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Abstract

Certain bacteria form filamentous colonies when the cells fail to separate after dividBagillus subtilis, Bacillus ther-
mus, andCyanobacteria, the filaments can wrap into complex supercoiled structures as the cells grow. The structures may be
solenoids or plectonemes, with or without branches in the latter case. Any microscopic theory of these morphological instabil-
ities must address the nature of pattern selection in the presegraeuii, for growth renders the problem nonautonomous and
the bifurcations dynamic. To gain insight into these phenomena, we formulate a general theory for growing elastic filaments
with bending and twisting resistance in a viscous medium, and study an illustrative model problem: a growing filament with
preferred twist, closed into a loop. Growth depletes the twist, inducing a twist strain. The closure of the loop prevents the
filament from unwinding back to the preferred twist; instead, twist relaxation is accomplished by the formation of supercoils.
Growth also produces viscous stresses on the filament which even in the absence of twist produce buckling instabilities. Our
linear stability analysis and numerical studies reveal two dynamic regimes. For small intrinsic twist the instability is akin
to Euler buckling, leading to solenoidal structures, while for large twist it is like the classic writhing of a twisted filament,
producing plectonemic windings. This model may apply to situations in which supercoils form only, or more readily, when
axial rotation of filaments is blocked. Applications to specific biological systems are proposed.
© 2003 Elsevier B.V. All rights reserved.
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1. Introduction

Many structures in the biological world grow so slowly that they adopt a shape that can be considered as a
minimizer of some configurational energy associated solely withrtfeenal structure. The logarithmic spiral of
the nautilus shell is an example. It enlarges through a process of differential growth whereby its shape represents
the accumulated history of identical events, save for scale chdhgehus, the microscopic rules of growth are
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essentially unchanging as the three-dimensional form develops, and the properties of the external environment do
not fundamentally determine the form.

Environmental effects on the development of biological forms are well known. Consider the formation of ten-
dril perversions in climbing vineR2,3]. A perversion is a junction between regions of opposite helix handedness
that forms as an initially straight tendril first attaches to a support structure and then, through the activation of
tension-sensitive receptors, undergoes a helical instability. The constraint of fixed ends enforces the formation
of a structure with zero net twist, consisting of concatenated regions of opposite chirality joined by a transition
region—the perversion. Thus, the interaction with the external environment fundamentally alters the pattern forma-
tion through the tension induced by a point contact.

Even more complex phenomena occur for those structures whose very process of growth indat&san
force, as with motion through an environment that offers viscous resistance. These new forces can dramatically alter
the ultimate configuration, and the present paper is a case study in such phenomena. We focus on a system in which
the formation of patterns occurs through a finite-wavelength instability in which the process of growth introduces
an intrinsic time-dependence to the control parameters. The resulting bifurcation problem is nonautonomous and
can exhibit a rich phenomenology as the intrinsic time scale of growth competes with those of the various modes
of instability. This competition places the problem among the class of so-called “dynamic bifurcations”, of which
many examples are of continuing interest. These include instabilities in directional solidification in which the initial
acceleration of the interface from rest provides the nonautonomous chj#dctieigering instabilities of magnetic
fluids under the influence of time-dependent magnetic i@, and separatrix crossing in Hamiltonian systems
viewed as models for stellar fissi¢r.

Motivation for this focus comes from the phenomenon of supercoiling exhibited by filamentous colonies of
Bacillus subtilis and other bacterid. subtilis cells are rod-shaped bacteria, typicallyrh in length and slightly
over 1.5um in diameter. Wild-type rod-shaped bacteria grow by extending along the cylindrical axis of symmetry,
and then dividing and separating in the midfe9]. Under certain conditions, the cells of some mutant forms fail
to separate upon replication, leading to a long chain of cells. Other species have also been observed to form chains,
including Escherichia coli [10], Cyanobacteria [11], Myxococcus xanthus [12], and Mycobacterium tuberculosis
[13]. Under certain growth conditions, strains@fsubtilis, Bacillus stearothermophilus [14], Thermus [15], and
Mastigocladus laminosus [16] form complex braided structures. Helical (or, in the jargon of DNA biophysics,
“solenoidal”) morphologies have also been obsefigd. Of these examples, the supercoiled structured efib-
tilishave been studied most extensividlg, 19] Recent experimental wofR0,21]has indicated that the cell wall of
B. subtilis contains helical protein structures. These may supply the molecular imprinting responsible for this mor-
phological development, in a manner analogous to the way microtubules control macroscopic handedness in certain
plants[22], but as of yet no successful microscopic theory for the formation of these supercoiled structures exists.

Throughout much of the development of complex structurds subtilis, the lengthL of the elongating chain,

a single cell thick, grows exponentially in timg, o« exp(ot), with the growth rater ~ 2 x 10~*s~1. Moreover,

material cross-sections of the cells rotate relative to each|@BEso that the angle describing the relative orientation

of any two material cross-sections is proportional to their exponentially increasing separation. In one of the earliest
observations of supercoiling B. subtilis, the ends of the fiber adhered to a spore coat, prohibiting axial rotation

of the endq18]. Mendelson18] supposed that this blocked rotation leads to torsional stress, eventually causing
supercoiling (seé¢ig. 1). Since this discovery, it has been shown that adhesion is not required for supercoiling
[19], and that many different factors such as temperature, pH, and the concentration of ions such as magnesium and
ammonium affect the morphology of the cdi¢gl,25] The evolution of the coils after the formation of the first braid is
remarkable. The first plectonemic braid, essentially a filament that is two cells thick, continues to grow and eventually
reaches a critical length of order 1@fn, after which it supercoils to form another braided structure which is four
cells thick. This process can repeat many times, leading to a hierarchy of braids and eventually a macroscopic object.
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Fig. 1. Phase contrast micrographs of growigsubtilis spores with attachment of both cell poles to the spore coat. The series consists of
different filaments at various stages of growth. Scalebd0pum. Figure courtesy of N. Mendelson; 9d8].

In this paper, we study in detail Mendelson’s blocked rotation mechanism of supercoiling in a growing closed
loop, and focus on the formation of the initial braid. While not yet explaining the microscopic physical origin of
the coiling instability, we elucidate the rich dynamics that occurs when growth competes with blocked rotation, and
thereby help constrain more detailed theories.

With this focus we exploit several simplifying assumptions in our analysis. First, the chain of cells is treated
as an elastic filament with uniform properties along its length. There is evidence that this assumption holds until
times comparable to a few doubling timeso(~1), but may be violated later. For example, when the chirality of
nutrient molecules in the growth medium is reversed, the supercoils unwind and even begin to wrap up in the
opposite handedness, but the hairpin bends from the original braid réae&iThus, some of the deformation of
the growing filament becomes permanent. This phenomenon is reminiscent of the morphological development of
plant tendrils, in which young and flexible tendrils age with time, becoming woody and locked in a fixed&Hape
On the time scales that will concern usg o1, single fibers have been shown to behave like elastic rods, with a
bending modulust = 10-12erg cm[28], as discussed further Bection 2.4

A second major simplification we introduce is to treat the growth rate as constant in time, independent of stress
and filament geometry. Again, the permanent hairpin bends in the chirality reversal experiment show that this
assumption cannot hold everywhere along the filament for all times after the first braid forms.

