
Abstract Concentrated, approximately close-packed pop-
ulations of the swimming bacteria Bacillus subtilis form
a collective dynamic phase. This “Zooming BioNematic”
(ZBN), exhibits long-range order, analogous to the molec-
ular alignment of nematic liquid crystals, coupled with
remarkable spatial and temporal correlations of velocity
and vorticity, as measured with PIV. The appearance
of quasi-turbulence in a nominally Stokes Flow system
can be understood by accounting for the local energy in-
put by the swimmers, with a new dimensionless ratio,
analogous to the Reynolds number. The interaction be-
tween organisms and boundaries, and with one another,
is modeled by application of the methods of regularized
Stokeslets.
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1 Introduction

The fluid dynamics of “fast, large” self-propelled objects,
ranging from krill to whales, mosquitoes to eagles, is
extensively studied and intuitively understood. In these
cases the Reynolds number Re ranges from somewhat >1
to enormous. Monocellular bacteria, algae, protists, are
microscopic. Although some of them swim many body
lengths per second, Re � 1. The flows associated with
locomotion hydrodynamically couple the swimmers to
each other and to nearby surfaces. They can also gener-
ate significant advective transport of molecular solutes
associated with life-processes (Solari et al., 2006; Short
et al., 2006).

Much micro-bio-hydrodynamical research has focused
on the morphologically similar swimming bacteria Es-

cherichia coli, Salmonella typhymuris and Bacillus sub-
tilis. The chief experimental results and theoretical in-
sights described in this paper are derived from our in-
vestigations of individual and collective swimming phe-
nomena of B. subtilis.

Individual cells of these generally non-pathogenic soil
bacteria are rod-shaped (see Fig. 1). Their length ranges
from two to eight micrometers, depending on nutrition
and growth stage. In typical experiments they are ap-
proximately 4 µm long and somewhat less than 1 µm in
diameter. They are peritrichously flagellated: the heli-
cal flagella, their means of propulsion, are distributed
randomly over the cell body. These structures emerge
from motors that are fixed within the cell membrane.
The shafts are able to rotate at various rates, typically
in the order of 100 Hz. The flagella are complex poly-
meric structures approximately 20 nm in diameter. Their
length is 10-15 µm, considerably longer than a cell’s
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Fig. 1 Two Bacillus subtilis cells about to divide. White bar
on the left side is 1 µm long. Flagella can be seen emerging
from the body. Many of them have been broken during sample
preparation for this transmission electronmicrograph.

body. The flagella are attached to the motors by a flexible
hook which acts as a universal joint. The pitch of the he-
lices is ∼ 4 µm. Fig. 1 shows two cells caught in the pro-
cess of dividing. When a bacterial cell swims smoothly
forward, hydrodynamic interactions between the many
helical flagella cause the formation of a propulsive bun-
dle within which they co-rotate. The swimming speed
of an individual is approximately 11% of the helix wave
speed (Magariyama et al., 1995 and 2001). The motors
are fueled by proton gradients. The rotation direction
of the motors is reversible. The reversal frequency is a
function of the surrounding concentration of chemicals
and of other factors. It can play a major role in chemo-
taxis (Berg, 1993; Berg, 2003). The cell bodies are not
polar. The flagellar bundle can form at either end of a
cell, an important aspect of group locomotion, discussed
in section 5.

Because Re � 1, a single swimming bacterium has
associated with it an extensive flow field which is pro-
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duced entirely by the drag forces on the fluid, exerted
forward by the cell body and backward by the flagella. No
wake remains behind moving cells or cell groups. When
a cell stops rotating its flagella, all motion of the fluid
and of the cell ceases. Motor boats are not analogs. The
viscous forces are described by Slender Body Theory and
extensions of Faxén’s and Stokes’ laws (Pozrikidis, 1997).
For an isolated swimmer, the net propulsive force of the
flagella must equal the opposing drag force of the body
connected to the flagella, taking into account the effect
of nearby surfaces, or other organisms. The solutions of
the relevant creeping flow equations are linear and time
reversible. Under actual, real world situations, these con-
ditions are only approximate or worse. Deviations from
the ideal occur when flows affect boundary conditions
such as location and orientation of nearby cells, the speed
and directionality of flagella beating, the deformation of
nearby interfaces.

The fluid dynamics of suspensions of living organ-
isms can be modified by their behavior. For example,
we describe in section 4, that B. subtilis tend to swim
upstream in a shear flow. Should we ascribe this to hy-
drodynamic interactions that passively orient cells which
simply maintain rotating their flagella? Or perhaps might
we infer that, when bacteria experience shear stress, they
“want” to swim upstream? In section 4 we show one ex-
ample of this phenomenon, adequate for the purpose of
demonstrating its importance for recruiting individuals
into groups of co-directionally swimming cells. However,
the specific recorded trajectories of more than sixty cells
show major differences in topological detail. The recruit-
ing of cells into correlated groups does not depend on the
origin of the ultimate behavior, but inferences concerning
fundamentals of micro-bio-hydrodynamics require exper-
iments designed to disentangle the physics from the bi-
ology. We are currently pursuing this objective.

Micro-organisms use, exude, and respond to the pres-
ence of biologically significant molecules. Chemical in-
teractions provide an avenue for change of the collec-
tive dynamic. The consumption of dissolved molecules
such as oxygen induces remarkable behavior of individual
bacteria. For instance, swimming up oxygen concentra-
tion gradients, produced by a combination of consump-
tion and diffusion supplied through a water/air interface,
leads via hydrodynamics and gravitational (Rayleigh-
Taylor) instability to the highly concentrated popula-
tions (Dombrowski et al., 2004, Tuval et al., 2005) which
are the chief subject of this paper. Emission of molecules
involved in signalling and exudates of biopolymers that
may radically change the viscosity of the embedding fluid
are both involved in quorum sensing (Miller et al., 2001)
and the formation of biofilms (Kolter et al., 2006). Before
occurrence of these radical events, subtle chemical inter-
actions can influence the biology and modify the behav-
ior of individual cells. Even at low concentrations, poly-
mer exudates modify the properties of the suspension.
For instance, we observe that in slightly aged cultures of

still normally motile bacteria, passive marker particles,
as well as the bacteria themselves, can be coupled by
polymer strands of cellular origin. Furthermore, the wa-
ter/air interface can accumulate bacterially-synthesized
polymer surfactants that trap and immobilize bacteria
arriving there. This nominally free surface becomes a
stiff, no-slip boundary. In biofluid mechanics, before reach-
ing definitive conclusions: caveat emptor.

