the most important
results of these efforts are the characterization of system-
specific geometric attractors. Similar to the platonic solids of
ancient Greece, some of these attractors are scale-independent
ideal forms. For instance, the intricate zinc metal leaves formed
by quasi-2D electrodeposition are scale-invariant fractals, and
their Hausdorff dimension is reproduced by diffusion-limited
aggregation models.8,9

Stalactites are another example that, despite individual
variations due to primarily external factors, obeys a geometric
growth law and a platonic ideal. These cave structures result
from the interplay of fluid flow, CaCO3 chemistry, and CO2
exchange between the thin solution layer covering the stalactite
and the cave atmosphere. In 2005, Short et al. analyzed the
stalactite shape in terms of the vertical height over its tip (z)
and the corresponding radius (R) and obtained at large R the
dependence z ∝ R4/3.10,11 This power law was found to be in
excellent agreement with the statistical average obtained from
photographs of natural stalactites. Despite major differences in

the physical and chemical processes, ideal dripping icicles obey
the same power law.12,13

The mathematical analysis of these two free-boundary
problems leads to the same nonlinear ordinary differential
equation for the asymptotic shape, but for icicles, atmospheric
heat transfer qualitatively takes the place of CO2 exchange. In
addition, both structures feature ripples around their circum-
ference, which in the case of icicles result from dissolved ionic
impurities.14 In the case of stalactites, however, the ripples
(crenulations) are closely linked to the hydrodynamics of the
thin water film.15 Lastly, we note that melting cylindrical blocks
of ice in warm air also generate bulletlike forms that are
reminiscent of the aforementioned examples.13

Here we report experimental data on a seemingly similar
system: the dissolution of a macroscopic amorphous object
under the influence of gravity. The dissolution process clearly
induces local density variations, which have the ability to trigger
fluid convection. Such density-driven motion is of great
fundamental and technological relevance capable of affecting
a broad range of processes by enhancing reaction rates,
sedimentation speeds, and heat transport.16,17 One prominent
example is the possible sequestration of CO2 in deep saline
formation for the mitigation of global warming, which also
depends heavily on dissolution-induced convection.18,19

In the following text, we will describe the dissolution of two
model compounds in a large water reservoir. The shape of the
dissolving object indeed approaches a geometric attractor, but
in contrast to the scaling law for stalactites and icicles, we find a
power law exponent of 2. We suggest that in the presence of

Received: September 8, 2014
Revised: November 17, 2014
Published: November 19, 2014

Article

pubs.acs.org/Langmuir

© 2014 American Chemical Society 4145 dx.doi.org/10.1021/la503562z | Langmuir 2015, 31, 4145−4150

pubs.acs.org/Langmuir


gravity, all amorphous objects undergoing dissolution approach
this paraboloidal form.

■ EXPERIMENTAL METHODS
α-D-Glucose (Sigma-Aldrich, anhydrous, 96%) is carefully melted at
150 °C. Notice that higher temperatures induce unwanted
caramelization.20 The molten sugar is poured into a cylindrical Teflon
mold (length 14 cm and inner diameter 2 cm) until it fills the entire
bore volume (approximately 44 mL). A threaded rod with a handle is
inserted as the sample cools to ambient temperature. After complete
solidification, the glucose cylinder is removed from the mold. To
minimize mechanical damage of the structure (such as thin cracks), the
Teflon mold has a small hole at its base that allows for pressure
equilibration. Furthermore, prelubrication of the bore with an oily
liquid facilitates sample extraction. After removal, the sample is
mounted onto a holder in an upright position. The cylinder is then
placed near the center of a rectangular reservoir (50 cm × 25 cm × 30
cm) filled with distilled water. The medium is covered to minimize
fluid disturbances and other undesired effects. All dissolution
experiments are conducted at room temperature. We also performed
experiments with samples produced in smaller Teflon molds (length
10 cm and inner diameter 2 cm) that showed no qualitative differences
in their dissolution dynamics but obviously resulted in shorter
dissolution times.
A charge-coupled device camera (COHU 2122-1000) is used to

collect image data of the dissolving object at 30 s intervals. In these
experiments, the system is illuminated by diffuse white light. The
glucose cylinder dissolves completely within approximately 130 min. If
the total amount of glucose were dissolved to produce a spatially
homogeneous solution, then it would have a concentration of
approximately 8 mM, which is 3 orders of magnitude less than its
solubility in water. We also studied the structure shortly before
complete dissolution. The latter experiments employed an optical
microscope (Leica DMIRB) and bright-field illumination.
Similar experiments are performed using poly(ethylene glycol)

(Sigma-Aldrich, average molar mass 4000 g/mol) that is melted at 65
°C. The total dissolution time in these experiments is about 320 min
and therefore 2.5 times longer than the time needed to fully dissolve
glucose samples of equal size and shape. In addition, PEG samples are
more prone to cracking and subsequent dislodging of macroscopic
fragments. To minimize this undesired effect, we varied the cooling
rate during sample preparation but could not achieve noticeable
improvements. Thinner structures show less cracking but also reduce
the time to complete dissolution.