Together with the observation that viscous effects dominate inertial effects in the low Reynolds number environ-
ment of the growing fibers, these assumptions lead to the model studied in this paper: an elastic ring with intrinsic
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twist suspended in a viscous fluid and lengthening at an exponential rate. Our work is complementary to that of
other investigators. For example, Shelley and U2& studied the Euler-like buckling of a growing liquid crystal
filament, using a local drag model for the linear stability of a growing loop, and incorporating nonlocal Stokesian
hydrodynamics to study the pattern formatj80]. Drasdd31] studied similar patterns in the context of the growth

of single-cell-layer tissue sheets. Klapg82] has studied inertial writhing instabilities apen rods subject to
exponential growth, as well as the relaxation to equilibrium of twisted rings in the absence of growth. Goriely and
Tabor[33] introduced the idea dfvist depletion as a possible mechanism driving bucklingBrsubtilis.

Our analysis begins with a generalization of the kinematics and dynamics of slender filaments to account for
growth.Section 3reats the growing elastic loop, beginning with a qualitative discussion of the instability. The linear
stability analysis is greatly simplified by the use of the natural frame, so in this section we include a self-contained
summary of the properties of the natural frame. We present a quasi-analytic treatment of the linear stability of the
loop, and then present numerical simulations of the full nonlinear prol8ewation 4is the conclusion.

2. Kinematics and dynamics of growing rods
2.1. Centerline kinematics

In this section we extend the standard kinematics and dynamics of elastic rods to allow for growttiehete
the arclength measured at timérom one end of an open rod, or from a fixed material point for a rod closed
to form a loop. Therr (s, ¢) is the position in space of the centerline of the rod with arclength coordinate
time ¢. Since material points on the rod centerline are convected along the rod by growth, fixed valdesnait
correspond to fixed material points. We choose to label the material points of the centerline at all times by the
arclength parameterizatiog at a fixed timer = 0. We will study exponential growth, for which= exp(o?)so.
Note that the partial derivatives with respecktands commute becauseandr are independent variables:
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by the chain rule.
The velocity of a material point is the time derivative of position at fixgd

ar
V(S07 t) = =

" ®)

N
It is convenient to develop the equations of motion in termsrather tharyg, so that

ar
V(s, 1) = 5

as

ot

or

5 os

(4)

s t
To avoid confusion, we will explicitly denote which variables are fixed when finding the partial derivatives with
respect tor. However, since partial derivatives with respectstwill always be taken at fixed, we will write

3/ds; = 3/s.
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Fig. 2. The material frame. The unit vec#@yris tangent to the rod centerline. The other members of the orthonormal feamegé&,, point to
material points on the rod’s surface.

The first term ofq. (4)corresponds to the velocity of the centerline in the absence of growth, and the second term
arises from growth-induced convection. Henceforth we will specialize to exponential growth, forastidly, = os
and

or

_Br
T oo

r
\% + soés, (5)
N

SO— =
os ot

N

whereéz = 9dr /s is the unit tangent vector of the centerline. Although the velocity of a material point may seem
fromEg. (5)to depend on the arbitrary choice of origin pEg. (3)shows that the velocity is manifestly independent
of this choice. Note thaq. (5)implies thatés - dv/ds = o.

2.2. Choice of frame and growth model
In Kirchhoff rod theory[34], the configuration of a rod is completely specified by the orientation of the material

orthonormal framéé;, &, &3}. The vector€; andé, point to material points on the rod surfa¢eq. 2). As the rod
bends and twists, the positions of these material points change, causing the material frames[85iptate

0e;

a_l =Q x €, (6)
s

0e;

| =wxe. @)
or |,

The vector® describes the bending and twisting strain at a given instantasthe angular velocity of a material

frame at a given material poing. In general ande depend on the choice of material frame. Once the choice is
made for a given configuration, say the stress-free state, then the choice is specified for all configurations. In the
classical rod theory without growth, it is natural to alignandé&, with the principal axes of the cross-section. If

the cross-section is circular, as we henceforth assume, and if the rod is straight in the absence of stress, then thel
are many equivalent natural choices. For example, if the rod aligns alongakis when it is stress-free, then

{&1, &} = {X, ¥} is natural. Any uniform rotation of this frame abdiis equally convenient; all these choices lead

to € = 0 in the absence of stress.

If the rod is curved in the stress-free state, then the direction of curvature breaks the rotational symmetry of
the circular cross-section and provides a natural choice for the directignsaofi&, e.qg. if the rod has a helical
stress-free state, then we may tée= i andé& = b, wheref andb are the unit normal and binormal of the
Frenet-Serret frami@6—38] respectively:

% _ 8)
as
e N

n_ —Kk&3 + b, 9)

B
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Fig. 3. Two different modes of growth. In (a) and (b), the rod lengthens without rotation. In (c) and (d), cross-sections at fixed material points
rotate with an ever-increasing angular velocity.

— = —1A, (10)

wherex is the curvature and the torsion. Thus® = k& + t0€&;3 for this frame in the absence of stress, wheye
is the curvature and, the torsion of the helix.

Whenkg = 0, the helix of the last example degenerates to a straight rod with spontaneougtWig will
show below that ikg = 0 and the cross-section is circular, thgrcan be eliminated from the equations of motion
for an inextensible (non-growing) rod, and therefore does not affect the rod shape and dynamics. Heweser,
physical meaning for growing rod, even ifcg = 0 and the cross-section is circulig. 3illustrates two kinematic
possibilities for growth. Each sub-figure shows the stress-free configuration of a growing rod at two different times.
In all cases, the left end of the rod has a fixed position and orientation. Two growth schemes are shown; in the
growth scheme dfig. 3a and b, the material frames are carried to greater valuglyofirowth and have no angular
velocity. A line of material points parallel to theaxis at time remains parallel to the-axis at timer + Az (Fig. 3a).
However, the pitch of &elical line of material points increases as the filament grdwvig.(3b). Since the angular
velocity is zero, the number of helical turns is constant.

