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Abstract

Certain bacteria form filamentous colonies when the cells fail to separate after dividing. InBacillus subtilis, Bacillus ther-
mus, andCyanobacteria, the filaments can wrap into complex supercoiled structures as the cells grow. The structures may be
solenoids or plectonemes, with or without branches in the latter case. Any microscopic theory of these morphological instabil-
ities must address the nature of pattern selection in the presence ofgrowth, for growth renders the problem nonautonomous and
the bifurcations dynamic. To gain insight into these phenomena, we formulate a general theory for growing elastic filaments
with bending and twisting resistance in a viscous medium, and study an illustrative model problem: a growing filament with
preferred twist, closed into a loop. Growth depletes the twist, inducing a twist strain. The closure of the loop prevents the
filament from unwinding back to the preferred twist; instead, twist relaxation is accomplished by the formation of supercoils.
Growth also produces viscous stresses on the filament which even in the absence of twist produce buckling instabilities. Our
linear stability analysis and numerical studies reveal two dynamic regimes. For small intrinsic twist the instability is akin
to Euler buckling, leading to solenoidal structures, while for large twist it is like the classic writhing of a twisted filament,
producing plectonemic windings. This model may apply to situations in which supercoils form only, or more readily, when
axial rotation of filaments is blocked. Applications to specific biological systems are proposed.
© 2003 Elsevier B.V. All rights reserved.
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1. Introduction

Many structures in the biological world grow so slowly that they adopt a shape that can be considered as a
minimizer of some configurational energy associated solely with theinternal structure. The logarithmic spiral of
the nautilus shell is an example. It enlarges through a process of differential growth whereby its shape represents
the accumulated history of identical events, save for scale changes[1]. Thus, the microscopic rules of growth are
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essentially unchanging as the three-dimensional form develops, and the properties of the external environment do
not fundamentally determine the form.

Environmental effects on the development of biological forms are well known. Consider the formation of ten-
dril perversions in climbing vines[2,3]. A perversion is a junction between regions of opposite helix handedness
that forms as an initially straight tendril first attaches to a support structure and then, through the activation of
tension-sensitive receptors, undergoes a helical instability. The constraint of fixed ends enforces the formation
of a structure with zero net twist, consisting of concatenated regions of opposite chirality joined by a transition
region—the perversion. Thus, the interaction with the external environment fundamentally alters the pattern forma-
tion through the tension induced by a point contact.

Even more complex phenomena occur for those structures whose very process of growth induces anexternal
force, as with motion through an environment that offers viscous resistance. These new forces can dramatically alter
the ultimate configuration, and the present paper is a case study in such phenomena. We focus on a system in which
the formation of patterns occurs through a finite-wavelength instability in which the process of growth introduces
an intrinsic time-dependence to the control parameters. The resulting bifurcation problem is nonautonomous and
can exhibit a rich phenomenology as the intrinsic time scale of growth competes with those of the various modes
of instability. This competition places the problem among the class of so-called “dynamic bifurcations”, of which
many examples are of continuing interest. These include instabilities in directional solidification in which the initial
acceleration of the interface from rest provides the nonautonomous character[4], fingering instabilities of magnetic
fluids under the influence of time-dependent magnetic fields[5,6], and separatrix crossing in Hamiltonian systems
viewed as models for stellar fission[7].

Motivation for this focus comes from the phenomenon of supercoiling exhibited by filamentous colonies of
Bacillus subtilis and other bacteria.B. subtilis cells are rod-shaped bacteria, typically 4�m in length and slightly
over 1.5�m in diameter. Wild-type rod-shaped bacteria grow by extending along the cylindrical axis of symmetry,
and then dividing and separating in the middle[8,9]. Under certain conditions, the cells of some mutant forms fail
to separate upon replication, leading to a long chain of cells. Other species have also been observed to form chains,
includingEscherichia coli [10], Cyanobacteria [11], Myxococcus xanthus [12], andMycobacterium tuberculosis
[13]. Under certain growth conditions, strains ofB. subtilis, Bacillus stearothermophilus [14], Thermus [15], and
Mastigocladus laminosus [16] form complex braided structures. Helical (or, in the jargon of DNA biophysics,
“solenoidal”) morphologies have also been observed[17]. Of these examples, the supercoiled structures ofB. sub-
tilis have been studied most extensively[18,19]. Recent experimental work[20,21]has indicated that the cell wall of
B. subtilis contains helical protein structures. These may supply the molecular imprinting responsible for this mor-
phological development, in a manner analogous to the way microtubules control macroscopic handedness in certain
plants[22], but as of yet no successful microscopic theory for the formation of these supercoiled structures exists.

Throughout much of the development of complex structures inB. subtilis, the lengthL of the elongating chain,
a single cell thick, grows exponentially in time,L ∝ exp(σt), with the growth rateσ ≈ 2 × 10−4 s−1. Moreover,
material cross-sections of the cells rotate relative to each other[23], so that the angle describing the relative orientation
of any two material cross-sections is proportional to their exponentially increasing separation. In one of the earliest
observations of supercoiling inB. subtilis, the ends of the fiber adhered to a spore coat, prohibiting axial rotation
of the ends[18]. Mendelson[18] supposed that this blocked rotation leads to torsional stress, eventually causing
supercoiling (seeFig. 1). Since this discovery, it has been shown that adhesion is not required for supercoiling
[19], and that many different factors such as temperature, pH, and the concentration of ions such as magnesium and
ammonium affect the morphology of the coils[24,25]. The evolution of the coils after the formation of the first braid is
remarkable. The first plectonemic braid, essentially a filament that is two cells thick, continues to grow and eventually
reaches a critical length of order 100�m, after which it supercoils to form another braided structure which is four
cells thick. This process can repeat many times, leading to a hierarchy of braids and eventually a macroscopic object.
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Fig. 1. Phase contrast micrographs of growingB. subtilis spores with attachment of both cell poles to the spore coat. The series consists of
different filaments at various stages of growth. Scale bar= 10�m. Figure courtesy of N. Mendelson; see[18].

In this paper, we study in detail Mendelson’s blocked rotation mechanism of supercoiling in a growing closed
loop, and focus on the formation of the initial braid. While not yet explaining the microscopic physical origin of
the coiling instability, we elucidate the rich dynamics that occurs when growth competes with blocked rotation, and
thereby help constrain more detailed theories.

With this focus we exploit several simplifying assumptions in our analysis. First, the chain of cells is treated
as an elastic filament with uniform properties along its length. There is evidence that this assumption holds until
times comparable to a few doubling times (∼σ−1), but may be violated later. For example, when the chirality of
nutrient molecules in the growth medium is reversed, the supercoils unwind and even begin to wrap up in the
opposite handedness, but the hairpin bends from the original braid remain[26]. Thus, some of the deformation of
the growing filament becomes permanent. This phenomenon is reminiscent of the morphological development of
plant tendrils, in which young and flexible tendrils age with time, becoming woody and locked in a fixed shape[27].
On the time scales that will concern us,t � σ−1, single fibers have been shown to behave like elastic rods, with a
bending modulusA = 10−12 erg cm[28], as discussed further inSection 2.4.

A second major simplification we introduce is to treat the growth rate as constant in time, independent of stress
and filament geometry. Again, the permanent hairpin bends in the chirality reversal experiment show that this
assumption cannot hold everywhere along the filament for all times after the first braid forms.