An astonishing phenomenon, the Zooming BioNema-
tic collective phase, occurs when the bacterial cells are
very concentrated, i.e. nearly close-packed. They form
codirectionally swimming domains that move chaotically,
giving the appearance of turbulence. These regions may
move at speeds much larger than the average speed of
single organisms.

Maintenance of a sustaining environment is required
when working with suspensions of living organisms. B.

subtilis require oxygen for swimming. The dynamics of
the ZBN phase, driven by swimming, continue unabated
for hours, suggesting that an adequate supply of oxy-
gen is available to the bacteria. Molecular transport into
the bacterial suspension from the adjacent air involves
molecular diffusion and also advection by collectively
generated streaming. Bacteria consume ∼ 106 molecules
of O2 per second per cell. As the solubility of oxygen
is ∼ 1017 molecules/cm3, and the concentration of cells
is ∼ 1011cm−3, in absence of transport into the suspen-
sion, the oxygen would be gone in about one second.
During experiments on the ZBN, the typical depth of
the suspension is L ∼ 5 × 10−3cm. With the diffusion
coefficient of O2 in water D = 2× 10−5cm2/sec, the dif-
fusion time, L2D−1 is also of order one second. A scale
for collective velocity is V ∼ 5 · 10−3cm/sec, so that
the advection time is again approximately one second.
This fortuitous combination of characteristic times im-
plies “just in time” oxygen delivery. The Peclet number,
Pe = LV/D, is therefore of order unity. The complex
and quite fascinating details of the transport processes
of food, waste products, and of molecular signals need
extensive investigation, another example of the convo-
lution of biology and fluid dynamics. The biochemistry
of metabolism and sensory processes also plays a major
role. Recent works (Solari et al., 2006; Short et al., 2006)
describe investigations on diffusive transport necessarily
augmented by advection due to the motion of flagella.
There, the context is an aspect of the origin of multi-
cellularity in a family of algae. In a sense, the coherent,
collective behavior of a bacterial population converts it
too into a type of multicellular “individual.”

2 Collective Phenomena: The Zooming
BioNematic (ZBN)

The volume of one cell of B. subtilis is ∼ 1.5×10−12cm3.
Since the bodies are rod-shaped, concentrated popula-
tions, e.g. n ∼ 1011cm−3, tend to form domains within
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which the self-stacked cell bodies are approximately par-
allel. The entire high concentration region consists of
such domains. All the cells in one domain swim in the
same direction, so that, unlike the analogous liquid crys-
tals, the domains move and are dynamically polar. The
cell bodies have no intrinsic polarity; on any one cell, the
propelling flagella can flip to either end of the body/rod.
This appears to be one mechanism for quorum polarity:
individual organisms joining the swimming direction of
the majority. A domain is thus characterized by coher-
ence of body alignment, and polarity, i.e. coherence of
swimming direction. The domains swim in arbitrary di-
rections, they zoom about at speeds that often exceed
the swimming speed of individual bacteria. These zoom-
ing domains spontaneously form and disintegrate, giv-
ing the appearance of internally maintained turbulence.
The next section describes PIV measurements of spatial
and temporal correlations of velocity, vorticity and polar
alignment.

This phase of active microorganism motion is em-
bedded in water. The entire dynamical system is driven
by the rotation of the helical flagella that emerge from
the bodies of the bacteria. The flagella propel (force)
the fluid phase backward; they exert an equal and oppo-
site force on the bodies from which they emerge. Since
the flagella are typically three times longer than the cell
bodies, the flow generated by the flagella of a particular
cell exerts a backward drag on the bodies of several cells
located behind that particular one. It therefore seems
likely that the flows in the interior of domains are rather
small, and that propulsion arises mostly at the periph-
ery. Further discussion and relevant calculations follow
in section 5, which also presents results on cohesive hy-
drodynamic interactions.

3 Coherence of polar and angular order: a novel
use of PIV

Our experiments were conducted with B. subtilis strain
1085B suspended in terrific broth (TB) (Ezmix Terrific
Broth, Sigma; 47.6 g of broth mix and 8 ml of glycerin
in 1 liter of distilled water). Samples were prepared by
adding 1 ml of −20◦C stock to 50 ml of TB and incubat-
ing for 18 hours in a shaker bath at 37◦C and 100 rpm.
Then, 1 ml of bacteria suspension was mixed with 50 ml
of fresh TB and incubated for another 5 hours.

A single drop of suspension was put on plastic petri
dish to be observed under an inverted microscope with
20x bright field objectives. This magnification is enough
to observe individual cells and produce a field of view rea-
sonably wide. Additional water reservoirs were placed in
the closed chamber to induce high humidity and avoid
evaporative flows at the edge of the drop. The sessile
drop is imaged from below through the bottom of the
petri dish and close to the contact line, where dimen-
sions of the medium are close to a thin layer and self-

concentration mechanisms provide very high accumula-
tions of cells (Dombrowski et al., 2004). Videos where ob-
tained using a high-speed digital camera (Phantom V5)
at a rate of 100 frames per second and with a resolution
of 512×512 pixels. Sets of 1000 frames were subsequently
obtained from each of those videos and processed with a
commercial particle-imaging-velocimetry system (DAN-
TEC Flow Manager) in the cinemagraphic mode. The
PIV system can estimate the most probable displace-
ment of small rectangular regions in the image by imple-
menting a simple pattern matching algorithm between
two consecutive images (Willert et al., 1991; Keane et

al., 1992). A sampling grid of 42 × 42 cells, each eight
pixel wide with 25% overlap, was chosen. Given the dis-
placement of these small evaluation regions at a given
frame rate, a discrete and instantaneous velocity field is
returned for each time step. Although the observed sys-
tem is a thin layer, such measurements are projections
of a three-dimensional field into the plane defined by the
area of view and the optical depth of field.