Fig. 3c and d illustrates a growth scheme in which the cross-sections rotate with an angular velocity that increases
with arclength. In this case, a line of material points parallel toztaais at timer wraps around the rod at time
t + Ar (Fig. 3c). As the rod grows, the material frames are carried to greater valudsubfalsorotate relative to
the fixed frame at = 0. In this paper, we will study the growth modelfify. 3c and d since it describes the relative
rotation of the cross-sections of tBe subtilis fibers[39,40] Definef(sg) = cos 1(&1(0) - & (so)) as the angle
between the orientation of the (zero-stress) material framesaids = 0. We will suppose thai(sg) increases
linearly with sgp and exponentially in time with rate:

0(sg) = Toso eXP(ot) = 10s. (112)

Sinced(so, 1) ands(so, 1) increase in time with the same exponential rate, a helical material line on the rod surface
with pitch 2t/tg remains a helical line with the same pitch as time padsigs &). Thus, the natural choice for the
material frame in the stress-free state is

&, = cos(sto)X + sin(s10)Y, (12)
& = —sin(stp)X + €os(s10)Y, (13)

&=2 (14)
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Fig. 4. Geometrical origin of compatibility relations.

Note that = 7083 andw = ostoés for this frame;w # 0 since the material frames mustate to maintain
zero-stress as the rod grows (in contrast to the growth modébof3a). The parametery not only characterizes
the configuration of the natural material frame (as in the inextensible helix examplasbtite mode of growth.

2.3. Compatibility relations

Geometry relates the strain vect@rand the angular velocity. To see how, considd¥ig. 4. The lower curve
represents the centerline of the rod at timand the upper curve represents the centerline of the rod at tinuk.
The labeled points on the upper curve have the same material coordinate as the corresponding points on the lowe
curve; thus, the arclength parameter fgris sexplo df) ~ s + so dt, while the arclength parameter foy is
(s +ds) exp(o df) =~ (s+ds)(1+ o dr). Let Ry be the rotation matrix carrying the framegatto ps, R2 the rotation
matrix carrying the frame gb3 to ps, R3 the rotation matrix carrying the frame ai to p», and R4 the rotation
matrix carrying the frame ai, to p4. Furthermore, ley andK denote the infinitesimal rotation matrices associated
with the rotation vector€ andw, respectively (€.9J4s = €upy R, Whereeyg, is the alternating symbol). From
the definitions of the rotation matriceRpR1 = R4R3, Or

[+ (L+od)ds J(s+sod, t +dDI[I + dt K(s, )] ~ [I + dt K(s + ds, )][I + ds J (s, D], (15)

wherel is the identity matrix. Expandingq. (15)to O(ds dr), we find

oK aJ aJ

K—ES-FGS%‘FO‘J‘F[J,K], (16)
oK aJ

K—ESO‘FO‘J“F[J,K], (17)

where [ ] is the commutator. In terms of components in the material frame:

0821 ow1

——| = — — 0821+ $2ow3 — 23w2, (9
a |, Os
082 0
2| _ 0wz 0822 + 23w1 — 21w3, (19)
a |y, as
082 0
Py _ 998 0823 + $2102 — 2201. 20
ot ds

Ko}
These compatibility relations show how strain changes in time due to non-uniform rotation rates (the first term in

each ofEgs. (18)—(20), growth (the second term in eachBfis. (18)—(20) and the geometric coupling between
twisting and bending (the last two terms in eacteof. (18)—(20) The compatibility relatiorequation (20will
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be used below to determine the dynamics of the twist skgairNote thatEq. (20)can be re-written in a form valid
for arbitrary growth law$41—43}

923|  Ows o ar av oar  Pr v

o | T o % e T N o

50

(21)

2.4. Constitutive relations

The Kirchhoff constitutive relations for a rod with intrinsic twist relate the moment on a cross-section of the rod
to the straif44]:

ar 9% .
M=A|— x — |+ C(£23 — 10)€s3. (22)
ds 352
Note thatdr /ds x 8r /8s? = 2181 + 2,&. Eq. (22)implies that in the stress-free state (definedvby= 0), & and
& rotate arounds with ratetg = & - 9&;/0s, andés is constant.
The force and moment balances for a growing rod are the same as the balances for an inextensible rod:

oF

— + fext = 0, (23)
os

oM

¥+e3><|:+mext=oy (24)

whereF(s, 1) is the force the internal elastic stresses exert through the cross-section #ite portion of the rod

with arclength less then The external force per unit lengthy: and moment per unit lengthey; are measured per

unit arclength. In an alternative but equivalent formulation, the elastic force and moment per unit length arise from
variational derivatives of the energy:

E= / ds (%KZ + %(9 — 20)% — A(s, r)) : (25)

wherex? = |9%r /3522 = 22 + £25 is the square of the curvature, aridthe Lagrange multiplier associated with
the constraint of prescribed length,= Lg exp(or) [41,42]

The external force per unit lengty; consists of a viscous drag force per unit length and an artificial short-ranged
repulsive force that prevents self-crossifigi = fyisc+ fself. The external moment per unit length is purely viscous:
Mext = Myisc. The repulsive force takes the form:

fself(S, t) = [ M ds/a (26)

s—s'|>8 [r(s) —r(sH|"

wheres is a short-distance cutoft, = 14 simulates the repulsive part of a Leonard—Jones potential and 80

is sufficient to keep the filament from self-crossing. The viscous force per unit l&agtepends on the velocity

field of the ambient fluid, which in turn is coupled to the motion of the filament. For simplicity, we do not solve the
full hydrodynamic problem, but instead use resistive-force theory for slender Hd&eResistive-force theory
amounts to the leading terms in an expansion in the aspectrdtiof slender-body theory, which has a nonlocal
relation between force and velocity due to incompressibility. To leading order, the nonlocality can be neglected,
leading to the local drag law:

fuisc = —¢1(V — 8383 - V) — §||é3é3 - V. (27)
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Likewise, we take the viscous moment to be proportional to the tangential component of the angular velocity of the
material frames:

Myisc = —({RE3E3 - @. (28)
The friction coefficients irEgs. (27) and (28are
4]'[7] 27.”7 )
B N =4 29
= log(L/2a) + (1/2)° g log(L/2a) — (1/2)° (R nac, (29)

wheren is the viscosity of the ambient fluid, the total contour length of the rod, anthe rod radius. For simplicity,
we disregard the anisotropy and define ¢| = ¢ = 4nn/log(Lo/2a), whereLg = L(¢t = 0). Note that we have
kept only the leading order terms in the logarithm of the initial aspect ratio. Thyss —¢v. These assumptions
lead to qualitative differences with the exact theory. For example, the neglect of hydrodynamic interactions implicit
in the local drag approximation &qgs. (27) and (28vill affect the time-dependence of the shape of the rod near
self-contact points just before contact (see, B@]). Also, the assumption of isotropy implies that the center of
mass of a deforming closed loop remains fifé@], whereas in the exact theory the center of mass can move.
These limitations of the simplified hydrodynamic theory do not prevent it from capturing the essential physics of
the phenomena we wish to study, such as the onset of buckling instabilities and the subsequent evolution of comple»
shapes.