Together with the observation that viscous effects dominate inertial effects in the low Reynolds number environ-
ment of the growing fibers, these assumptions lead to the model studied in this paper: an elastic ring with intrinsic
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twist suspended in a viscous fluid and lengthening at an exponential rate. Our work is complementary to that of
other investigators. For example, Shelley and Ueda[29] studied the Euler-like buckling of a growing liquid crystal
filament, using a local drag model for the linear stability of a growing loop, and incorporating nonlocal Stokesian
hydrodynamics to study the pattern formation[30]. Drasdo[31] studied similar patterns in the context of the growth
of single-cell-layer tissue sheets. Klapper[32] has studied inertial writhing instabilities ofopen rods subject to
exponential growth, as well as the relaxation to equilibrium of twisted rings in the absence of growth. Goriely and
Tabor[33] introduced the idea oftwist depletion as a possible mechanism driving buckling inB. subtilis.

Our analysis begins with a generalization of the kinematics and dynamics of slender filaments to account for
growth.Section 3treats the growing elastic loop, beginning with a qualitative discussion of the instability. The linear
stability analysis is greatly simplified by the use of the natural frame, so in this section we include a self-contained
summary of the properties of the natural frame. We present a quasi-analytic treatment of the linear stability of the
loop, and then present numerical simulations of the full nonlinear problem.Section 4is the conclusion.

2. Kinematics and dynamics of growing rods

2.1. Centerline kinematics

In this section we extend the standard kinematics and dynamics of elastic rods to allow for growth. Lets denote
the arclength measured at timet from one end of an open rod, or from a fixed material point for a rod closed
to form a loop. Thenr(s, t) is the position in space of the centerline of the rod with arclength coordinates at
time t. Since material points on the rod centerline are convected along the rod by growth, fixed values ofs do not
correspond to fixed material points. We choose to label the material points of the centerline at all times by the
arclength parameterizations0 at a fixed timet = 0. We will study exponential growth, for whichs = exp(σt)s0.
Note that the partial derivatives with respect tos andt commute becauses andt are independent variables:
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The velocity of a material point is the time derivative of position at fixeds0:
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It is convenient to develop the equations of motion in terms ofs rather thans0, so that
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To avoid confusion, we will explicitly denote which variables are fixed when finding the partial derivatives with
respect tot. However, since partial derivatives with respect tos will always be taken at fixedt, we will write
∂/∂s|t = ∂/∂s.
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Fig. 2. The material frame. The unit vectorê3 is tangent to the rod centerline. The other members of the orthonormal frame,ê1 andê2, point to
material points on the rod’s surface.

The first term ofEq. (4)corresponds to the velocity of the centerline in the absence of growth, and the second term
arises from growth-induced convection. Henceforth we will specialize to exponential growth, for which∂s/∂t|s0 = σs

and

v = ∂r
∂t

∣∣∣∣
s

+ sσ
∂r
∂s

= ∂r
∂t

∣∣∣∣
s

+ sσê3, (5)

whereê3 = ∂r/∂s is the unit tangent vector of the centerline. Although the velocity of a material point may seem
fromEq. (5)to depend on the arbitrary choice of origin fors,Eq. (3)shows that the velocity is manifestly independent
of this choice. Note thatEq. (5)implies thatê3 · ∂v/∂s = σ.

2.2. Choice of frame and growth model

In Kirchhoff rod theory[34], the configuration of a rod is completely specified by the orientation of the material
orthonormal frame{ê1, ê2, ê3}. The vectorŝe1 andê2 point to material points on the rod surface (Fig. 2). As the rod
bends and twists, the positions of these material points change, causing the material frames to rotate[35]:

∂ei
∂s

= � × ei, (6)

∂ei
∂t

∣∣∣∣
s0

= ω × ei. (7)

The vector� describes the bending and twisting strain at a given instant, andω is the angular velocity of a material
frame at a given material points0. In general,� andω depend on the choice of material frame. Once the choice is
made for a given configuration, say the stress-free state, then the choice is specified for all configurations. In the
classical rod theory without growth, it is natural to alignê1 andê2 with the principal axes of the cross-section. If
the cross-section is circular, as we henceforth assume, and if the rod is straight in the absence of stress, then there
are many equivalent natural choices. For example, if the rod aligns along thez-axis when it is stress-free, then
{ê1, ê2} = {x̂, ŷ} is natural. Any uniform rotation of this frame aboutẑ is equally convenient; all these choices lead
to � = 0 in the absence of stress.

If the rod is curved in the stress-free state, then the direction of curvature breaks the rotational symmetry of
the circular cross-section and provides a natural choice for the directions ofê1 andê2, e.g. if the rod has a helical
stress-free state, then we may takeê1 = n̂ and ê2 = b̂, wheren̂ and b̂ are the unit normal and binormal of the
Frenet–Serret frame[36–38], respectively:

∂ê3

∂s
= κn̂, (8)

∂n̂
∂s

= −κê3 + τb̂, (9)
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Fig. 3. Two different modes of growth. In (a) and (b), the rod lengthens without rotation. In (c) and (d), cross-sections at fixed material points
rotate with an ever-increasing angular velocity.

∂b̂
∂s

= −τn̂, (10)

whereκ is the curvature andτ the torsion. Thus,� = κ0ê2 + τ0ê3 for this frame in the absence of stress, whereκ0

is the curvature andτ0 the torsion of the helix.
Whenκ0 = 0, the helix of the last example degenerates to a straight rod with spontaneous twistτ0. We will

show below that ifκ0 = 0 and the cross-section is circular, thenτ0 can be eliminated from the equations of motion
for an inextensible (non-growing) rod, and therefore does not affect the rod shape and dynamics. However,τ0 has
physical meaning for agrowing rod, even ifκ0 = 0 and the cross-section is circular.Fig. 3illustrates two kinematic
possibilities for growth. Each sub-figure shows the stress-free configuration of a growing rod at two different times.
In all cases, the left end of the rod has a fixed position and orientation. Two growth schemes are shown; in the
growth scheme ofFig. 3a and b, the material frames are carried to greater values ofz by growth and have no angular
velocity. A line of material points parallel to thez-axis at timet remains parallel to thez-axis at timet+�t (Fig. 3a).
However, the pitch of ahelical line of material points increases as the filament grows (Fig. 3b). Since the angular
velocity is zero, the number of helical turns is constant.

Fig. 3c and d illustrates a growth scheme in which the cross-sections rotate with an angular velocity that increases
with arclength. In this case, a line of material points parallel to thez-axis at timet wraps around the rod at time
t + �t (Fig. 3c). As the rod grows, the material frames are carried to greater values ofz but alsorotate relative to
the fixed frame ats = 0. In this paper, we will study the growth model ofFig. 3c and d since it describes the relative
rotation of the cross-sections of theB. subtilis fibers[39,40]. Defineθ(s0) = cos−1(ê1(0) · ê1(s0)) as the angle
between the orientation of the (zero-stress) material frames ats0 ands = 0. We will suppose thatθ(s0) increases
linearly with s0 and exponentially in time with rateσ:

θ(s0) = τ0s0 exp(σt) = τ0s. (11)

Sinceθ(s0, t) ands(s0, t) increase in time with the same exponential rate, a helical material line on the rod surface
with pitch 2π/τ0 remains a helical line with the same pitch as time passes (Fig. 3d). Thus, the natural choice for the
material frame in the stress-free state is

ê1 = cos(sτ0)x̂ + sin(sτ0)ŷ, (12)

ê2 = − sin(sτ0)x̂ + cos(sτ0)ŷ, (13)

ê3 = ẑ. (14)
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Fig. 4. Geometrical origin of compatibility relations.