Measurement of the coherence lengths and times that
characterize the dynamics of the ZBN can be done by
the implementation of a PIV analysis on the recorded
motion of passive tracer particles, or of the suspended
bacteria themselves. The data presented here uses the
latter technique. Passive tracer data is too sparse when
the concentration of tracer particles is sufficiently low so
as not to affect the basic phenomena.

On the other hand, optical problems arise in the high-
ly concentrated ZBN phase. The close-packed cells scat-
ter light, producing distortion and diffraction effects that
reduce the quality of the image. Individual cells are diffi-
cult to resolve in this setup. Though more work is needed
to increase precision on velocity measures, analysing dif-
fuse images with PIV is not necessarily a problem. This
technique definitely captures well the overall dynamics
of the system in a quantitative way.

An example snapshot of the velocity field is shown in
Fig. 2. The corresponding vorticity field is shown in Fig.
3.

The motion of the suspension appears turbulent. Co-
herent regions, surges, plumes and jets occur intermit-
tently. These domains of aligned motility are many hun-
dreds of times larger than bacterial dimensions, remain-
ing coherent for a second or longer. Observed cinemato-
graphically, the leading segments of such plumes often
roll up into spirals, then disperse, either spontaneously
or due to interactions with neighboring coherent regions.
These observations relate to the trajectories, the paths
of groups consisting of hundreds or thousands of bacte-
ria. PIV provides only a quasi-instantaneous snapshot of
streamlines associated with a velocity field derived from
the data.

Correlation functions were estimated from the quan-
titative data. The temporal correlation function of ve-
locity is defined as the following statistic over the vector
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Fig. 2 One randomly chosen instant of the bacterial swim-
ming vector field estimated by PIV analysis. The vector in
the small gray rectangle in the lower left corner represents
a magnitude of 50 µm/sec. The turbulent appearance of the
flow is evident here.
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Fig. 3 Vorticity of the bacterial swimming velocity vector
field. Color bar indicates vorticity values in sec−1. Fig. 4 (c)
and (d) show correlations between adjacent regions of oppo-
site handedness.

field v(x, t):

Jv(x, t) =
〈v(x, s + t) · v(x, s)〉s − 〈v(x, s)〉2s

〈v2(x, s)〉s − 〈v(x, s)〉2s
. (1)

The space correlation function is defined as

Iv(r, t) =
〈v(x + r, t) · v(x, t)〉x,θ − 〈v(x, t)〉2

x

〈v2(x, t)〉x − 〈v(x, t)〉2
x

, (2)

where 〈·〉s is the average over time frames and 〈·〉x indi-
cates the average over space coordinates x = (x, y). The

first term in Eq.(2) is also averaged over all possible an-
gles θ of r. Then Iv(r) depends only on the magnitude
r ≡ |r|.

Similar definitions are used for the correlation of the
vorticity scalar field Ω(x, t),

JΩ(x, t) =
〈Ω(x, s + t)Ω(x, s)〉s − 〈Ω(x, s)〉2s

〈Ω2(x, s)〉s − 〈Ω(x, s)〉2s
(3)

and

IΩ(r, t) =
〈Ω(x + r, t)Ω(x, t)〉x,θ − 〈Ω(x, t)〉2

x

〈Ω2(x, t)〉x − 〈Ω(x, t)〉2
x

. (4)

Using these measures on the PIV data, we obtain
1000 different curves for Iv and IΩ , one for each time
realization, and 42×42 = 1764 curves for Jv and JΩ , one
for each possible discrete coordinate in the PIV sampling
grid. We further calculate averages of these sets to show
the overall mean behavior of the correlation functions.
Graphs are shown in Fig. 4. Comparison of the average
plots with plots of individual cases show that, because
of the prevalence of positive and negative correlations,
averaging does not provide good insights for dynamic
events. These oscillations of correlation are somewhat
reminiscent of events at high Re.

These analyses reveal correlation lengths of velocity
on the order of 10 µm, which is about a typical vortex ra-
dius in Fig. 3. We also observe anticorrelation extending
for more than 70 µm and coherence in time that persists
for at least a second, suggestively close to the advec-
tion time mentioned at the end of section 1. While these
measures define some characteristic length and time of
the system, these curves do not provide information on
the continuity and dominance of extensive coherence of
alignment and collective polar motion. A novel method
of analysis of the velocity field, using the streamlines de-
rived from PIV was employed to provide that insight.

The local velocity of domains of concentrated bac-
teria correlates with the direction of the axis of the cell
bodies. In this way, the direction of the associated stream-
lines averaged over suitably chosen areas can provide a
measure of the orientation of a local director vector, tra-
ditionally used to characterize liquid crystalline phases.
In this context, the swimming co-direction defines the
polarity of coherent behavior absent from standard liq-
uid crystalline order (de Gennes and Prost, 1993). Spa-
tially rapid deviations of streamline directions from the
local average provide a quantitative measure of the end
of planar coherence. They may signal the occurrence of
orientational singularities, such as excursions into the or-
thogonal dimension or the presence of boundaries that
define unrelated regions of coherence that collide or fold
into each other. Relatively low angle deviations of the
director provide data on the splay and bend parameters
that occur in the analysis of the liquid crystal energy
function.

We now introduce a new method of analysis which
consists of defining a suitable scalar field to measure the
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Fig. 4 (a) Velocity space correlation function Iv(r). Four examples corresponding to four different times are shown in
colors; the black trace is the average over 1000 time realizations. (b) Velocity time correlation function Jv(t). Four examples
corresponding to four particular locations in the field of view are shown in colors. Black is the average over space. Plots are
show for the vorticity space correlation IΩ(r) (c) and time correlation JΩ(t) (d) are shown for four examples and, again in
black, for the average: The oscillations in (c) correspond to alternation of handedness of vorticity, shown in Fig. 3.

level of coherent directional motion in the velocity field.
The obvious choice is a local average ΦR = 〈cos θ〉R of
the cosine of the angle between adjacent unit vectors of
velocity, averaged over a small region defined by R. This
average is an operation over the measured velocity field
vij(t):

ΦR(i, j, t) =
1

NR

∑

(l,m)∈BR(i,j)

vij(t) · vlm(t)

|vij(t)||vlm(t)|
, (5)

where BR(i, j) is a quasi circular region of radius R cen-
tered at (i, j) and NR is the number of elements in such
a set.