Itis convenient for the numerical calculationsSction 3.40 write the equations of motion in terms of position
r and twist strain23. To this end, substitute the constitutive relat{@8) into the moment balanaquation (24}o
find the forceF on a cross-section:

a3 ar  9°r ar
F=—A—+C(23—10)— X ~— — A—, 30
a3 T C(B Ty X ge — Ay (30)
and the balance of the tangential components of the moment per unit length:
0§23
C— = (Rws3. (31)
as

The unknown functiom (s, 7) occurs inEqg. (30)because the moment balaremuation (24joes not determine the
tangential component df. CombiningEq. (30)with the force balancequation (23jand the expressions fgy;
yields

or Aa“r +Ca @ )8r 9%r ] Aar ot 32)
—| =—-A— — —T)— X —S|——|A— .
$arl, ot Tas |2 s T a2 s | Tas |

Eq. (32)has the same form as the corresponding equation for the overdamped dynamics of an inextensible rod, bu
in Eq. (32)thes-domain (length) depends @enTo determineA, evaluateds - 0v/ds = o usingEq. (32)
FPA P Fr A a°r P c@ )8r ¥r ¥
R u— = —A— . — — (O — . —1T0)— + — X ——.
a2 952 052 a5 a0y e 3T 0% o T a3
One can show that the functiotniin Eq. (33)is identical to the Lagrange multiplier function Bfy. (25)
To complete the determination of the dynamical equations, the torque bgBi)cEnd compatibility relation
(20)yield
9§23 92823 Ot o 9%r or
_ = _ — X — - —,
or a2 TP s T2 e

S0

(33)

(34)

where the twist diffusion constam? = C/¢Rr. Since resistive-force theory includes the leading order terms in the
expansion i/ L of the hydrodynamic drag force and torque, our equations are asymptotically consistent.
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The boundary conditions which accompdtys. (32)—(34¥epend on the situation. For a filament with free ends,
the appropriate conditions alé = 0 andF = 0. For a closed loop, the variables?, w, F, andM must be periodic
in so with period 2t Rp.

2.5. Change of basis

We close this section by returning to the claimSsction 2.2hat the spontaneous twigg does not affect the
shape of an inextensible rod with circular cross-section and vanishing spontaneous cugvatireConsider such
arod with® = 7p&3 in the stress-free state. We can eliminaidrom the problem using the freedom to redefine
the material frame. If

& = & cosp — &sing, (35)
& = & sing + & cosg, (36)
then
| = §21C08¢ — §22Sing, (37)
2, = —215ing + 22 COSP, (38)
5= 23+ ?Tf (39)
and
] = w1CO0SP — wp Sing, (40)
wh = —w1 SiNg + wp COSA, (41)
w5 = w3+ 88_4; . (42)

Under this change of basi®; &) + 25€, = 2181 + 228, for any ¢. Choosingp = —s1o fixes £25 = 0 in the
stress-free state. Thus

M = A(2,8] + 25&) + C2%& (43)

the parametety has been eliminated from the constitutive relation. Note that our argument up to this point holds
for a growing rod as well.
Now consider the effect of the transformati(8b) and (36)on the compatibility relations. Once again, even in
the presence of exponential growth, the compatibility equations take the same form, e.qg.:
952- O
73 = a—f — 082 + Qi) — 250]. (44)

50

For an inextensible rody; = w3, sinces = so if o = 0. Therefore, the change of ba$&5) and (36)does

not affect the rotational drag or translational drag equations, and we concludg thatot a physical parameter

for an inextensible rod with circular cross-section and no spontaneous curvature. However, we expect the opposite
conclusion for a growing rod, since we sawdaction 2.2hatzg has physical meaning. In fact, onggs eliminated
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from the constitutive relation usinggs. (35) and (36)a newrp-dependent term appears in the torque balance
equation (31)

8[2/3 ,

" = (R(w3 + 05T0). (45)

Thereforerop cannot be eliminated from the equations of motion for this mode of growth.

C

3. Thegrowing elastic loop

In this section we treat the problem of a growing elastic loop with preferred twigts described irbection 1
this example is motivated by the growth Bf subtilis filaments from a spore. Sometimes the ends of the growing
filament stick to the spore coat, leading to a closed [d&). The filament lengthens, depleting the twist, but the
closed geometry prevents the rotation of cross-sections normally seen in unconstrained filaments. Thus, twist stres
builds up, and the filament eventually writhes and coils. Although the model does not address the writhing and
coiling of unconstrained filaments, it displays some of the features exhibitBddoatilis loops.

3.1. Buckling and writhing instabilities

To study the stability of an exponentially growing circular loop with preferred twgstwe begin with the
unperturbed solution. The unperturbed loop lies inzhe 0 plane and has radiu® = Rgexp(ot). Since each
material point on the filament moves radially outward with fixeth unperturbed growth, the angular velocity
vanisheswp© = 0, where we use the superscript, (0), to denote the unperturbed value. The bending part of the
energy(25) decreases exponentially as the loop grows becaifse= 1/R. However, the twist energy density
increases because the closed geometry prevents the cross-sections from rotating with theyetquired to attain
the twist state of zero energy. If we assume for simplicity mﬁ% (s, = 0) = 10, then the exponentially increasing
length leads to an exponentially decreasing twist den@if&(s, ) = 10 eXp(—ot). To summarize, the moment on
a cross-section takes the form:

A
MO = e e %2+ Cro(e7% — ). (46)

Note thatitis much more convenient to exprigss terms of the cylindrical coordinate unit vectdzs p, ¢} instead
of the material frame vector{:é(o), ééo), ééo)}, sinceéio) and égo) continuously rotate abo@o) ass increases. A
choice of frame which does not rotate about the tangent vector as arclength increasatsiial drame[47]. We
will use the natural frame extensively in the linear stability analysiSaiftion 3.3

Since the filament is simultaneously bent and twisted, moment bafadgenplies a component of force in the
z-direction, whereas force balan(28) leads to a tangential component proportional to the growthorate

C
%(e—m‘ _ 1)2 (47)

FO = _roR%p +
The tangential force on the cross-section is compressive and grows exponentially in time, eventually leading to an
Euler-like buckling instability wheroR? ~ A/R?, or R = Ry ~ [A/¢o]Y* (cf. [29-31). The Euler buckling
time scales ag ~ o~ 1log[A/¢oR{] (When A/¢oRE < 1, the loop begins to buckle at= 0). In Section 3.3we
will refine this estimate using our linear stability calculation and see that the appropriate buckling time at small
actually scales as~2, since in this regime, a growing perturbation does not become noticeable until long after the
perturbation begins to grow. However, our numerical calculatio®gofion 3.4eveal that the correct picture is even
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more complicated: for sufficiently smaihRo, a secondary instability arises and grows before the linear instability
has significant amplitude. In addition to the Euler buckling, there is also a writhing instability. The magnitude of
the twist moment increases @sro(1 — exp(—ot))| as the filament lengthens, leading to a writhing instability (like

that of a twisted rind48-50) when Cto(1 — exp(—o1)) ~ A/2nR, or tw ~ o~ tlog[l + 1/79Ro] (assuming