Note that� = τ0ê3 andω = σsτ0ê3 for this frame;ω �= 0 since the material frames mustrotate to maintain
zero-stress as the rod grows (in contrast to the growth model ofFig. 3a). The parameterτ0 not only characterizes
the configuration of the natural material frame (as in the inextensible helix example) butalso the mode of growth.

2.3. Compatibility relations

Geometry relates the strain vector� and the angular velocityω. To see how, considerFig. 4. The lower curve
represents the centerline of the rod at timet, and the upper curve represents the centerline of the rod at timet + dt.
The labeled points on the upper curve have the same material coordinate as the corresponding points on the lower
curve; thus, the arclength parameter forp3 is s exp(σ dt) ≈ s + sσ dt, while the arclength parameter forp4 is
(s+ds)exp(σ dt) ≈ (s+ds)(1+σ dt). LetR1 be the rotation matrix carrying the frame atp1 top3, R2 the rotation
matrix carrying the frame atp3 to p4, R3 the rotation matrix carrying the frame atp1 to p2, andR4 the rotation
matrix carrying the frame atp2 top4. Furthermore, letJ andK denote the infinitesimal rotation matrices associated
with the rotation vectors� andω, respectively (e.g.Jαβ = εαβγ�γ , whereεαβγ is the alternating symbol). From
the definitions of the rotation matrices,R2R1 = R4R3, or

[I + (1 + σ dt)dsJ(s + sσ dt, t + dt)][I + dt K(s, t)] ≈ [I + dt K(s + ds, t)][I + dsJ(s, t)], (15)

whereI is the identity matrix. ExpandingEq. (15)toO(ds dt), we find
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where [, ] is the commutator. In terms of components in the material frame:
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= ∂ω3

∂s
− σΩ3 + Ω1ω2 − Ω2ω1. (20)

These compatibility relations show how strain changes in time due to non-uniform rotation rates (the first term in
each ofEqs. (18)–(20)), growth (the second term in each ofEqs. (18)–(20)), and the geometric coupling between
twisting and bending (the last two terms in each ofEqs. (18)–(20)). The compatibility relationequation (20)will
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be used below to determine the dynamics of the twist strainΩ3. Note thatEq. (20)can be re-written in a form valid
for arbitrary growth laws[41–43]:

∂Ω3

∂t

∣∣∣∣
s0

= ∂ω3

∂s
− Ω3

∂r
∂s

· ∂v
∂s

+ ∂r
∂s

× ∂2r
∂s2

· ∂v
∂s

. (21)

2.4. Constitutive relations

The Kirchhoff constitutive relations for a rod with intrinsic twist relate the moment on a cross-section of the rod
to the strain[44]:

M = A

(
∂r
∂s

× ∂2r
∂s2

)
+ C(Ω3 − τ0)ê3. (22)

Note that∂r/∂s× ∂2r/∂s2 = Ω1ê1 +Ω2ê2. Eq. (22)implies that in the stress-free state (defined byM = 0), ê1 and
ê2 rotate around̂e3 with rateτ0 = ê2 · ∂ê1/∂s, andê3 is constant.

The force and moment balances for a growing rod are the same as the balances for an inextensible rod:

∂F
∂s

+ fext = 0, (23)

∂M
∂s

+ ê3 × F + mext = 0, (24)

whereF(s, t) is the force the internal elastic stresses exert through the cross-section ats on the portion of the rod
with arclength less thens. The external force per unit lengthfext and moment per unit lengthmext are measured per
unit arclength. In an alternative but equivalent formulation, the elastic force and moment per unit length arise from
variational derivatives of the energy:

E =
∫

ds

(
A

2
κ2 + C

2
(Ω − Ω0)

2 − Λ(s, t)

)
, (25)

whereκ2 = |∂2r/∂s2|2 = Ω2
1 + Ω2

2 is the square of the curvature, andΛ the Lagrange multiplier associated with
the constraint of prescribed length,L = L0 exp(σt) [41,42].

The external force per unit lengthfext consists of a viscous drag force per unit length and an artificial short-ranged
repulsive force that prevents self-crossing:fext = fvisc+ fself. The external moment per unit length is purely viscous:
mext = mvisc. The repulsive force takes the form:

fself(s, t) =
∫

|s−s′|>δ

β(r(s) − r(s′))
|r(s) − r(s′)|n ds′, (26)

whereδ is a short-distance cutoff,n = 14 simulates the repulsive part of a Leonard–Jones potential, andβ = 180
is sufficient to keep the filament from self-crossing. The viscous force per unit lengthfvisc depends on the velocity
field of the ambient fluid, which in turn is coupled to the motion of the filament. For simplicity, we do not solve the
full hydrodynamic problem, but instead use resistive-force theory for slender bodies[45]. Resistive-force theory
amounts to the leading terms in an expansion in the aspect ratioa/L of slender-body theory, which has a nonlocal
relation between force and velocity due to incompressibility. To leading order, the nonlocality can be neglected,
leading to the local drag law:

fvisc = −ζ⊥(v − ê3ê3 · v) − ζ‖ê3ê3 · v. (27)



274 C.W. Wolgemuth et al. / Physica D 190 (2004) 266–289

Likewise, we take the viscous moment to be proportional to the tangential component of the angular velocity of the
material frames:

mvisc = −ζRê3ê3 · ω. (28)

The friction coefficients inEqs. (27) and (28)are

ζ⊥ = 4πη

log(L/2a) + (1/2)
, ζ‖ = 2πη

log(L/2a) − (1/2)
, ζR = 4πηa2, (29)

whereη is the viscosity of the ambient fluid,L the total contour length of the rod, anda the rod radius. For simplicity,
we disregard the anisotropy and defineζ ≡ ζ⊥ = ζ‖ = 4πη/log(L0/2a), whereL0 = L(t = 0). Note that we have
kept only the leading order terms in the logarithm of the initial aspect ratio. Thus,fext = −ζv. These assumptions
lead to qualitative differences with the exact theory. For example, the neglect of hydrodynamic interactions implicit
in the local drag approximation ofEqs. (27) and (28)will affect the time-dependence of the shape of the rod near
self-contact points just before contact (see, e.g.[30]). Also, the assumption of isotropy implies that the center of
mass of a deforming closed loop remains fixed[46], whereas in the exact theory the center of mass can move.
These limitations of the simplified hydrodynamic theory do not prevent it from capturing the essential physics of
the phenomena we wish to study, such as the onset of buckling instabilities and the subsequent evolution of complex
shapes.

It is convenient for the numerical calculations ofSection 3.4to write the equations of motion in terms of position
r and twist strainΩ3. To this end, substitute the constitutive relation(22) into the moment balanceequation (24)to
find the forceF on a cross-section:

F = −A
∂3r
∂s3

+ C(Ω3 − τ0)
∂r
∂s

× ∂2r
∂s2

− Λ
∂r
∂s

, (30)

and the balance of the tangential components of the moment per unit length:

C
∂Ω3

∂s
= ζRω3. (31)

The unknown functionΛ(s, t) occurs inEq. (30)because the moment balanceequation (24)does not determine the
tangential component ofF. CombiningEq. (30)with the force balanceequation (23)and the expressions forfext

yields

ζ
∂r
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= −A
∂4r
∂s4

+ C
∂

∂s

[
(Ω3 − τ0)

∂r
∂s

× ∂2r
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]
− ∂

∂s

[
Λ
∂r
∂s

]
+ fself. (32)

Eq. (32)has the same form as the corresponding equation for the overdamped dynamics of an inextensible rod, but
in Eq. (32)thes-domain (length) depends ont. To determineΛ, evaluatêe3 · ∂v/∂s = σ usingEq. (32):

∂2Λ

∂s2
− ∂2r

∂s2
· ∂

2r
∂s2

Λ = −A
∂r
∂s

· ∂
5r
∂s5

− ζσ + ∂r
∂s

· fself + C(Ω3 − τ0)
∂r
∂s

· ∂
2r
∂s2

× ∂3r
∂s3

. (33)

One can show that the functionΛ in Eq. (33)is identical to the Lagrange multiplier function ofEq. (25).
To complete the determination of the dynamical equations, the torque balance(31) and compatibility relation

(20)yield

∂Ω3

∂t

∣∣∣∣
s0

= D
∂2Ω3

∂s2
− σΩ3 + ∂r

∂s
× ∂2r

∂s2
· ∂r
∂t
, (34)

where the twist diffusion constantD ≡ C/ζR. Since resistive-force theory includes the leading order terms in the
expansion ina/L of the hydrodynamic drag force and torque, our equations are asymptotically consistent.
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The boundary conditions which accompanyEqs. (32)–(34)depend on the situation. For a filament with free ends,
the appropriate conditions areM = 0 andF = 0. For a closed loop, the variablesr, �, ω, F, andM must be periodic
in s0 with period 2πR0.