When ΦR ∼ 1 the vectors inside the region BR are
nearly parallel. Values close to zero indicate strong mis-
alignment. Negative values imply locally opposing stream-

lines. Resolution and noise level are determined by the
choice of magnitude of R.

Standard correlation functions based on the velocity
field, as in Fig. 4, hide long range continuities of corre-
lation. Analyzing the streamline field in this novel way
exhibits the global continuity of angular and polar cor-
relations. The extent of the resultant sinuous domains
depends on the choice of the averaging area ∼ R2. Large
values of R produce a strong smoothing of the local data,
which may hide the details of the chaotic nature of flow
by means of statistical cancellations. Hence, small val-
ues of R should be preferred. But on the other hand,
small values of R produce results that are more sensi-
tive to noise in the raw data. They may be biased by
the specific shape of the averaging region, connected to
the fact that the grid chosen for the PIV is square. Fig.
5 shows the extent of continuous domains, derived from
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Fig. 5 Instantaneous coherence measure ΦR (Eq. 5) for R = 1 (a), R = 2 (b), R = 3 (c) and R = 4 (d). Axes and R are
in PIV grid units (' 2 µm each). Gray boxes in the lower left corner indicate, in each case, the size and shape of the local
averaging region used to estimate the measure. The color bar on the right indicate scale levels for values of ΦR.

one data set, using different values of R. The red colored
region corresponds to the level 0.8 < ΦR < 1, which
contours regions of high coherence. Inside these domains
all speeds are parallel and co-directional within an angle
slightly lower than 37 degrees.

For liquid crystals, the conventional order parameter
involves 〈(cos θ)2〉, thereby avoiding polarity. For the do-
mains of coherent directional motion considered here, we
can define the order parameter as

PR(t) = 〈ΦR(t)〉, (6)

where this average extends over the entire area, it i.e.
all elements of the PIV image at time t. This quantity
can be treated as a time series. We find that PR(t) has

basically a stationary value with random fluctuations.
Fig. 6 plots histograms of these order parameters. This
method of analysis will be used in measuring the onset
of the ZBN phase as a function of the concentration n.

What is the distribution of values of ΦR in the whole
field of view for each time step? What fraction of the
total area in the levels map of ΦR do they span? This
approach asks for the probability of finding any given
level of coherence in the flow, or the portion of the total
that is spanned by each contour level on Fig. 5. These
area fraction distributions are shown in Fig. 7 for four
values of R. The data set in [−1, 1] is partitioned in bins
of size 0.2. We see an obvious shift of the center of the
distribution when R is changed. Is interesting that each
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Fig. 6 Histograms for the order parameter PR(t) for differ-
ent values of R. Each one is generated with 1000 time steps.
The skewing of the distributions becoming two-peaked at low
R (high resolution) presumably indicates the presence of a
distribution of correlations.

distribution is basically constant, meaning that the frac-
tion of the system with a given coherent level stays more
or less the same over time. This observation can yield
a significant measure for understanding the process of
organization of the system and give a hint of some type
of stationarity in the system. It may tell that coherent
regions are somehow stable. They deform, bend and may
break apart, but the overall surface or volume stays more
or less constant in time. Given that the suspension is ap-
proximately close-packed, it also implies that the number
of cells in the aggregate of domains stays the same. The
significance of this is that swimmers that are initially
close-by tend to stay close along their path. The con-
servation of area fractions also suggests that the rate at
which the coherent volume is moving into the focal plane
is the same as the one leaving it. Then some “recycling”
mechanism must be taking place in the perpendicular,
out of focus, direction, like a bioconvection process. An-
other possibility could be that the whole dynamics is
limited to a very narrow layer and is two dimensional.
But this is not the case . We have observed that cells and
clumps of cells or passive tracers tumble and move in and
out of the focal plane, clearly proving that the dynamics
is three-dimensional. Dynamics of recruiting and drop-
ping of individuals into and out of phalanxes could be
related to the topological details of this dynamic. There
may be also implications for mixing and transport phe-
nomena.
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Fig. 7 Area fraction of coherent regions distributed over the
whole range of ΦR, averaged over 1000 time frames. Error
bars indicate standard deviation in each case.

4 Recruiting into ZBN domains

Concentrated populations of B. subtilis spontaneously
develop domains of the collective phase ZBN. Steric re-
pulsion between cell bodies causes a nematic liquid crystal-
like alignment that is demonstrated by the correlation of
nearby angles, obtained from PIV analysis of the veloc-
ity field (Fig. 5). The axes of the cell bodies are aligned,
but furthermore there is polarity, collective directional
locomotion. Conventional nematics do not exhibit po-
lar director axes. The recruiting of swimmers into a co-
directionally swimming domain of cells, a phalanx, de-
pends on three or more mechanisms. We have discov-
ered, as discussed below, that individual cells of B. sub-

tilis have a strong tendency to swim upstream in a shear
flow. Such flows emerge from groups of co-directionally
swimming cells. They provide a mechanism for recruit-
ing more individuals into a phalanx. Another organiz-
ing/recruiting mechanism occurs when one of these bac-
teria encounters an obstacle. It can flip the propelling
flagella from “back” to “front”, resulting in reverse lo-
comotion, without turning the bacterial cell body (Cis-
neros, et al., 2006). This action may be a behavioral man-
ifestation of flagellar dynamics and orientational instabil-
ity. Paradoxically, it can aid polar alignment in groups,
just because the individual cells are not themselves polar.
Individual off-oriented cells can react by joining a collid-
ing “obstacle”, consisting of a moving phalanx of others.
The transverse inward flows that surround a swimmer,
or group of swimmers (Fig 13 and 14) provide yet an-
other mechanism for recruiting, or coherence. These col-
lectively generated currents can recruit adjacent organ-
isms into pairs, multiplets, and eventually into domains
of the ZBN. These flows, which are due to incompress-
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ibility, are shown in section 5. A tightly knit group of
propagating cells generates a backwash flow field, a lat-
eral influx, and a flow forward, in the swimming direc-
tion.