A ~ C). Note that the critical time for writhing isy ~ o~tlog[1/Roto] for Roto <« 1, andny =~ 1/0Roto for

Roto > 1. The sense of rotation of the cross-sections of unconstrained filaments determines the handedness of
the coils that form after the instability of the ring: positivg (counter-clockwise rotation when viewed from the
direction of increasing) leads to right-handed plectonemic braids. Note that drag is the ultimate cause for the
Euler buckling instability; once growth ceases, the buckled filament relaxes back to the unperturbed circular shape.
Since the writhing instability arises not from drag but instead from the frustration of growth-induced twist stress,
the braided post-instability shape remains after growth ceases. For small en®gglve will see inSection 3.4

that the small intrinsic twist biases the Euler buckling, leading to solenoidal shapes, which relax to plectonemes if
growth halts after a sufficiently long time. Observations of the growing fibers suggest that writhing is the dominant
mechanism in the instability of a closed lod8]. UsingA = 10 2ergcm[28],0 = 2x 10 4s™ 1, L = 10-3cm,
a=3x10"2cm, and; = ¢, ~ 10 Lergs/cni (seeEq. (29) leads to A /zo]Y/* ~ 150um, which is much larger

than the observed critical radius and implies that growth-induced Euler buckling is not important. Thus, we can
use the critical radius of the twisted ring to estimageassumingrg is comparable to or smaller thariRg, where

Ro is the initial radius, and usin§s ~ 2 x 10~%cm as the experimentally observed critical radil&], we find

10 ~ 10°cm™L. This twist rate corresponds to a few turns per cell. It is intriguing to note that the corresponding
length scale is close to the pitch of helical filaments of mbl, a recently discovered protein which resides near the
cell wall and plays a role in maintaining the shapdo$ubtilis cells[51].

3.2. Thenatural frame

Before studying the evolution of small perturbations of the growing circular shape, we consider the choice of
representation. Since only the shape and twist are of interest, it is convenient to use an intrinsic representation, such
as the material frame. However, we saw in the solution of the unperturbed probBectdn 3.1that the natural
frame leads to further simplification. The advantages of the natural frame over the material frame are even greater
for the linear stability analysis, and more generally for the full nonlinear propiens2]

In a natural orthonormal frami@1, fio, &3} the instantaneous rate of rotationfgfaboutés is zero[42,47,52]

N2 _ (48)

os

A rotation of{f1, Ao} aboutés by uniform (arclength-independent) angle leaves the condii8hinvariant; every

space curve has a family of natural frames, the members of which are related to each other by rotation through a
uniform angle. To construct a natural frame from the material frénes,, &3}, rotate the material frame aty

minus the accumulated rotation angle= fg ds’ 23:

fi -

i1 = cosve — sinvéy, (49)
fip = Sinvé, + cosvéy. (50)

The natural frame is nonlocal in the sense that deformations of the filament centerline in the'regicaffect the
natural frame at.

Our formulas can be further simplified with complex notation. For example,=f f; + if2, thenEgs. (49)
and (50)become

€= (& +i&) €. (51)
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The vectore is a complex normal vector. Note that e = O; thereforee - de/ds = 0. Furthermore, the defining
propertyfs - 9f2/ds = O impliese* - 9e/0s = 0. Thus,0e/ds is proportional tas. In analogy with the Frenet—Serret
equationdf/ds = —«t, we define the complex curvatudevia

a
%€ _ _ye,, (52)
os
where
. 0e 063
U=—8& —=€- —, 53
<3 as € os (53)
W= (—i21 + 2) €7, (54)

Also, the rate of change alongof the unit tangent vector is the complex curvature times the complex normal

vectors:
083 1
= S e, (55)

Note that rotation of a natural frame abdgtby a uniform angle leads to a constant shift in the phasé.dfor
example, the natural frame arising from the construc{®) and (50)applied to the Frenet—Serret normal and
binormal has

e=(N+ib) exp(i/tds) , (56)

since torsion is the rate at whi¢handb twist around the tangent vector. The corresponding complex curvature is

WEs = kexp (i / T ds) ; (57)

the ratio of¢ and¥rsis a constant phase.
To complete the specification of the kinematics of the natural frame, we introduce the complex angular velocity
describing the rate of change with time of the unit tangent vector:

dé3

I = , 58
€ (58)
T = (—iwy + wp) €7. (59)
In terms of the natural frame variables, the compatibility relatid®3—(20)become
o oI1 . . §
—| = — —o¥ — iYw3(0) + IlI// ds’ Im@* ), (60)
ot 5o as 0
as2 a
LB I8 o+ Imwr). (61)
or |y, ds

The integral inEq. (60)reflects the nonlocality of the natural frame, and arises from the temporal rate of change of
v

v
ot

a

50 ot

sp €’
f 23(5, 1) ds’, (62)
s0 Y0
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30 0

=1 = /0 23(sp €, 1) € dsp, (63)
50

¥ ST a0

= = / [—3+oszg] ds'. (64)

ot 5o 0 ot

Eq. (60)follows from Egs. (64) (18)—(20) and the identity¥21w> — 22w1 = ImWP*IT).
In the natural frame variables, the moméhiobeys

M = AJi(We* — U¥e) + C(23 — 10)83. (65)
Just as irBection 2.4moment balancé4) determines the perpendicular component of the force on a cross-section:

F=Fé+ 3 FL+eF)), (66)
w .
F, = —Aa— + 1CW¥($23 — 10). (67)
A

Recall thatF; is not determined by moment balance since only the perpendicular componéresisfEq. (24)
F) is determined by the conditid# - dv/ds = o.
Defining the tangential and perpendicular compongipisnd f of the force per unit length:

oF 1, .
g=e3f\|+é(€ fL+ef]), (68)
it follows from Egs. (52), (55), (66) and (6That
oF)
fi=—+ —(WS* + o) (69)
and

8!1/
=Y —-A—

3
-2 Cg[llf([?:g —10)]. (70)

Note f = a(F) + A|W|2/2)/0s = —3A/ds; in terms of fj and f|_ the conditiorés - dv/ds = o becomes

i 1

™ f v — _fJ_ (71)

fo =
Finally, the force per unit length determines the complex angular velocity through the relatiens)F/as and
€-0Vv/ds =11, or

¢II = % + Y. (72)

Likewise, the tangential component of the angular velocity is givelady31) In summary, the equations of motion
for the filament in the natural frame aEgs. (60) and (61)69)—(72) and(31).