2.5. Change of basis

We close this section by returning to the claim ofSection 2.2that the spontaneous twistτ0 does not affect the
shape of an inextensible rod with circular cross-section and vanishing spontaneous curvatureκ0 = 0. Consider such
a rod with� = τ0ê3 in the stress-free state. We can eliminateτ0 from the problem using the freedom to redefine
the material frame. If

ê′
1 = ê1 cosφ − ê2 sinφ, (35)

ê′
2 = ê1 sinφ + ê2 cosφ, (36)

then

Ω′
1 = Ω1 cosφ − Ω2 sinφ, (37)

Ω′
2 = −Ω1 sinφ + Ω2 cosφ, (38)

Ω′
3 = Ω3 + ∂φ

∂s
(39)

and

ω′
1 = ω1 cosφ − ω2 sinφ, (40)

ω′
2 = −ω1 sinφ + ω2 cosφ, (41)

ω′
3 = ω3 + ∂φ

∂t

∣∣∣∣
s0

. (42)

Under this change of basis,Ω′
1ê′

1 + Ω′
2ê′

2 = Ω1ê1 + Ω2ê2 for anyφ. Choosingφ = −sτ0 fixesΩ′
3 = 0 in the

stress-free state. Thus

M = A(Ω′
1ê′

1 + Ω′
2ê′

2) + CΩ′
3ê′

3 (43)

the parameterτ0 has been eliminated from the constitutive relation. Note that our argument up to this point holds
for a growing rod as well.

Now consider the effect of the transformation(35) and (36)on the compatibility relations. Once again, even in
the presence of exponential growth, the compatibility equations take the same form, e.g.:

∂Ω′
3

∂t

∣∣∣∣
s0

= ∂ω′
3

∂s
− σΩ′

3 + Ω′
1ω

′
2 − Ω′

2ω
′
1. (44)

For an inextensible rod,ω′
3 = ω3, sinces = s0 if σ = 0. Therefore, the change of basis(35) and (36)does

not affect the rotational drag or translational drag equations, and we conclude thatτ0 is not a physical parameter
for an inextensible rod with circular cross-section and no spontaneous curvature. However, we expect the opposite
conclusion for a growing rod, since we saw inSection 2.2thatτ0 has physical meaning. In fact, onceτ0 is eliminated
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from the constitutive relation usingEqs. (35) and (36), a newτ0-dependent term appears in the torque balance
equation (31):

C
∂Ω′

3

∂s
= ζR(ω

′
3 + σsτ0). (45)

Therefore,τ0 cannot be eliminated from the equations of motion for this mode of growth.

3. The growing elastic loop

In this section we treat the problem of a growing elastic loop with preferred twistτ0. As described inSection 1,
this example is motivated by the growth ofB. subtilis filaments from a spore. Sometimes the ends of the growing
filament stick to the spore coat, leading to a closed loop[18]. The filament lengthens, depleting the twist, but the
closed geometry prevents the rotation of cross-sections normally seen in unconstrained filaments. Thus, twist stress
builds up, and the filament eventually writhes and coils. Although the model does not address the writhing and
coiling of unconstrained filaments, it displays some of the features exhibited byB. subtilis loops.

3.1. Buckling and writhing instabilities

To study the stability of an exponentially growing circular loop with preferred twistτ0, we begin with the
unperturbed solution. The unperturbed loop lies in thez = 0 plane and has radiusR = R0 exp(σt). Since each
material point on the filament moves radially outward with fixedz in unperturbed growth, the angular velocity
vanishes,ω(0) = 0, where we use the superscript, (0), to denote the unperturbed value. The bending part of the
energy(25) decreases exponentially as the loop grows becauseκ(0) = 1/R. However, the twist energy density
increases because the closed geometry prevents the cross-sections from rotating with the rateσsτ0 required to attain
the twist state of zero energy. If we assume for simplicity thatΩ

(0)
3 (s, t = 0) = τ0, then the exponentially increasing

length leads to an exponentially decreasing twist density,Ω
(0)
3 (s, t) = τ0 exp(−σt). To summarize, the moment on

a cross-section takes the form:

M(0) = A

R0
e−σt ẑ + Cτ0(e

−σt − 1)ϕ̂. (46)

Note that it is much more convenient to expressM in terms of the cylindrical coordinate unit vectors{ẑ, ρ̂, ϕ̂} instead
of the material frame vectors{ê(0)1 , ê(0)2 , ê(0)3 }, sinceê(0)1 and ê(0)2 continuously rotate aboutê(0)3 ass increases. A
choice of frame which does not rotate about the tangent vector as arclength increases is anatural frame[47]. We
will use the natural frame extensively in the linear stability analysis ofSection 3.3.

Since the filament is simultaneously bent and twisted, moment balance(24) implies a component of force in the
z-direction, whereas force balance(23) leads to a tangential component proportional to the growth rateσ:

F(0) = −ζσR2ϕ̂ + Cτ0

R
(e−σt − 1)ẑ. (47)

The tangential force on the cross-section is compressive and grows exponentially in time, eventually leading to an
Euler-like buckling instability whenζσR2 ≈ A/R2, or R = R1 ≈ [A/ζσ]1/4 (cf. [29–31]). The Euler buckling
time scales astE ≈ σ−1 log[A/ζσR4

0] (whenA/ζσR4
0 < 1, the loop begins to buckle att = 0). In Section 3.3, we

will refine this estimate using our linear stability calculation and see that the appropriate buckling time at smallσ