Bacteria located near a rigid surface, in a prescribed
shear flow, tend to swim upstream. Their trajectories,
paths composed of swimming plus advection, are best
observed at relatively low cell concentration. They con-
sist of upstream segments, frequently of several seconds
duration, sometimes of segments oriented across the flow,
and intermittently of nearly passive downstream ones.
Data were obtained on sixtyfive individual tracks that
exhibit these characteristics, each modified by idiosyn-
cratic details.

Swimming bacteria were suspended in Poiseuille flows
within flat microslides (Vitrodynamics) with a 0.1 mm
lumen. The velocity profile was determined by tracking
2 µm flourescent particles (Bangs Labs) near the focal
plane. By comparing the out of focus beads to their im-
ages at known distances from the focal plane, the depth
and velocity of the tracer particles can be used to deter-
mine the 3D velocity field and the shear. Cell trajecto-
ries in the up-swimming experiment were visualized by
tracking the position of both ends of the cells through
a sequence of images in the plane of focus. The vector
orientation of a cell was determined from the distance
between the ends of the cell and the angle. The angle
and length give the projection of the cell body in the
plane of focus. Velocity of the cells is calculated from
the change in position of the cell from one frame to the
next. This velocity represents the speed and direction
that the cell is moving in the lab reference frame. Due
to the external shear stress experienced by the cell the
velocity vector does not necessarily pointing in the same
direction as its orientation. The velocity of the fluid in
the plane of focus can be subtracted giving the velocity
of the cell in the reference frame of the fluid.

Figs. 8-10 show one representative trajectory, as ob-
served, and relative to the fluid. This behavior of indi-
vidual cells may be entirely hydrodynamic; a behavioral
response to differential shear stress may also play a role.
If up-swimming were due to chemotaxis, counter-current
swimming would persist into the zero gradient region of
the prescribed Poiseuille flow, which it does not. The
interactions of cells and fluid velocity gradients, the de-
convolution of cell path lines and fluid stream lines, and
analysis of cell body orientation in relation to swimming
direction are a current endeavor covering many such ob-
servations. Note that in Fig. 8 the cell body is oriented
nearly transverse to the swimming direction. This orien-
tation occurs in many cases, but not all. When it does, it
implies the dissolution of the flagellar bundle, with indi-
vidual flagella emerging approximately perpendicular to
the body axis, as if driven by the fluid “wind” in which
they operate. Our optical resolution is insufficient for
ascertaining whether the cell bodies and flagella are at

different levels in the shear field, a possible explanation
of the phenomenon.

Fig. 8 Trajectory and orientation of a particular bacterial
cell swimming in a flow, velocity in the positive y direction,
with shear dVz/dz ∼ 1.0 sec−1. The small arrows show the
apparent swimming direction and the projection of the body
size on the plane of observation. The bar on the right repre-
sents 20 micrometers.

5 Modeling self-propelled microorganisms

In the creeping flow regime where Re � 1, featuring
linearity, superposition and time independence, a simple
model of a self-propelled organism consists of two parts,
a “body” B and an attached extendable “thruster” T
that emerges from B. When forces within B provide an
incremental backward push to T, the resulting increment
of motion generates a surrounding field of fluid velocity.
The motion of B is “forward” with velocity VB relative
to the surrounding stationary fluid; the motion of T is
backward with velocity VT . The velocity with which T
emerges from B is vr . Therefore, since T is attached to
B,

VT = vr −VB .

When the respective drag coefficients are RB and RT ,
force balance is achieved when

FB = RB |VB | = RT |vr −VB | = RT |VT | = FT , (7)

where FB and FT are the forward and backward force
magnitudes on the fluid.
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Fig. 9 Trajectory of the velocity vectors of the same bac-
terium as in Fig. 8 in the laboratory reference frame. The
vector on the right side represents the fluid velocity of mag-
nitude V = 78µm/sec.

Fig. 10 The swimming velocity relative to the fluid, i.e. the
local vectors shown in Fig. 9 minus the fluid velocity vector
V with V = 78 µm/sec. Comparing with figures (8) and (9),
note that the velocity of the bacterium can be transverse to
its orientation.

Fig. 11 Diagram of a model swimmer and velocities VB and
VT induced on the fluid, and the velocity vr of backward
thrust of T out of B.

A schematic diagram of the swimmers and velocities
is shown in Fig. 11, where the sphere and the ellipsoid in-
dicate respectively B and T, which move with a relative
velocity vr.

For bacteria, T represents the rotating bundle of he-
lical flagella. An increment of motion consists of a slight
turn of the bundle during an increment of time. For the
simplified case presented here, we ignore rotation. This
model generates the salient features of the fluid flow field
that surrounds a self-propelled organism or, by superpo-
sition, a group of organisms. It is not intended to eluci-
date the time development of trajectories. That objec-
tive would require a helical rotating thruster, or a magi-
cal putt-putt, where a thrust increment is followed by a
drag-less increment of retraction.

The computational model presented below considers
B a sphere and T a rod of finite diameter. Forward and
backward velocities, calculated by force balance, are used
to specify VB and VT .

6 Flows and Forces

6.1 Sphere-stick model of a single organism

Each organism consists of one sphere (body B) of radius
ah and a cylinder (flagellum bundle T) of length ` and
radius at along the z-axis, as depicted in Figure 12. The
figure also shows an infinite plane wall which will be
included in some of our computations. When the wall is
present, it is located at xw = 0. The head has velocity
(0, 0, VB) and the tail has velocity (0, 0, VT ). The balance
of forces is achieved as follows. The drag force on an
isolated sphere moving at velocity (0, 0, VB) is given by

FB = RBVB = 6πµaBVB(0, 0, 1). (8)

The force required to move the cylinder along its axis
with velocity (0, 0, VT ) is

FT = RT VT =
4πµ`

ln(`2/a2
T ) − 1

Vt(0, 0, 1). (9)

For force balance we require FB + FT = 0 which
results in

VT = −
3

2

aB

`

[

ln(`2/a2
T ) − 1

]

VB . (10)
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Fig. 12 Perspective view of the sphere-stick model and the
wall.