■ RESULTS AND DISCUSSION

Experimental Observations. Figure 1 illustrates the
dissolution-driven evolution of an amorphous glucose (a) and
poly(ethylene glycol) (PEG) cylinder (b) in a tank holding 37
L of water. The solid cylinders are aligned vertically close to the
center of the tank. In both cases, the speed of the descending
tip is much faster than the loss of material in the radial direction
at the base (movies in Supporting Information). Accordingly,
the samples acquire a bulletlike shape during the dissolution
process. Notice that the initial structures are nearly perfect
cylinders with a short conical cap (Figure 1c) and a thin
needlelike tip. The latter features correspond to the shape of
the Teflon mold used to cast the samples. The fast dissolution
of these small features initially creates a rather flat top (second
frames in Figure 1a,b) that then sharpens again to form the
bulletlike shape. The structures shown in the third and fourth
frames of Figure 1a,b have similar shapes, suggesting the
possible existence of a geometric attractor. During numerous
experiments, we found that PEG samples are always more
prone to cracking than otherwise identical glucose samples. For

that reason, PEG structures tend to lose millimeter-scale
fragments, which impair subsequent analyses.
Several other features can be discerned from the image data

in Figures 1 and S1, and the corresponding movies (Supporting
Information). These features are related to local changes in the
refractive index that must result from local concentration
variations of the solute (i.e., glucose or PEG). First, we observe
a downward-directed motion of faint, granular intensity
variations close to the surface of the glucose cylinders. The
intensity variations can be seen in the first frame of Figure 1a.
Starting from the upper cylinder end, this weak signal decreases
within the first 30−50 min and yields a visually smooth surface.
However, we often notice three to four dark, vertical stripes on
the dissolving structure (second frame in Figure 1a). The
removal of the sample from the tank and a swift visual
inspection revealed no evidence of surface modulation that
could correspond to these stripes. We hence attribute them to
optical artifacts. Notice that for PEG samples we observe
neither the initial granular pattern nor the later stripes. Second,
we always detect exhaustlike flow at the bottom of both glucose
and PEG cylinders (Figure 1d,e). This downward-directed flow
starts during the first minutes of the experiment and continues
until the object is fully dissolved. The horizontal width of the
exhaust pattern decreases smoothly in the downward direction
(Figure 1d,e). We interpret this pattern as a region of higher
solute concentration within a thin layer of solution flowing
down the sample surface. This flow clearly must initiate some
fluid motion in the surrounding solvent that contains less or
essentially no solute.

Quantitative Characterization. To characterize the
evolving shape quantitatively, we extract the contour of the
dissolving object from images at different time steps. A
representative data set is shown in Figure 2 (red points).
Notice that this figure overemphasizes the width of the sample

Figure 1. Shape evolution of a soluble cylinder in a large water tank.
(a) Glucose cylinder 5, 50, 90, and 110 min after the start of the
dissolution experiment. The red dotted lines are spaced 2.8 cm apart
(the length interval used in subsequent analysis). (b) Poly(ethylene
glycol) cylinder at 5, 150, 200, and 250 min. Individual image size: 14
cm × 4 cm. (c) Photograph of the initial sample shape. The sample has
a diameter of 2 cm and a funnel-shaped cap. (d, e) Photographs of
patterns related to the solution’s refractive index at the base of a
dissolving glucose and PEG sample, respectively. Image size: 1.95 cm
× 2.05 cm.
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because of the different scalings of the ordinate and abscissa.
For consistency, only the top 2.8 cm of the object is analyzed.
This length yields a sufficiently large data set for fitting without
shortening the analyzable time span significantly. During the
late stages of the experiment, the tip shape was not fully
retrieved by our method. In these cases, we obtain a
discontinuous contour plot with some missing points. The
contour data are fitted with very good agreement to power laws
of the form z ∝ Rk, where z is defined as the vertical distance
from the tip and R is the local radius (black dashed line in
Figure 2a). For the example shown, power law exponent k is
2.06. We also calculate the residual values Δz between the
experimental data and the fitted power law (Figure 2b). These
values are small compared to the height of the sample and show
no noteworthy trends. The root-mean-square values are
typically less than 0.1 cm and generally decrease with time,
indicating better fits toward the end of the experiment.
Another approach to the analysis of power law data evaluates