actually scales asσ−2, since in this regime, a growing perturbation does not become noticeable until long after the
perturbation begins to grow. However, our numerical calculations ofSection 3.4reveal that the correct picture is even
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more complicated: for sufficiently smallτ0R0, a secondary instability arises and grows before the linear instability
has significant amplitude. In addition to the Euler buckling, there is also a writhing instability. The magnitude of
the twist moment increases as|Cτ0(1− exp(−σt))| as the filament lengthens, leading to a writhing instability (like
that of a twisted ring[48–50]) whenCτ0(1 − exp(−σt)) ≈ A/2πR, or tW ≈ σ−1 log[1 + 1/τ0R0] (assuming
A ≈ C). Note that the critical time for writhing istW ≈ σ−1 log[1/R0τ0] for R0τ0 � 1, andtW ≈ 1/σR0τ0 for
R0τ0 � 1. The sense of rotation of the cross-sections of unconstrained filaments determines the handedness of
the coils that form after the instability of the ring: positiveτ0 (counter-clockwise rotation when viewed from the
direction of increasings) leads to right-handed plectonemic braids. Note that drag is the ultimate cause for the
Euler buckling instability; once growth ceases, the buckled filament relaxes back to the unperturbed circular shape.
Since the writhing instability arises not from drag but instead from the frustration of growth-induced twist stress,
the braided post-instability shape remains after growth ceases. For small enoughτ0R0, we will see inSection 3.4
that the small intrinsic twist biases the Euler buckling, leading to solenoidal shapes, which relax to plectonemes if
growth halts after a sufficiently long time. Observations of the growing fibers suggest that writhing is the dominant
mechanism in the instability of a closed loop[18]. UsingA = 10−12 erg cm[28], σ = 2× 10−4 s−1,L = 10−3 cm,
a = 3× 10−5 cm, andζ = ζ⊥ ≈ 10−1 erg s/cm3 (seeEq. (29)) leads to [A/ζσ]1/4 ≈ 150�m, which is much larger
than the observed critical radius and implies that growth-induced Euler buckling is not important. Thus, we can
use the critical radius of the twisted ring to estimateτ0; assumingτ0 is comparable to or smaller than 1/R0, where
R0 is the initial radius, and usingR2 ≈ 2 × 10−4 cm as the experimentally observed critical radius[18], we find
τ0 ≈ 104 cm−1. This twist rate corresponds to a few turns per cell. It is intriguing to note that the corresponding
length scale is close to the pitch of helical filaments of mbl, a recently discovered protein which resides near the
cell wall and plays a role in maintaining the shape ofB. subtilis cells[51].

3.2. The natural frame

Before studying the evolution of small perturbations of the growing circular shape, we consider the choice of
representation. Since only the shape and twist are of interest, it is convenient to use an intrinsic representation, such
as the material frame. However, we saw in the solution of the unperturbed problem ofSection 3.1that the natural
frame leads to further simplification. The advantages of the natural frame over the material frame are even greater
for the linear stability analysis, and more generally for the full nonlinear problem[42,52].

In a natural orthonormal frame{n̂1, n̂2, ê3} the instantaneous rate of rotation ofn̂1 aboutê3 is zero[42,47,52]:

n̂1 · ∂n̂2

∂s
= 0. (48)

A rotation of{n̂1, n̂2} aboutê3 by uniform (arclength-independent) angle leaves the condition(48) invariant; every
space curve has a family of natural frames, the members of which are related to each other by rotation through a
uniform angle. To construct a natural frame from the material frame{ê1, ê2, ê3}, rotate the material frame ats by
minus the accumulated rotation angleϑ = ∫ s

0 ds′ Ω3:

n̂1 = cosϑê1 − sinϑê2, (49)

n̂2 = sinϑê1 + cosϑê2. (50)

The natural frame is nonlocal in the sense that deformations of the filament centerline in the regions′ < s affect the
natural frame ats.

Our formulas can be further simplified with complex notation. For example, if� ≡ n̂1 + in̂2, thenEqs. (49)
and (50)become

� = (ê1 + iê2)eiϑ. (51)
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The vector� is a complex normal vector. Note that� · � = 0; therefore,� · ∂�/∂s = 0. Furthermore, the defining
propertyn̂1 ·∂n̂2/∂s = 0 implies�∗ ·∂�/∂s = 0. Thus,∂�/∂s is proportional tôe3. In analogy with the Frenet–Serret
equation∂n̂/∂s = −κt̂, we define the complex curvatureΨ via

∂�

∂s
= −Ψ ê3, (52)

where

Ψ = −ê3 · ∂�

∂s
= � · ∂ê3

∂s
, (53)

Ψ = (−iΩ1 + Ω2)eiϑ. (54)

Also, the rate of change alongs of the unit tangent vector is the complex curvature times the complex normal
vectors:

∂ê3

∂s
= 1

2
(Ψ�∗ + Ψ∗�). (55)

Note that rotation of a natural frame aboutê3 by a uniform angle leads to a constant shift in the phase ofΨ . For
example, the natural frame arising from the construction(49) and (50)applied to the Frenet–Serret normal and
binormal has

� = (n̂ + ib̂)exp

(
i
∫

τ ds

)
, (56)

since torsion is the rate at whichn̂ andb̂ twist around the tangent vector. The corresponding complex curvature is

ΨFS = κ exp

(
i
∫

τ ds

)
; (57)

the ratio ofΨ andΨFS is a constant phase.
To complete the specification of the kinematics of the natural frame, we introduce the complex angular velocity

describing the rate of change with time of the unit tangent vector:

Π ≡ � · ∂ê3

∂t
, (58)

Π = (−iω1 + ω2)eiϑ. (59)

In terms of the natural frame variables, the compatibility relations(18)–(20)become

∂Ψ

∂t

∣∣∣∣
s0

= ∂Π

∂s
− σΨ − iΨω3(0) + iΨ

∫ s

0
ds′ Im(Ψ∗Π), (60)

∂Ω3

∂t

∣∣∣∣
s0

= ∂ω3

∂s
− σΩ3 + Im(Ψ∗Π). (61)

The integral inEq. (60)reflects the nonlocality of the natural frame, and arises from the temporal rate of change of
ϑ:

∂ϑ

∂t

∣∣∣∣
s0

= ∂

∂t

∣∣∣∣
s0

∫ s0 eσt

0
Ω3(s

′, t)ds′, (62)
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∂ϑ

∂t

∣∣∣∣
s0

= ∂

∂t

∣∣∣∣
s0

∫ s0

0
Ω3(s

′
0 eσt, t)eσt ds′0, (63)

∂ϑ

∂t

∣∣∣∣
s0

=
∫ s

0

[
∂Ω3

∂t
+ σΩ3

]
ds′. (64)

Eq. (60)follows fromEqs. (64), (18)–(20), and the identityΩ1ω2 − Ω2ω1 = Im(Ψ∗Π).
In the natural frame variables, the momentM obeys

M = A1
2i(Ψ�∗ − Ψ∗�) + C(Ω3 − τ0)ê3. (65)

Just as inSection 2.4, moment balance(24)determines the perpendicular component of the force on a cross-section:

F = F‖ê3 + 1
2(�

∗F⊥ + �F∗
⊥), (66)

F⊥ = −A
∂Ψ

∂s
+ iCΨ(Ω3 − τ0). (67)

Recall thatF‖ is not determined by moment balance since only the perpendicular components ofF enterEq. (24);
F‖ is determined by the condition̂e3 · ∂v/∂s = σ.

Defining the tangential and perpendicular componentsf‖ andf⊥ of the force per unit length:

∂F
∂s

= ê3f‖ + 1

2
(�∗f⊥ + �f ∗

⊥), (68)

it follows from Eqs. (52), (55), (66) and (67)that

f‖ = ∂F‖
∂s

+ A

2
(ΨΨ∗

s + ΨsΨ
∗) (69)

and

f⊥ = F‖Ψ − A
∂2Ψ

∂s2
+ iC

∂

∂s
[Ψ(Ω3 − τ0)]. (70)

Notef‖ = ∂(F‖ + A|Ψ |2/2)/∂s = −∂Λ/∂s; in terms off‖ andf⊥ the conditionê3 · ∂v/∂s = σ becomes

ζσ = ∂f‖
∂s

− 1

2
f⊥Ψ∗ − 1

2
f ∗

⊥Ψ. (71)

Finally, the force per unit length determines the complex angular velocity through the relationsζv = ∂F/∂s and
� · ∂v/∂s = Π, or

ζΠ = ∂f⊥
∂s

+ Ψf‖. (72)

Likewise, the tangential component of the angular velocity is given byEq. (31). In summary, the equations of motion
for the filament in the natural frame areEqs. (60) and (61), (69)–(72), and(31).