3.3. Linear stability analysis

We now return to the stability analysis of a growing circular ring. We write the shape-a& + r)p + zV2
and work to first order in™¥ andz. It is convenient to find the equations of motion @ andQél) first, and then
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express these equations in terms@&fandz V. To this end, we choos{aﬂ(lo), n(20)} = {—p, 2} tomakew©® = 1/R.
Expanding(57)to first order leads to

v =k@ 4D 4O / @ ds, (73)

since the unperturbed loop has zero torsié, = 0. To express andr interms of-» and:?, use the Frenet-Serret
equations (8) and (8nds = R¢ (to leading order) to find

1
K~ 2R (r(l) + r(l)) (74)
and
1
~ (D _ (@) (o
T~NT7 = E(Z(P + Z¢¢¢) (75)
Thus,¥ = 1/R + £ + in, with
1
=+ row). (76)
1 o, o
= @7 tzg4) (77)

As described irBection 3.1the unperturbed angular velocities vanisH? = 0, a)éo) = 0; furthermoreEq. (47)
together with(69) and (70mply f(o) F(O)/R = —¢oR and fl(o) = 0. Expanding the equations of motion to
first order, we find

) (&) '
v L C YA () @ (0) + iwO f ds’ Im(w©* 7@y, (78)
ot as 3 0
50
@ 20M
a0 052 1
8t3 as23— — 02y + Imw @ g), 7o)
50
@
f
A)
1® — f L L w© fl(l)’ (81)

where fl(l) and f’ D are determined by expandiri§9) and (70Yo first order. Inspection f78)—(81)and(69) and
(70) reveals thatr® = #D cos(ng), z = 2V sin(ng), Flfl) = Fj cos(ng), andszgl) = Q3c0s(ng), with n a
positive integer. This choice of origin ferandEg. (31)imply c?)él) (0) = 0. The perturbatioi™® cos¢ corresponds

to a translation of the ring in the= 0 plane; likewise, the perturbatid® sing corresponds to a rotation of the
ring about an axis in the = 0 plane. Thus, the = 1 perturbations are rigid motions, leading to no change in
curvaturef = n = 0 (seekEqs. (76) and (77) Inserting the perturbations in{@8), (79) and (81xnd using80) to
eliminate 7 yields a linear system of differential equations f6¢, 2V, and<2s:

n3(n?—-1) ey

- = @ — @ - 82
n2+1 (R* nZ+1 }r §R3( R (82)

t

(1) [ n*+3 A n?(n? —1)?
P =0
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N C R A C

2V = _ﬁ(ggb — onn? — 1Y 4+ [anz T 2(n? 1)} A anﬂ& (83)
. C PO TAR? 7@ D2  Cn?7] .

23 = CRS(‘Q(O)_TO)HZ(]'_” )— [m :|n(l—n )—— |:U+F+ §R4:|Q3 (84)

Egs. (82) and (83hold forn # 1, andEg. (84)holds for all integem > 1. Forn = 1, the shape drops out of
Eq. (84)since then = 1 shape perturbations are rigid motions. Note thatnters(82)—(84)in the combination
.ng) — 10 = 1o(exXp(—at) — 1); 1o drops out of the equations when= 0, in accord with the general arguments of
Section 2.5

We can simplify the linear syste(®2)—(84)by exploiting the large ratio of relaxation time scales for twisting
and bending modes:

fpend > frwist (85)

for R ~ 10um and theB. subtilis parameters oSection 3.1end = ¢R*/A ~ 10~ 1s andnwist = R?/D =
tRR?/C ~ 10%s. As time passes and the filament lengthegnsg andfwist increase exponentially, begend >
fowist for all time. Therefore, twist perturbanonz relax immediately, an@82)— (84)may be simplified by setting
£2 to zero. Using the initial radius for the bending relaxation timgng = {R /A) and assuming’/A = 1 for
simplicity, (82) and (83yeduce to

q=Laq, (86)
where
FYEN)
q= (2(1)> (87)
and
n*+3 B e %" n2(n2 — 1)2 _ToRo g 3ot — 1)n3(n2 -1
I n2+1  thena nl+1 fbend n2+1 . (88)
—M( — _ Dnn®—1) on? — e_4mnz(n2 -1
hend Thend

SinceL depends on time, the syst€B86) is nonautonomous, and classical modal anafgdbdoes not apply. Note
also thatL is not a normal operator], LT] # 0. Therefore, the eigenvectors bfare not perpendicular, which
in general signals the possibility of transient or algebraic growth of perturbdbdhsHowever,L is only weakly
non-normal, since the eigenvectors are almost perpendicular. A similar conclusion applies to the problem of a ring
with twist but no growth § = 0) in a viscous fluid (cf[43,50). Therefore, we do not expect the phenomenon of
transient growth of perturbations in our problem. Nevertheless, the methods developed to study non-normal linear
problems are well suited to honautonomous problems su@6a$55].

We will characterize the growth of perturbations by the amplification of the magnitud€Opf The optimal
amplificationG (¢) is defined by maximizing this factor over all initial conditions:

q<0) q(0) - C|(0)

(A more physical choice for the optimal growth rate would be to use the bending energy to second éfter in
andz® instead ofg - g; it turns out that either choice yields essentially the s@ni®.) To computeG (7), recast
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Eq. (86)as an equation for the propagator matBix

B =LB, (90)
whereB(0) = I andq(r) = B(1)q(0). Thus, the optimal growth factor is the Rayleigh quotient:

T
G () = max q© - B (t)B(t)OI(O)7 91)

q(0) a(0) - q(0)

or G(f) = A4, wherex is the largest eigenvalue &' () B(¢) [56]. WhenL is ar-independent normal matrix,
theniy = exp(2A41), whereA is the largest eigenvalue df. Note that sinces (¢) is maximized at eachover

all initial conditionsq(0), the maximum amplitudes at two different times may correspond to two different initial
conditionsq(0). We computed5 (¢) by using standard Runge—Kutta techniques to solveBfor [57].

Inspection of the diagonal componentsIo{88) reveals that for sufficiently rapid growth, > oc = n?(n® —
1)?/[(n? + 3)thend, the loop deforms away from its circular shape as soon as it begins to grow. When the rate
of growth of the ring is sufficiently slowy < oc, bending stiffness stabilizes the circular shapeofors 1 and
perturbations decay roughly as &xm*t/ mend. Thus, the growth factas decays extremely rapidly with increasing
n at early times. As time passes, the loop lengthens and eventually buckles, with the nature of the buckling dependen
on the magnitude ofy. FortoRo < 1, the distortion is the three-dimensional analog of the in-plane Euler buckling
studied by Shelley and Uedl29,30]and Drasdg31]. FortoRp > 1, the off-diagonal elements &f are large [see
(88)], writhing dominates the nature of the initial distortion, afi¢) increases roughly as eg@roRon>t/ thend in
the intermediate regimer <~ 1. In the late-time regimer > 1, G (1) « exp(2n?or) for any value ofrgRg OF 1.