6.2 Force computation

Given the instantaneous velocities of the head and tail of
the organism, our goal is to compute the surface forces
that produce these velocities at all the surface points. For
this we use the method of Regularized Stokeslets (Cortez,
2001; Cortez, Fauci, & Medovikov, 2005). Briefly, the
method assumes that each force is exerted not exclusively
at a single point, but rather in a small sphere centered
at a point xk . The force distribution is given by

F(x) = Fkφ(x − xk), (11)

where φ is a smooth narrow function (like a Gaussian)
with total integral equal to 1. The limit of φ(x) as the
width (given by a parameter ε) approaches zero is a Dirac
delta δ(x). The role of the function φ is to de-singularize
the velocity field that results from the application of a
single force. For example, given a force Fkφ(x) centered
at xk and using the regularizing function

φ(x) =
15ε4

8π(|x|2 + ε2)7/2
, (12)

the resulting velocity is

u(x) =

(

1

8πµ

)

gk

(|x − xk|2 + ε2)3/2
, (13)

where

gk = [|x − xk |
2 + 2ε2]fk + [fk · (x − xk)](x − xk) . (14)

This is called a Regularized Stokeslet (Cortez, 2001
and Cortez et al., 2005). Given a collection of forces
distributed on a discrete set of points covering the sur-
faces of the sphere and cylinder, the resulting velocity
obtained by superposition is

u(x) =

(

1

8πµ

) N
∑

k=1

gk

(|x − xk |2 + ε2)3/2
. (15)

6.3 Boundary conditions:

For the computations with flow near an infinite plane
wall, the boundary conditions of zero flow at the wall
are enforced using the method of images. The image sys-
tem required to exactly cancel the flow due to a singu-
lar Stokeslet was developed by Blake (Blake, 1971). It
requires the use of a Stokeslet, a dipole and a doublet
outside the fluid domain, below the wall. This system of
images has been extended to the case of the regularized
Stokeslet, Eq. 15.

6.4 Example 1: a single organism

We consider first a single organism moving parallel to an
infinite plane wall. The table below shows the parameters
used.

parameter description
ah = 0.1 radius of the head
at = 0.02 radius of the tail
` = 0.4 length of the tail
Uh = −1.0 velocity in the x-direction of the head
Ut = 1.8718 velocity in the x-direction of the tail

Since there is a linear relationship between the surface
force and the fluid velocity, we set up a linear system
of equations by evaluating Eq. 15 at all surface points
and setting the velocities to their corresponding value.
This leads to a linear system for the forces at all surface
points. Once the forces are computed, the fluid flow at
any point in the domain can be computed using again
Eq. 15.

Figure 13 shows the fluid velocity on a plane parallel
to the wall and through the organism as well as the flow
on a plane through the organism and perpendicular to
the wall. The contour lines are at 5%, 10%, 25%, 50%,
75% and 90% of the maximum fluid speed. Those con-
tours give an idea of the extent of the fluid disturbance
created by an organism. Figure 14 shows the streamlines
of the instantaneous velocity field, revealing circulation
patterns.

6.5 Example 2: two organisms

We next consider two organisms next to each other pre-
scribed to move parallel to an infinite plane wall and to
each other. The parameters are the same as those used in
the previous example. Just as in the case of a single or-
ganism, the flow pattern suggests that the flow tends to
“push” the organisms toward the wall and toward each
other. This can be quantified by computing the forces
exerted by the organisms on the fluid in order to move
parallel to the wall and to each other.

Figure 15 shows the velocity field and the resulting
forces exerted on the fluid by each of the two organ-
isms. From the image, it is easy to see that there is a
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Fig. 13 Plan and side views of velocity field around one
organism near a wall. The numbers indicate contours where
the fluid speed is 5%, 10%, 25%, 50%, 75% and 90% of the
maximum speed. The infinite plane wall is located at x = 0.

component of the force that points away from the wall,
indicating that this components is needed to counteract
the attraction effect of the wall in order to keep the or-
ganisms moving parallel to it. Similarly, the component
of the force pointing away from the neighboring organ-
ism is required to counteract the attraction induced by
the flow field.

6.6 Example 3: several organisms

We compute the flow around several organisms placed
in a common plane above the wall. The velocity is com-
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Fig. 14 Streamlines of the velocity field around one organ-
ism near a wall. Plan and side views.

puted also in that plane in order to visualize the effect of
the prescribed motion of the group. Figure 16 shows the
velocity field around the organisms and a close-up view
of the flow between some of the organisms, while Fig.
17) shows the streamlines for the same configuration.

6.7 Significance of Computational Results

The computed geometries and magnitudes of the flows
generated by the locomotion provide some understand-
ing of the forces between swimming organisms and be-
tween organisms and adjacent no-slip surfaces. We ob-
serve, in experiments, that two or more bacteria swim-
ming near each other, co-directionally, continue for long
distances in these parallel paths. The computed forces
on each swimmer, shown in Fig. 15, show the attraction
of the cells to each other and to the nearby plane. Ad-
ditional computations show that in the absence of the
plane, the vertical components vanish (by symmetry),
and the horizontal attractive components diminish. The
attractive force is due to transverse flow toward the or-
ganism axis (Fig. 13), required by conservation of vol-
ume: the body propels water forward, the tail pushes
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Fig. 15 Velocity field around two organisms near a wall
and resultant forces exerted by each organism on the fluid
in order to move parallel to the wall and to each other.
The forces are (2.72,−1.71,−0.22)|FB | (left organism) and
(2.72, 1.71,−0.22)|FB | (right organism), where FB is the drag
on the sphere given by Eq. 8.

water backward, leaving a central region of inflow due to
lowered pressure. In the absence of the nearby plane, the
influx is weaker because of spherical symmetry. The same
influx can be seen toward the centers (between body and
tail) of organisms which are members of a multi-organism
phalanx (Fig. 16). Transverse flows between the body of
a follower and the tail of a preceder are also seen in the
upper image of Fig. 16. Whether a sum over transverse
flows in a 3D domain consisting of many close-packed or-
ganisms provides net lateral/radial cohesion remains to
be seen.
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Fig. 16 Velocity field around several organisms above a wall
(top) and a closer view of the velocity between them (bot-
tom).