3.3. Linear stability analysis

We now return to the stability analysis of a growing circular ring. We write the shape asr = (R+ r(1))ρ̂ + z(1)ẑ
and work to first order inr(1) andz(1). It is convenient to find the equations of motion forΨ(1) andΩ(1)

3 first, and then
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express these equations in terms ofr(1) andz(1). To this end, we choose{n̂(0)
1 , n̂(0)

2 } = {−ρ̂, ẑ} to makeΨ(0) = 1/R.
Expanding(57) to first order leads to

Ψ = κ(0) + κ(1) + iκ(0)
∫

τ(1) ds, (73)

since the unperturbed loop has zero torsion,τ(0) = 0. To expressκ andτ in terms ofr(1) andz(1), use the Frenet–Serret
equations (8) and (9)ands = Rφ (to leading order) to find

κ ≈ 1

R
− 1

R2
(r(1) + r

(1)
φφ ) (74)

and

τ ≈ τ(1) = 1

R2
(z

(1)
φ + z

(1)
φφφ). (75)

Thus,Ψ = 1/R + ξ + iη, with

ξ = − 1

R2
(r(1) + r

(1)
φφ ), (76)

η = 1

R2
(z(1) + z

(1)
φφ ). (77)

As described inSection 3.1, the unperturbed angular velocities vanish:Π(0) = 0,ω(0)
3 = 0; furthermore,Eq. (47)

together with(69) and (70)imply f
(0)
⊥ = F

(0)
‖ /R = −ζσR andf (0)

‖ = 0. Expanding the equations of motion to
first order, we find

∂Ψ(1)

∂t

∣∣∣∣∣
s0

= ∂Π(1)

∂s
− σΨ(1) − iΨ(0)ω

(1)
3 (0) + iΨ(0)

∫ s

0
ds′ Im(Ψ(0)∗Π(1)), (78)

∂Ω
(1)
3

∂t

∣∣∣∣∣
s0

= D
∂2Ω

(1)
3

∂s2
− σΩ

(1)
3 + Im(Ψ(0)∗Π(1)), (79)

0 =
∂f

(1)
‖
∂s

− Re(f (0)
⊥ Ψ(1)∗) − Re(f (1)

⊥ Ψ(0)∗), (80)

ζΠ(1) = ∂f
(1)
⊥
∂s

+ Ψ(0)f
(1)
‖ , (81)

wheref (1)
‖ andf (1)

⊥ are determined by expanding(69) and (70)to first order. Inspection of(78)–(81)and(69) and

(70) reveals thatr(1) = r̂(1) cos(nφ), z(1) = ẑ(1) sin(nφ), F(1)
‖ = F̂‖ cos(nφ), andΩ(1)

3 = Ω̂3 cos(nφ), with n a

positive integer. This choice of origin fors andEq. (31)imply ω̂
(1)
3 (0) = 0. The perturbation̂r(1) cosφ corresponds

to a translation of the ring in thez = 0 plane; likewise, the perturbationẑ(1) sinφ corresponds to a rotation of the
ring about an axis in thez = 0 plane. Thus, then = 1 perturbations are rigid motions, leading to no change in
curvature:ξ = η = 0 (seeEqs. (76) and (77)). Inserting the perturbations into(78), (79) and (81)and using(80) to
eliminateF̂‖ yields a linear system of differential equations forr̂(1), ẑ(1), andΩ̂3:

r̂
(1)
t =

[
σ
n4 + 3

n2 + 1
− A

ζR4

n2(n2 − 1)2

n2 + 1

]
r̂(1) − C

ζR3
(Ω

(0)
3 − τ0)

n3(n2 − 1)

n2 + 1
ẑ(1), (82)
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ẑ
(1)
t = − C

ζR3
(Ω

(0)
3 − τ0)n(n

2 − 1)r̂(1) +
[
σn2 − A

ζR4
n2(n2 − 1)

]
ẑ(1) − C

ζR2
nΩ̂3, (83)

Ω̂3t = C

ζR3
(Ω

(0)
3 − τ0)n

2(1 − n2)
r̂(1)

R2
+
[

An2

ζR4
− σ

]
n(1 − n2)

ẑ(1)

R2
−
[
σ + Dn2

R2
+ Cn2

ζR4

]
Ω̂3. (84)

Eqs. (82) and (83)hold for n �= 1, andEq. (84)holds for all integern ≥ 1. Forn = 1, the shape drops out of
Eq. (84)since then = 1 shape perturbations are rigid motions. Note thatτ0 enters(82)–(84)in the combination
Ω

(0)
3 − τ0 = τ0(exp(−σt)− 1); τ0 drops out of the equations whenσ = 0, in accord with the general arguments of

Section 2.5.
We can simplify the linear system(82)–(84)by exploiting the large ratio of relaxation time scales for twisting

and bending modes:

tbend� ttwist (85)

for R ≈ 10�m and theB. subtilis parameters ofSection 3.1, tbend ≡ ζR4/A ≈ 10−1 s andttwist ≡ R2/D =
ζRR

2/C ≈ 10−4 s. As time passes and the filament lengthens,tbend andttwist increase exponentially, buttbend �
ttwist for all time. Therefore, twist perturbationŝΩ relax immediately, and(82)–(84)may be simplified by setting
Ω̂ to zero. Using the initial radius for the bending relaxation time (tbend = ζR4

0/A) and assumingC/A = 1 for
simplicity, (82) and (83)reduce to

q̇ = Lq, (86)

where

q =
(
r̂(1)

ẑ(1)

)
(87)

and

L =




σ
n4 + 3

n2 + 1
− e−4σt

tbend

n2(n2 − 1)2

n2 + 1
−τ0R0 e−3σt

tbend
(e−σt − 1)

n3(n2 − 1)

n2 + 1

−τ0R0 e−3σt

tbend
(e−σt − 1)n(n2 − 1) σn2 − e−4σt

tbend
n2(n2 − 1)


 . (88)

SinceL depends on time, the system(86)is nonautonomous, and classical modal analysis[53] does not apply. Note
also thatL is not a normal operator: [L,LT] �= 0. Therefore, the eigenvectors ofL are not perpendicular, which
in general signals the possibility of transient or algebraic growth of perturbations[54]. However,L is only weakly
non-normal, since the eigenvectors are almost perpendicular. A similar conclusion applies to the problem of a ring
with twist but no growth (σ = 0) in a viscous fluid (cf.[43,50]). Therefore, we do not expect the phenomenon of
transient growth of perturbations in our problem. Nevertheless, the methods developed to study non-normal linear
problems are well suited to nonautonomous problems such as(86) [55].

We will characterize the growth of perturbations by the amplification of the magnitude ofq(0). The optimal
amplificationG(t) is defined by maximizing this factor over all initial conditions:

G(t) ≡ max
q(0)

q(t) · q(t)
q(0) · q(0)

. (89)

(A more physical choice for the optimal growth rate would be to use the bending energy to second order inr̂(1)

andẑ(1) instead ofq · q; it turns out that either choice yields essentially the sameG(t).) To computeG(t), recast
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Eq. (86)as an equation for the propagator matrixB:

Ḃ = LB, (90)

whereB(0) = I andq(t) = B(t)q(0). Thus, the optimal growth factor is the Rayleigh quotient:

G(t) = max
q(0)

q(0) · BT(t)B(t)q(0)
q(0) · q(0)

, (91)

or G(t) = λ+, whereλ+ is the largest eigenvalue ofBT(t)B(t) [56]. WhenL is a t-independent normal matrix,
thenλ+ = exp(2Λ+t), whereΛ+ is the largest eigenvalue ofL. Note that sinceG(t) is maximized at eacht over
all initial conditionsq(0), the maximum amplitudes at two different times may correspond to two different initial
conditionsq(0). We computedG(t) by using standard Runge–Kutta techniques to solve forB(t) [57].