These results are summarizedHig. 5.
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Fig. 5. Optimal growth factors for openg = 0.5 (<0ctpend). Solid line: Roto = O; dashed line: Rotp = 5; dotted line: Rorp = 10. Note that the
intermediate regime of rapid growth of G () is most apparent for Roto = 10, especially for n = 3.



C.W. Wblgemuth et al./ Physica D 190 (2004) 266289 283

10°

TR

Fig. 6. Time r, for optimal perturbation to regain initial amplitude as a function of Rytp for ofpeng = 0.001 (solid lin€), otpend = 0.01 (dashed
line), otpend = 0.1 (dotted line), otpend = 0.5 (dashed-dotted line), and otpeng = 1 (solid linewith small dots). Thelargefilled dots are the results
of numerical simulations of the full nonlinear equations with otpeng = 0.01 and the open squares are with otpeng = 0.1; see Section 3.4.

There are two different times which may be chosen to represent the time of the instability. The estimate for the
buckling time of Section 3.1 amountsto thetime ¢ at which G () reachesits minimum value and starts to increase.
However, since the rate of decay of G(¢) in the stable period can be very different from the rate of growth of G(z)
in the unstable period, the time at which a perturbation becomes noticeable may be significantly greater than 7;.
Thus, it is natural to define the time for the onset of the instability to be the time ¢, at which the amplitude of the
optimal perturbation regainsitsinitial value: G(r2) = 1. The graphs of Fig. 5 suggest that #, and 1 are comparable
whenever Roto is large enough for the intermediate growth regime of rapid growth discussed above to be present.
However, if Roto issmall enough that thisintermediate regime is absent, then r, will be much greater than r1 when
the extensional growth rate is slow, otpeng < 1. Fig. 6 shows how dramatic this difference can be. For Rorg <« 1
and otpend < 1:

o 1 n?(m?-1)2
2 S 2hed A4 +3)

(92)

whereast; o« 1/0. When Rotp > 1, both 1 and 1, scaleas 1/0 (see Fig. 6). Thus, for small ozpeng, thereis asharp
transition in the onset time 1, as a function of Rgto. In Section 3.4 we will see how this prediction of the linear
theory capturesthe early time dynamicsfor Rgotg >> 1, but that nonlinearitiesintervene beforet = r, for Rotp < 1.

The curves for the onset time r, of Fig. 6 were computed from the linearized equation (86) using the adiabatic
theorem. If otpeng < 1, and if L were normal, then the adiabatic theorem [58] would imply that

t t
B~ v, v, exp (2/ Ap(t) dt’) +V_v_exp (2/ A_(t) dt’) , (93)
0 0

where v.v. are the dyads formed from the eigenvectors v (r) of L(zr). Since L is not normal, Eq. (93) isin error
by an amount governed by v - v_, which is never more than about 0.1 and is often much smaller. Note also that if
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Fig. 7. Optimal growth factorsfor toRo = 10 and o#peng = 1.0, 0.5, 0.1.

othend > 1, thenthe off-diagonal elements of L are small compared to the diagonal elements, causing the equations
for #@ and 2V to decouple and leading to

t
G() ~ exp <2/ AL(t) d/) , (94
0

where A, (¢) is the largest eigenvalue of L(r). Thus, in both extremes otpeng > 1 and otpeng K 1, G(¥) =
exp(2 [ A4 dr’). This result is especially useful in the limit of small growth rate otpend < 1, since the rapid
relaxation and growth of bending modes makes it difficult to solve for B numerically.

Fig. 7 shows the optimal growth factors for the first two modes (n = 2 and 3) for otpeng = 1.0, 0.5, 0.1 and
Roto = 10. For both the intermediate writhing regime and the large-or asymptotic regime, the rate of increase of
the growth factor increases with mode number n. AS otpeng iNcreases, the time at which the growth factor for the
n = 3 mode overtakes that of the n = 2 mode decreases because the instability of each mode occurs at earlier
times. For the larger values of otpeng, then = 3 mode overtakes the n = 2 mode before the amplitudes have grown
large enough for nonlinearities to come into play. Thus, we expect to see double-stranded plectonemic braids with
two hairpin turns for small otpeng, and braids with three or more hairpin turns when ozpeng is large. The numerical
computations of Section 3.4 confirm these expectations.

3.4. Numerical solution of the nonlinear equations

We solved the closed set of Egs. (32)—(34) using a pseudospectral method [59] for the backbone dynamics (32),
direct integration of (33) at each time step using finite differencesto find A, and a Crank—Nicholson routine for the
twist dynamics (34). We used initial conditions such that the backbone of the loop is perturbed from circular shape
with Rgp = 1 by afew small-amplitude modes (rn = 2-5). Depending on the simulation, §23 ranged from somewhat
lessthan 1 to 7g. Fig. 8 shows atime series of the shape of the growing loop with tgRg = 10, £23(t = 0) = 19, and
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3

Fig. 8. Shape of the growing loop for t1pRp = 10.0, 23(+ = 0) = 8.3, and otpend = 0.1 & (1) #/tpend = 0.03, (2) #/tpend = 2.41, (3)
t/thend = 3.22, and (4) ¢/ tbend = 3.37.

1 2

otpend = 0.1. For early times (Fig. 8(1)), the circular loop is stable and perturbations decay. As the loop grows, R
increases exponentially and §23 decreases. At acritical value of £23 and R (Fig. 8(2)), the loop begins to buckle and
wrap about itself. For sufficiently large o Ro, the loop takes on the conformation of a plectoneme, initially forming
afigure-eight structure (Fig. 8(3)) and then wrapping into abraided form (Fig. 8(4)). Fig. 9 showsthe twist energy,
[ C($23— 70)%/2 ds, and bend energy, i Ak?/2ds, for the growing loop depicted in Fig. 8. Notethat the total energy
is not fixed in our model since growth acts to inject energy into the system. At point 1 in Fig. 9, growth along the
filament axis|eadsto adecrease of twist in time and thus an increase in the twist energy. At the sametime, backbone
perturbations die away and the curvature decreases exponentially, leading to a decrease in the bend energy. At point
2, thecircular loop becomes observably unstable. The bend energy beginsincreasing as perturbationsin the filament
grow, and the twist energy continues increasing (see Fig. 9). At the inflection point, point 3, the filament forms
afigure-eight pattern. Note that a figure-eight shape of a closed loop which is not growing is a minimum of the
total energy for arange of twist. At later times (such as point 4), the filament wraps into a braided structure. The
bend energy increases as more braids are added. The twist energy also increases; however, writhing motions act to
decrease the twisting stress imposed by growth, leading to atwist energy that grows sub-exponentially (see Fig. 9).
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Fig. 9. Semi-log plot of the bend (solid line) and twist (dashed line) energy vs. time. Numbers correspond to shapesin Fig. 8 and label important
times during growth (see text for further explanation).
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TR=1.0 TR=1.5

TRA25 T,R=4.0

Fig. 10. Morphology of the growing loop at different values of toRp. Solenoidal morphologies occur when tgRp < 2. Branched plectonemes
are observed for 2 < 1gRg < 3 and unbranched plectonemes are observed when toRg > 4. openg = 0.01 for al figures.