the logarithms of the dependent and independent variables,
which should obey the linear equation log(z) = const + k
log(R). Compared to direct power law fits (Figure 2), this
method assigns more weight to the small z-value data at the tip
of the sample. Its results are illustrated in Figure 3a for the
example of six points in time during a representative glucose-
dissolution experiment. The topmost data set (orange circles)
represents the sample shape 122 min into the experiment, and
the (magenta) star-shaped markers characterize a much earlier
state (65 min). The data sets are analyzed individually by linear
regression, and the resulting graphs are superposed as
continuous black lines in Figure 3a. We find that the contours
are well described by the assumed power law, although the
three earliest data sets show small deviations at large R values.
During the early stages of the experiments, the shape of the

dissolving structure (and hence also k) is strongly affected by its
arbitrary initial shape. Figure 3b,c quantifies this process in
terms of the power law exponents found by direct fitting and
double-logarithmic fitting, respectively. In both cases, the data
converge toward an exponent of about 2. For the particular
initial shape and size of our glucose samples, this transition
requires approximately 100 min. The small difference in the

decay time of these geometric transients in Figure 3b,c is
attributed to a more rapid shaping of the top portion of the
sample and the difference in the weighing of data points
between the two methods. The analysis of several experiments
at t = 123 min yields averages of kpow = 2.06 ± 0.04 for direct
power law fits and klog = 1.99 ± 0.02 for log−log fits, which
strongly suggests that the dissolving objects become para-
boloids of revolution.
As additional evidence for the existence of the paraboloidal

attractor and to address the question raised in the title of this
Article directly, we create a master curve from the shape data of
a representative glucose dissolution experiment. The analysis
spans the time interval from 105 to 120 min, during which the
sample’s length shrinks by about one-half. The contours are
obtained at 30 s intervals and fitted to z = AR2 to obtain time-
dependent scaling coefficients A (Figure S3). Figure 4 shows
our data in terms of the dimensionless abscissa AR and
dimensionless ordinate Az. The rescaled contours are
represented by different color markers and fall on a unique
master curve. The superposed black curve graphs the expected
function Az = (AR) 2 and is in excellent agreement with our
measurements. Accordingly, we conclude that the dissolving
glucose structure indeed converges to a universal shape.
The theoretical work on the ideal shape of stalactites and

icicles notes that the simple geometric laws cease to hold close

Figure 2. Analysis of the top 2.8 cm of a glucose sample after 115 min
of dissolution. (a) Contour of the structure (red points) and fitted
power law (black, dashed line). The corresponding power law
exponent is kpow = 2.06. (b) Residual values in the z direction
between the experimental data and the fit. The dashed line
corresponds to the root-mean-square value of 0.056 cm.

Figure 3. (a) Double-logarithmic plots of the contour of a
representative glucose sample at six different times t after the start
of a dissolution experiment. The power law exponent klog, measured as
the slope of the linear fits (black, continuous lines), decreases
monotonically. The klog and t values are, respectively, 3.16, 65 min
(magenta stars), 2.53, 70 min (gray triangles), 2.29, 77.5 min (green
crosses), 2.23, 92.5 min (red dots), 2.12, 107.5 min (blue plus signs),
and 2.09, 122.5 min (orange circles). (b, c) Temporal evolution of the
power law exponent as obtained from several experiments. The data in
(b) and (c) are the results from direct power law fits and the linear
regression of double-logarithmic data, respectively.
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to the tip of the structures.10−13 This limitation is primarily due
to pendant drops detaching repeatedly from the structure’s tip
and is therefore characterized by the capillary length, which is
about 0.3 cm for stalactites. In addition, a smaller and hence
irrelevant cutoff is predicted by the theory. Because the
dissolution process does not involve pendant droplets but
rather smooth fluid flow, we further investigate the shape of the
dissolving structure close to the tip. Figure 5a shows an optical

micrograph of a glucose sample in the final minutes before its
complete dissolution. Because microscopy of the structure
within the water tank is technically challenging, we remove the
dissolving sample from the container and quickly dry it with
compressed air to stop the dissolution. As for the larger image
data, the contour of the microtip is in very good agreement
with a parabola (Figure 5b). This finding shows that the
paraboloidal shape persists down to a distance of at least a few
tens of a micrometer from the tip.
Phenomenological Model. Finally, we discuss the

dynamics of the structure once it has come sufficiently close

to its geometric ideal. Figure 6a shows the temporal evolution
of sample radius R at three different heights z0. These heights

are constant within the reference frame of the laboratory. The
end points (R = 0) of the individual data sets correspond to the
time at which the tip passes through the corresponding height
z0. The error bars correspond to the length of 1 pixel in our
image data. Notice that the rate dR/dt becomes more negative
toward the end of the individual graphs. To account for the
observed R(t) dependence, we propose a simple phenomeno-
logical model. It involves the dissolution rate −v0 of a planar
substrate surface and a curvature-dependent rate −δ/R that, in
this simple model, is directly proportional to the curvature 1/R:

δ= − −R
t

v
R

d
d 0 (1)

Notice that the last term in eq 1 creates faster dissolution for
smaller objects. Integration yields the implicit analytical
solution

Figure 4. Master curve of 30 rescaled contours of a dissolving glucose
structure in terms of dimensionless variables Az and AR, where A is the
time-dependent steepness of the parabolic sample contour (z = AR2).
Different color markers denote different times during the 15 min
interval toward the end of the dissolution process. The continuous
black curve is the graph of Az = (AR)2.