Inspection of the diagonal components ofL (88) reveals that for sufficiently rapid growth,σ > σc ≡ n2(n2 −
1)2/[(n2 + 3)tbend], the loop deforms away from its circular shape as soon as it begins to grow. When the rate
of growth of the ring is sufficiently slow,σ < σc, bending stiffness stabilizes the circular shape forσt � 1 and
perturbations decay roughly as exp(−n4t/tbend). Thus, the growth factorG decays extremely rapidly with increasing
n at early times. As time passes, the loop lengthens and eventually buckles, with the nature of the buckling dependent
on the magnitude ofτ0. Forτ0R0 � 1, the distortion is the three-dimensional analog of the in-plane Euler buckling
studied by Shelley and Ueda[29,30]and Drasdo[31]. Forτ0R0 � 1, the off-diagonal elements ofL are large [see
(88)], writhing dominates the nature of the initial distortion, andG(t) increases roughly as exp(2τ0R0n

3t/tbend) in
the intermediate regimeσt <≈ 1. In the late-time regimeσt � 1,G(t) ∝ exp(2n2σt) for any value ofτ0R0 or tb.
These results are summarized inFig. 5.
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Fig. 5. Optimal growth factors for σtbend = 0.5 (<σctbend). Solid line: R0τ0 = 0; dashed line: R0τ0 = 5; dotted line: R0τ0 = 10. Note that the
intermediate regime of rapid growth of G(t) is most apparent for R0τ0 = 10, especially for n = 3.
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Fig. 6. Time t2 for optimal perturbation to regain initial amplitude as a function of R0τ0 for σtbend = 0.001 (solid line), σtbend = 0.01 (dashed
line), σtbend = 0.1 (dotted line), σtbend = 0.5 (dashed-dotted line), and σtbend = 1 (solid line with small dots). The large filled dots are the results
of numerical simulations of the full nonlinear equations with σtbend = 0.01 and the open squares are with σtbend = 0.1; see Section 3.4.

There are two different times which may be chosen to represent the time of the instability. The estimate for the
buckling time of Section 3.1 amounts to the time t1 at which G(t) reaches its minimum value and starts to increase.
However, since the rate of decay of G(t) in the stable period can be very different from the rate of growth of G(t)

in the unstable period, the time at which a perturbation becomes noticeable may be significantly greater than t1.
Thus, it is natural to define the time for the onset of the instability to be the time t2 at which the amplitude of the
optimal perturbation regains its initial value: G(t2) = 1. The graphs of Fig. 5 suggest that t2 and t1 are comparable
whenever R0τ0 is large enough for the intermediate growth regime of rapid growth discussed above to be present.
However, if R0τ0 is small enough that this intermediate regime is absent, then t2 will be much greater than t1 when
the extensional growth rate is slow, σtbend � 1. Fig. 6 shows how dramatic this difference can be. For R0τ0 � 1
and σtbend � 1:

t2 ≈ 1

σ2tbend

n2(n2 − 1)2

4(n4 + 3)
, (92)

whereas t1 ∝ 1/σ. When R0τ0 � 1, both t1 and t2 scale as 1/σ (see Fig. 6). Thus, for small σtbend, there is a sharp
transition in the onset time t2 as a function of R0τ0. In Section 3.4 we will see how this prediction of the linear
theory captures the early time dynamics for R0τ0 � 1, but that nonlinearities intervene before t = t2 for R0τ0 � 1.

The curves for the onset time t2 of Fig. 6 were computed from the linearized equation (86) using the adiabatic
theorem. If σtbend � 1, and if L were normal, then the adiabatic theorem [58] would imply that

B ≈ v+v+ exp

(
2
∫ t

0
Λ+(t′) dt′

)
+ v−v− exp

(
2
∫ t

0
Λ−(t′) dt′

)
, (93)

where v±v± are the dyads formed from the eigenvectors v±(t) of L(t). Since L is not normal, Eq. (93) is in error
by an amount governed by v+ · v−, which is never more than about 0.1 and is often much smaller. Note also that if
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Fig. 7. Optimal growth factors for τ0R0 = 10 and σtbend = 1.0, 0.5, 0.1.

σtbend � 1, then the off-diagonal elements of L are small compared to the diagonal elements, causing the equations
for r̂(1) and ẑ(1) to decouple and leading to

G(t) ≈ exp

(
2
∫ t

0
Λ+(t′) dt′

)
, (94)

where Λ+(t) is the largest eigenvalue of L(t). Thus, in both extremes σtbend � 1 and σtbend � 1, G(t) ≈
exp(2

∫
Λ+ dt′). This result is especially useful in the limit of small growth rate σtbend � 1, since the rapid

relaxation and growth of bending modes makes it difficult to solve for B numerically.
Fig. 7 shows the optimal growth factors for the first two modes (n = 2 and 3) for σtbend = 1.0, 0.5, 0.1 and

R0τ0 = 10. For both the intermediate writhing regime and the large-σt asymptotic regime, the rate of increase of
the growth factor increases with mode number n. As σtbend increases, the time at which the growth factor for the
n = 3 mode overtakes that of the n = 2 mode decreases because the instability of each mode occurs at earlier
times. For the larger values of σtbend, the n = 3 mode overtakes the n = 2 mode before the amplitudes have grown
large enough for nonlinearities to come into play. Thus, we expect to see double-stranded plectonemic braids with
two hairpin turns for small σtbend, and braids with three or more hairpin turns when σtbend is large. The numerical
computations of Section 3.4 confirm these expectations.

3.4. Numerical solution of the nonlinear equations

We solved the closed set of Eqs. (32)–(34) using a pseudospectral method [59] for the backbone dynamics (32),
direct integration of (33) at each time step using finite differences to find Λ, and a Crank–Nicholson routine for the
twist dynamics (34). We used initial conditions such that the backbone of the loop is perturbed from circular shape
with R0 = 1 by a few small-amplitude modes (n = 2–5). Depending on the simulation, Ω3 ranged from somewhat
less than τ0 to τ0. Fig. 8 shows a time series of the shape of the growing loop with τ0R0 = 10, Ω3(t = 0) = τ0, and
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Fig. 8. Shape of the growing loop for τ0R0 = 10.0, Ω3(t = 0) = 8.3, and σtbend = 0.1 at (1) t/tbend = 0.03, (2) t/tbend = 2.41, (3)
t/tbend = 3.22, and (4) t/tbend = 3.37.