14

−0.5 0 0.5 1
−1

−0.5

0

0.5

1

1.5

y

z

Fig. 17 Streamlines of the velocity field around several or-
ganisms near and above a wall. The flow is the same as that
in Fig. 16.

Figs 16 and 17 also show the flows that penetrate
or surround a group. It is evident that there is very lit-
tle front-to-back penetration of fluid. The exchange is
mostly lateral. The leading heads push water forward,
the tail-end cells push water backward, generating much
of the collective forward propulsion. The low velocities of
flow in the interior (the lower images of Fig. 16 and Fig.
17) imply compensating forces and relatively little ad-
vective communication between cells, as discussed in the
introduction. Similar calculations have been performed
on groups of ten cells, and on staggered pairs. The as-
sociated interior flows are weak, but vortical regions, as
in Fig 17, or even more spectacular, can provide sig-
nificantly enhanced transport of suspended particles or
molecules.

More extensive results have been obtained. They will
be reported in a separate paper, currently in preparation.
The results presented here show some of the fundamental
ingredients required for understanding the hydrodynam-
ics of collective behavior.

7 Turbulence at Re � 1?

To the casual observer, the ZBN phase of a concentrated
suspension of swimming B. subtilis appears turbulent.
More quantitatively, the analysis of the collective dynam-
ics, using PIV based on the motion of the bacteria, or
on passive tracers, exhibits some features of turbulence.
Furthermore, the collective velocities of coherent subpop-
ulations of bacteria can be greater than the swimming

velocities of individual cells. Considering the suspension
as a simple fluid, the conventional Reynolds number,

Re =
UL

ν
,

where ν is the kinematic viscosity, U is a mean collec-
tive velocity, U ∼ 5 × 10−3 cm/sec, L ∼ 10−2 cm is a
typical correlation length (Fig 4). Thus, Re � 1 for typ-
ical values of ν ∼ 10−2 cm2/sec. An increase of ν due
to suspension effects further decreases Re. The how can
the quasi-turbulence be sustained?

One can analyze the observed dynamics by consider-
ing the force or power densities produced by the swim-
ming organisms. The conventional Reynolds number is
the ratio between kinetic energy and viscous dissipation.
An analogous dimensionless ratio can be constructed from
the Stokes force that a single bacterial cell must exert to
move itself at velocity v,

f = cµav, (16)

where a is the radius, µ is the viscosity of the medium
and c is a geometrical factor of order 101. In particular,
for a sphere in an infinite medium c = 6π (Stokes sphere).

The power put by a cell into the suspension that sur-
rounds it is Pn = f · v = cµav2; for a concentration of n
cells per unit volume

Pn = cnµav2 (17)

is the total power input density. The viscous dissipation
of power in the collective phase is estimated as

Pµ = µ

(

U

L

)2

, (18)

where µU/L is the collective shear stress and U/L is
a characteristic time. Then, based on these energy ar-
guments, the dimensionless ratio “Bacterial swimming
number”, Bse is defined as

Bse =
Pn

Pµ
= cnL2a

( v

U

)2

. (19)

For the nearly close-packed ZBN phase, n ∼ 1011cm−3.
Taking the velocity ratio of order unity, a of order 10−4

cm, and L ≈ 10−2 cm, the observed correlation length,
Bse ∼ 104. This “alternative” Reynolds number explains
the possibility of a turbulent dynamics when Re � 1.
The large magnitude of Bse sweeps away details on the
assumptions of parameters values.

This result can also be obtained via the standard non-
dimensionalization of the Navier-Stokes equation with an
included force/volume exerted by the swimming organ-
isms. Hence, the fluid flow u is described by

ρ
Du

Dt
= µ∇2u−∇p + cnµavγ (20)
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Fig. 18 Schematic diagram of a phalanx, a coherent domain
of cells swimming to the left with collective velocity U. Ar-
rows indicate direction of transverse fluid flow as in Figs. 16
and 17 due to the collective motion inside the domain.

where ρ is the mean density of the suspension and γ is a
function that models the propulsive force of one organ-
ism. Dividing this equation by the term µU/L2 delivers
a new dimensionless number Bs, based on stresses, as
the magnitude of the forcing term:

Bs = c(nµa)
|v|

(µU/L2)
γ = c(nL2a)

( v

U

)

γ (21)

This can also be written as:

Bs = cq
( v

U

)

γ (22)

with q ≡ (nL2a) a dimensionless factor.
This dimensionless ratio is essentially the same as the

Bse number, except that now U and L ought to arise
out of equation (20) as parameters that give a particular
scale to the system. Note that both Bs and Bse are es-
sentially geometric factors, the viscosity having cancelled
(Tuval, et al, 2005).

The function γ accounts for the fact that a single
organism exerts on the fluid equal and opposite forces,
displaced by approximately one organism length. Eq. 20
presumably applies only to the case of rather low concen-
trations of bacteria. The dimensional analysis yielding
Bse is not concentration dependent.

We now sketch a the outlines of a model that uses the
results of experiments together with an extrapolation of
the calculation results in the previous section, e.g. Figs.
16 and 17. To estimate the collective velocity U of a do-
main, we consider a cylinder of aligned co-directionally
swimming bacteria each swimming with the mean veloc-
ity v (Fig. 18). The propulsion of the cylindrical domain
is due to the forces exerted on the fluid by the flagella
emerging from one or more layers of cells at the rear of
the cylinder. The bodies of cells at the front push fluid
forward. Transverse flows enter and leave the side of the
cylinder, with presumably a net volume conserving, also
temporarily stabilizing influx. The concentration of bac-
teria per area is n2/3, the area is πR2, and S layers of

cells contribute the force F0 (Eq. 16). Assuming the drag
of the cylinder is CµLU , we conclude

U =
(πc

C

)

(

SR2an2/3

L

)

v. (23)

For R = 10−3cm, L = 10−2cm, a = 10−6cm, n2/3 =
2 · 107cm−2 and Sπc/C = 10, U = 1.8v, indicating that
a more formal version of this approach may prove useful.