Figure 5. (a) Optical micrograph of the upper portion of the glucose
structure after 125 min of dissolution. Scale bar: 50 μm. (b) Contour
of the microtip (red dots) and the least-squares-fitted parabola (black
dashed line).

Figure 6. Analysis of glucose dissolution. (a) Sample radius R as a
function of time for three heights z0 in the reference frame of the
laboratory. The continuous lines are least-squares fits using eq 2, which
each yield a transport coefficient δ and a dissolution speed v0. The
latter parameters are plotted in (b) and (c) for a range of z0 values.
The colored markers correspond to the examples in (a). The
continuous lines represent the average values of δ and v0.
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where the constant R0 is the radius at some reference time (t0 =
110 min for the data in Figure 6a).
Least-squares fits of eq 2 are shown in Figure 6a and are in

excellent agreement with the measurements. Each data set
obtained at a particular z0 value yields approximations of the
model parameters v0 and δ. Their resulting height dependencies
are shown in Figure 6b,c, respectively. In both cases, the
parameters are essentially constant but show some weak and
seemingly periodic variations caused by the pixel-based nature
of the images. The data in Figure 6b,c have averages of v0 = (1.0
± 0.2) × 10−2 cm/min and δ = (3.8 ± 2.0) × 10−4 cm2/min.
This result for the dissolution rate v0 appears to have a plausible
order of magnitude. Furthermore, the value for δ is rather close
to the molecular diffusion coefficient of glucose at room
temperature (4.0 × 10−4 cm2/min),21 but this similarity needs
to be evaluated conservatively because transport in our system
is strongly affected by convection. We also emphasize that eq 1
cannot predict the convergence of an arbitrary shape toward a
parabola and it does not preserve a parabola when it is used as
the initial condition. It also yields less-satisfactory results when
compared to the downward motion of the tip (Figure S2).
Clearly a more detailed analysis of the convection−diffusion−
dissolution dynamics is needed, perhaps along the lines of
recent work on icicle melting.13

■ CONCLUSIONS
We have shown that in a large container the dissolution of
glucose and PEG cylinders results in paraboloidal shapes. On
the basis of our experiments, we propose that all amorphous
soluble samples approach this geometric attractor. Conse-
quently, the paraboloid is the platonic ideal for dissolution in
the presence of gravity. The power law exponent (k = 2) differs
from the exponent (k = 4/3) reported for dripping stalactites
and icicles that describe more pointed shapes. Moreover, one
can expect that dissolving objects converge to spherical shapes
in the absence of gravity- and density-driven convection.
We suggest the following mechanism: during the early stage

of dissolution, the solute concentration increases around the
sample surface. This increase induces density changes that
cause an unstable layering of heavy (solute-rich) solution over
the lighter solvent and hence a downward directed flow along
the sample surface. Notice that this motion is evident from the
exhaustlike pattern at the base of the sample. Because of
volume conservation in the incompressible fluid, this flow must
be accompanied by upward-directed fluid movement further
away from the sample, and it seems likely that the dissolution
process drives a large-scale convection roll centered along the
structure’s long axis. Moreover, we propose that the steady
convection down the surface causes a smooth concentration
gradient with very low solute concentrations around the top
end of the structure and higher concentrations at the base.
Accordingly, dissolution rates decrease from top to bottom and
therefore qualitatively explain the rapid loss of material in the
tip region and the much slower loss at the base. We
reemphasize that these rates are solute-dependent as
exemplified by the two examples studied here.
This convection−dissolution mechanism is affected by solute

diffusion that defines the thickness of the solute layer around
the dissolving structure. This thickness increases from zero at

the tip to positive values at the base according to the solute
diffusion coefficient and the velocity profile of the surrounding
fluid. We estimate that the transit time of the fluid down the
structure is on the order of minutes and hence should confine
the solute to a rather thin (possibly submillimeter) envelope
around the structure. Future experiments should aim to
characterize this feature quantitatively and could be based on
measurements of the solution’s refractive index or optical
rotation. Other experiments are needed to analyze the flow
velocities in the system. However, such measurements are
complicated by local density variations.
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