The dynamic equations were solved for arange of toRo and otpeng. When 1o Rg was larger than about 4-10 (the
actual value depended on the value of otpeng), we found plectonemes. Smaller values of TgRg yielded solenoids.
Fig. 10 shows how the morphology of the loop depends on the value of toRg at fixed otpeng. IN the region with
plectonemes, the shapes form as aresult of awrithing instability; the Euler-like buckling instability [29-31] plays
little role. In particular, the braided shapes remain after growth ceases. Thus, the shapes are qualitatively similar to
the minimizers of the elastic energy without growth. However, as discussed in Section 3.3, therate of growth affects
the shape since the number of branches increases with otyeng. 1n the region with solenoids, the Euler-like buckling
instability comes into play since the small value of tgRo delays the onset of the writhing instability. Solenoids
are not minimizers of the elastic energy without growth; when growth ceases the solenoids relax. Therefore, the
solenoids are the three-dimensional anal ogs of the two-dimensional shapes of references[29-31]. The plectonemic,
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Fig. 11. Qualitative phase diagram depicting the dominant mode behavior asafunction of o7heng @nd o Ro. For o Ro greater than roughly 10, the
linear stability analysis predictions are valid and the n = 2 and 3 modes dominate the pattern formation. At lower values of o R, a secondary
instability drives pattern sel ection and higher order modes dominates. Insets show the morphol ogy of theloop in different regions of the diagram.
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three-armed, and sol enoidal morphol ogieswe obtain are similar to many of the supercoiled patternsthat are observed
in B. subtilis; in the conclusion we discuss the relation between our results and the experiments.

In these calculations, we defined the time to the onset of the instability as the point where the bend energy
begins increasing (point 2 in Fig. 9). This time should correspond roughly to ¢» defined in Section 3.3, since the
perturbations must be noticeably large before they affect the bending energy. Just asin the linear stability analysis,
increasing toRo Of o reduces the time to onset of the instability. For values of tgRg > 10, the time to onset found
numerically was in quantitative agreement with the linear stability analysis (see Fig. 6). At smaller values of tgRg
the onset time from the simulations was earlier than that predicted by the linear analysis, with the deviation getting
larger for decreasing otpeng. The deviation isdueto asecondary instability: beforethe growing n = 2 mode becomes
observably large, it is overtaken by ahigher order mode which quickly dominates the shape of theloop. The value of
the mode that dominates depends on the value of otpeng and toRo. AS to R is decreased at constant otpend, the mode
that dominates increases. ASotpend iSincreased at constant o Rg, the mode that dominates decreases. Fig. 11 shows
the phase diagram and examples of plectonemes and solenoids. As a check, we verified the secondary instability by
discretizing the full nonlinear equations (32)—(34), and integrating with the MATLAB routine odel5s (a variable
order, variable time step method for stiff problems).

4. Conclusions

The three essential elements of any growth process appear in our model for B. subtilis fibers in a simple form:
the mode of growth is exponential extension with rotation, the material properties are described by the bending
and twisting elasticity of a dender filament, and the interaction with the external environment is governed by
resistive-force theory. Thus, our model isidea for illustrating the basic phenomena of the physics of growth. We
have assumed that the bacterial filaments can be treated as perfectly elastic and that the growth rates are uniform and
independent of stress. The degree to which these simplifying assumptions hold remains an outstanding experimental
problem. Furthermore, our model does not lead to plectonemic structures for the case of bacterial fibers with free
ends for the measured val ues of the growth parameters and elastic moduli. Nevertheless, we can draw some general
conclusions from our model and use our results to suggest new mechanisms for pattern formation in the presence
of biological growth.

First, even though the ultimate microscopi c mechanism for the supercoil ed patternsof B. subtilisfibersisunknown,
the blocked rotation mechanism we study here must play arole in the supercoiling of closed fibers. For example,
since the closed loops form supercoils at lengths which are much shorter than the length at which the open fibers
supercoil [19], we expect that the blocked rotation mechanism dominates over whatever mechanism causes the
open fibers to supercoil. Thus, we can directly compare our calculations with the experiments on the supercoiling
of closed filaments. Recalling the parameters of Section 3.1, we estimate otpeng < 1, SO that we expect unbranched
plectonemes when toRg 2 4, branched plectonemes when 2 < toRp < 4, and solenoids when rgRg < 2. Typical
observations of the filaments yield unbranched plectonemes, but branched plectonemes and solenoids also arise,
depending on the growth medium. Using the observed buckling radius for an unbranched plectoneme, in Section 3.1
we were able to estimate 7o ~ 10% cm~1, suggesting the presence of a structure in the cell wall with pitch P ~
10~ cm. The observations of helical actin-like polymers in the cell wall with comparable pitch [51] support our
estimate, and further suggests a starting point for atheory for the microscopic mechanism of the supercoiling.

The second major conclusion of our work is the dynamical nature of the pattern selection. For large toRo,
the plectonemes remain once growth ceases, and are qualitatively similar to the minimizers of the elastic energy,
although the rate of growth plays an important role in determining the shape. For small tgRp, the solenoids are
transient structures which relax away when growth halts. Since the curvature of the bacterial fibers can become
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permanent [26], the solenoidal shapes may act asatemplate for patternswhich remainin the absence of growth. This
mechanism of pattern formation via the hardening of transient structures formed from the interplay of flexibility
and externa friction may apply to other biological systems, such as those studied in [31].

To helpjustify, refine, or rule out our model, we suggest three basi c experiments. First, the shape of agrowing loop
asfunction of time should be measured precisely enough to compare with our theory. Although our numerical results
(Fig. 8) are qualitatively similar to the experimentally observed shapes (Fig. 1), the lack of detailed information
about the evolution in time of a single loop in [18] prevents a stringent test of our theory. Second, the change in
elastic properties with time during growth should be quantitatively measured. For example, to what degree and how
long must afiber be bent to devel op a permanent curvature? Finally, the nature of the twist stressin agrowing fiber
with free ends should be determined. Is there a twist moment on the cross-sections of the growing fibers with free
ends, leading to a writhing mechanism qualitatively similar to the blocked rotation mechanism for closed loops, or
is the mechanism for open fibers completely different? Future progress toward understanding the pattern formation
of B. subtilis, both at the microscopic level of the structure of the cell wall and the more macroscopic level treated
here, depends critically on new experiments such as these.
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