σtbend = 0.1. For early times (Fig. 8(1)), the circular loop is stable and perturbations decay. As the loop grows, R
increases exponentially and Ω3 decreases. At a critical value of Ω3 and R (Fig. 8(2)), the loop begins to buckle and
wrap about itself. For sufficiently large τ0R0, the loop takes on the conformation of a plectoneme, initially forming
a figure-eight structure (Fig. 8(3)) and then wrapping into a braided form (Fig. 8(4)). Fig. 9 shows the twist energy,∫
C(Ω3 −τ0)

2/2 ds, and bend energy,
∫
Aκ2/2 ds, for the growing loop depicted in Fig. 8. Note that the total energy

is not fixed in our model since growth acts to inject energy into the system. At point 1 in Fig. 9, growth along the
filament axis leads to a decrease of twist in time and thus an increase in the twist energy. At the same time, backbone
perturbations die away and the curvature decreases exponentially, leading to a decrease in the bend energy. At point
2, the circular loop becomes observably unstable. The bend energy begins increasing as perturbations in the filament
grow, and the twist energy continues increasing (see Fig. 9). At the inflection point, point 3, the filament forms
a figure-eight pattern. Note that a figure-eight shape of a closed loop which is not growing is a minimum of the
total energy for a range of twist. At later times (such as point 4), the filament wraps into a braided structure. The
bend energy increases as more braids are added. The twist energy also increases; however, writhing motions act to
decrease the twisting stress imposed by growth, leading to a twist energy that grows sub-exponentially (see Fig. 9).
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Fig. 9. Semi-log plot of the bend (solid line) and twist (dashed line) energy vs. time. Numbers correspond to shapes in Fig. 8 and label important
times during growth (see text for further explanation).
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Fig. 10. Morphology of the growing loop at different values of τ0R0. Solenoidal morphologies occur when τ0R0 < 2. Branched plectonemes
are observed for 2 ≤ τ0R0 ≤ 3 and unbranched plectonemes are observed when τ0R0 > 4. σtbend = 0.01 for all figures.

The dynamic equations were solved for a range of τ0R0 and σtbend. When τ0R0 was larger than about 4–10 (the
actual value depended on the value of σtbend), we found plectonemes. Smaller values of τ0R0 yielded solenoids.
Fig. 10 shows how the morphology of the loop depends on the value of τ0R0 at fixed σtbend. In the region with
plectonemes, the shapes form as a result of a writhing instability; the Euler-like buckling instability [29–31] plays
little role. In particular, the braided shapes remain after growth ceases. Thus, the shapes are qualitatively similar to
the minimizers of the elastic energy without growth. However, as discussed in Section 3.3, the rate of growth affects
the shape since the number of branches increases with σtbend. In the region with solenoids, the Euler-like buckling
instability comes into play since the small value of τ0R0 delays the onset of the writhing instability. Solenoids
are not minimizers of the elastic energy without growth; when growth ceases the solenoids relax. Therefore, the
solenoids are the three-dimensional analogs of the two-dimensional shapes of references [29–31]. The plectonemic,

Fig. 11. Qualitative phase diagram depicting the dominant mode behavior as a function of σtbend and τ0R0. For τ0R0 greater than roughly 10, the
linear stability analysis predictions are valid and the n = 2 and 3 modes dominate the pattern formation. At lower values of τ0R0, a secondary
instability drives pattern selection and higher order modes dominates. Insets show the morphology of the loop in different regions of the diagram.
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three-armed, and solenoidal morphologies we obtain are similar to many of the supercoiled patterns that are observed
in B. subtilis; in the conclusion we discuss the relation between our results and the experiments.

In these calculations, we defined the time to the onset of the instability as the point where the bend energy
begins increasing (point 2 in Fig. 9). This time should correspond roughly to t2 defined in Section 3.3, since the
perturbations must be noticeably large before they affect the bending energy. Just as in the linear stability analysis,
increasing τ0R0 or σ reduces the time to onset of the instability. For values of τ0R0 ≥ 10, the time to onset found
numerically was in quantitative agreement with the linear stability analysis (see Fig. 6). At smaller values of τ0R0

the onset time from the simulations was earlier than that predicted by the linear analysis, with the deviation getting
larger for decreasing σtbend. The deviation is due to a secondary instability: before the growing n = 2 mode becomes
observably large, it is overtaken by a higher order mode which quickly dominates the shape of the loop. The value of
the mode that dominates depends on the value of σtbend and τ0R0. As τ0R0 is decreased at constant σtbend, the mode
that dominates increases. As σtbend is increased at constant τ0R0, the mode that dominates decreases. Fig. 11 shows
the phase diagram and examples of plectonemes and solenoids. As a check, we verified the secondary instability by
discretizing the full nonlinear equations (32)–(34), and integrating with the MATLAB routine ode15s (a variable
order, variable time step method for stiff problems).

4. Conclusions

The three essential elements of any growth process appear in our model for B. subtilis fibers in a simple form:
the mode of growth is exponential extension with rotation, the material properties are described by the bending
and twisting elasticity of a slender filament, and the interaction with the external environment is governed by
resistive-force theory. Thus, our model is ideal for illustrating the basic phenomena of the physics of growth. We
have assumed that the bacterial filaments can be treated as perfectly elastic and that the growth rates are uniform and
independent of stress. The degree to which these simplifying assumptions hold remains an outstanding experimental
problem. Furthermore, our model does not lead to plectonemic structures for the case of bacterial fibers with free
ends for the measured values of the growth parameters and elastic moduli. Nevertheless, we can draw some general
conclusions from our model and use our results to suggest new mechanisms for pattern formation in the presence
of biological growth.

First, even though the ultimate microscopic mechanism for the supercoiled patterns of B. subtilis fibers is unknown,
the blocked rotation mechanism we study here must play a role in the supercoiling of closed fibers. For example,
since the closed loops form supercoils at lengths which are much shorter than the length at which the open fibers
supercoil [19], we expect that the blocked rotation mechanism dominates over whatever mechanism causes the
open fibers to supercoil. Thus, we can directly compare our calculations with the experiments on the supercoiling
of closed filaments. Recalling the parameters of Section 3.1, we estimate σtbend � 1, so that we expect unbranched
plectonemes when τ0R0 � 4, branched plectonemes when 2 � τ0R0 � 4, and solenoids when τ0R0 � 2. Typical
observations of the filaments yield unbranched plectonemes, but branched plectonemes and solenoids also arise,
depending on the growth medium. Using the observed buckling radius for an unbranched plectoneme, in Section 3.1
we were able to estimate τ0 ≈ 104 cm−1, suggesting the presence of a structure in the cell wall with pitch P ≈
10−4 cm. The observations of helical actin-like polymers in the cell wall with comparable pitch [51] support our
estimate, and further suggests a starting point for a theory for the microscopic mechanism of the supercoiling.

The second major conclusion of our work is the dynamical nature of the pattern selection. For large τ0R0,
the plectonemes remain once growth ceases, and are qualitatively similar to the minimizers of the elastic energy,
although the rate of growth plays an important role in determining the shape. For small τ0R0, the solenoids are
transient structures which relax away when growth halts. Since the curvature of the bacterial fibers can become
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permanent [26], the solenoidal shapes may act as a template for patterns which remain in the absence of growth. This
mechanism of pattern formation via the hardening of transient structures formed from the interplay of flexibility
and external friction may apply to other biological systems, such as those studied in [31].

To help justify, refine, or rule out our model, we suggest three basic experiments. First, the shape of a growing loop
as function of time should be measured precisely enough to compare with our theory. Although our numerical results
(Fig. 8) are qualitatively similar to the experimentally observed shapes (Fig. 1), the lack of detailed information
about the evolution in time of a single loop in [18] prevents a stringent test of our theory. Second, the change in
elastic properties with time during growth should be quantitatively measured. For example, to what degree and how
long must a fiber be bent to develop a permanent curvature? Finally, the nature of the twist stress in a growing fiber
with free ends should be determined. Is there a twist moment on the cross-sections of the growing fibers with free
ends, leading to a writhing mechanism qualitatively similar to the blocked rotation mechanism for closed loops, or
is the mechanism for open fibers completely different? Future progress toward understanding the pattern formation
of B. subtilis, both at the microscopic level of the structure of the cell wall and the more macroscopic level treated
here, depends critically on new experiments such as these.
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