8 Discussion

8.1 Background

Convective dynamics driven by microorganisms, espe-
cially swimming cells of monocellular algae, have been
summarized by Pedley and Kessler (1992) and Hill and
Pedley (2005). Much of that data and the mathematical
modelling associated with it relates to gravity driven bio-
convection of suspensions of monocellular algae, plants
that swim upward: toward light, and/or because of ori-
entation of the cells in the earth’s gravitational field.
The initial volume fraction was fairly low in these situ-
ations, e.g ≈ 10−3 or less. Theoretical approaches could
therefore use Navier-Stokes equations that included a
smoothed gravitational body force proportional to the
concentration of organisms and their mass density. An
additional equation modelled transport of organisms due
to swimming and advection by the flow. Ramia et al.
(1993) published an excellent theory of locomotion for
micro-organisms with a single flagellum. Nasseri and Phan-
Thien (1997) showed that abjacent swimmers interact
hydrodynamically.

The respiration of the bacteria B. subtilis depletes
dissolved oxygen. Transport from an interface between
the aqueous suspension of these cells and the surround-
ing air replenishes it. Bacteria swim up the resultant
gradient of oxygen concentration. In a shallow suspen-
sion the cells swim upward, toward the air. Accumu-
lation at the interface results in an unstable gradient
of mean fluid density, since the bacteria are approxi-
mately 10% denser than water. This system was mod-
elled by partial differential equations that coupled hy-
drodynamics, consumption, and transport of oxygen and
cells (Hillesdon et al., 1995; Hillesdon and Pedley, 1996;
Tuval et al. 2005). When geometric constraints inhibit
bioconvection or other means of dispersal, it was dis-
covered that the concentrated accumulation of cells sup-
ports the remarkable collective dynamics that are the
subject of this paper (Kessler and Wojciechowski, 1997)
and (Kessler and Hill, 1997). Mendelson et al. (1999) re-
ported closely related phenomena, jets and whirls, that
occur near the edges of bacterial cultures that grow and
expand on wet agar surfaces. Wu and Libchaber (2000)
and Sokolov, et al. (2006) demonstrated a new version
of the phenomenon when concentrated bacterial pop-
ulations are trapped in suspended thin aqueous films.
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Lega and Mendelson (1999), Simha and Ramaswamy
(2002), Lega and Passot (2003) and Hernandez-Ortiz,
et al. (2005) have described analyses of data and ap-
proaches toward a theory.

8.2 Results and Questions

This paper shows how hydrodynamics and behavior of
a concentrated population of swimming microorganisms
can combine to form a collective dynamic, the Zooming
BioNematic (ZBN), consisting of interacting nematic liq-
uid crystal-like domains that exhibit quorum polarity of
propagation with spatial and temporal correlation. Rele-
vant experiments on individual cell motility, and a novel
approach for understanding locomotion and for calculat-
ing the flows that surround swimmers provide ingredi-
ents for a realistic theoretical model of this complex two
phase system. Dimensional analysis demonstrates that
the observed speeds of the collective domains are plausi-
ble, and that the occurrence of turbulence-like dynamics
at Re � 1 can be understood by considering the input
of (swimming) energy from the occupants of the fluid.

We demonstrate that the results of PIV, obtained
from high speed cine microscope images of the swim-
ming cells, i.e. under difficult circumstances, can provide
useful data on velocity and vorticity distributions, the
latter exhibiting a rather satisfying alternation of signs,
somewhat like vortex streets. It should be remembered
that the PIV data were obtained from the bacteria, the
solid suspended phase, not from the water. We developed
a novel measure of angular alignment (and deviation),
based on the velocity vector field. That analysis showed
the remarkable spatial extent of continuous alignment, as
well as singular regions of defect. Whereas averages over
many quasi-instantaneous correlations of vorticity and
velocity showed decays of order one second, the align-
ment data exhibited remarkable stability.

Transport of biologically significant molecules, for cell-
cell communication, for supply of nutrients and elimina-
tion of wastes, and for respiration can be greatly en-
hanced by the chaotic advection that accompanies the
intermittent collisions, reconstitution and decay of the
zooming domains. Proceeding from there: We believe
that we generate reasonable insights concerning the for-
mation of propagating coherent regions. Ingredients for
formation are the transverse flows and inward forces that
accompany swimming Fig. 15, up-flow swimming in shear
flows (section 4), flipping of flagella at obstacles (Cis-
neros, et al., 2006), and of course geometrically deter-
mined stacking (steric repulsion).

What determines the breakup of domains? Extrapo-
lating from Fig. 16 and calculations, not shown here, for
phalanxes comprising more swimmers, the flow inside a
domain is quite weak. The supply of oxygen to the inte-
rior cells (note Fig. 17) will be insufficient to maintain
average levels of concentration. The interior cells will

therefore swim transversely, up the gradient of oxygen
concentration, or swim ever more slowly; both scenarios
imply breakup. The swimming velocity distribution of
individual cells is approximately Maxwellian, and very
oxygen dependent (Kessler and Wojciechowski, 1997).
The uniform speed of cells in phalanxes is therefore quite
remarkable. The decay time of averaged correlations is
about one second (Fig. 4) and oxygen supply times (last
paragraph, section 1) are about the same. Coincidence?
Probably not. There are other possible contributors to
decay of coherence. Interior cells may begin tumbling, in
search of a more favorable chemical environment; pha-
lanxes that collide break up; the head end of elongated
domains, as in Fig. 18, may buckle (we occasionally ob-
serve very explicit cases of roll-up); instability of nemat-
ics (Simha and Ramaswamy, 2002) may also be a factor.
The intermittency problem clearly needs further work.
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