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Abstract

A classical problem in fluid mechanics is the motion of an axisymmetric vor-
tex sheet evolving under the action of surface tension, surrounded by an invis-
cid fluid. Lagrangian descriptions of these dynamics are well-known, involv-
ing complex nonlocal expressions for the radial and longitudinal velocities in
terms of elliptic integrals. Here we use these prior results to arrive at a remark-
ably compact and exact Eulerian evolution equation for the sheet radius r.´; t/
in an explicit flux form associated with the conservation of enclosed volume.
The flux appears as an integral involving the pairwise mutual induction formula
for vortex loop pairs first derived by Helmholtz and Maxwell. We show how
the well-known linear stability results for cylindrical vortex sheets in the pres-
ence of surface tension and streaming flows [A. M. Sterling and C. A. Sleicher,
J. Fluid Mech. 68, 477 (1975)] can be obtained directly from this formulation.
Furthermore, the inviscid limit of the empirical model of Eggers and Dupont
[J. Fluid Mech. 262 205 (1994); SIAM J. Appl. Math. 60, 1997 (2000)], which
has served as the basis for understanding singularity formation in droplet pin-
choff, is derived within the present formalism as the leading-order term in an
asymptotic analysis for long slender axisymmetric vortex sheets and should pro-
vide the starting point for a rigorous analysis of singularity formation. © 2019
the Authors. Communications on Pure and Applied Mathematics is published by
the Courant Institute of Mathematical Sciences and Wiley Periodicals, Inc.

1 Introduction
Perhaps the simplest example of finite-time singularities in surface motion is

that which occurs when the two loops supporting a catenoid-shaped soap film are
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pulled apart beyond a critical separation, rendering the film unstable. Extensive
experimentation [36] has shown that the collapsing axisymmetric surface eventu-
ally breaks up through self-contact at multiple points, producing a series of satellite
soap bubbles (Figure 1.1). Theoretical work on this dynamical process ranges from
Maxwell’s original stability analysis [26] to much more recent computational stud-
ies of fluid dynamical models [6, 9] focused on the nature of the singularities.

In a broader sense, there have been two schools of thought in the study of sin-
gularity formation by moving surfaces. On the one hand, there is a very substantial
body of rigorous work on the simplest geometrical law, namely motion by mean
curvature [7]. However, while this law is a physically realistic description of in-
terface motion arising from surface diffusion, it cannot be applied to the motion
of soap films because it cannot account for the dynamics of the surrounding fluid
and the conservation laws that follow. There are modifications of mean curvature
flow that conserve volume enclosed by the surface, but they are not faithful rep-
resentations of the dynamics of the surrounding fluid. On the other hand, there is
the large body of more phenomenological work on singularity formation in fluid
mechanics [13], where simplified PDE models have been developed to address
self-similar dynamics near singularities. These models are physically realistic but
have generally lacked rigor.

The two examples where the gap between these two approaches have been
bridged is in the context of interface motion in two dimensions, where a sys-
tematic procedure to derive PDEs for the evolution of asymptotically thin fluid
layers has been developed from exact boundary-integral formulations [18–20, 34].
These analyses have put on a solid foundation empirical models [8, 11, 15] de-
rived within lubrication or long-wave theory. Given these results, the question then
arises of whether there is a comparable physical setup in three dimensions in which
a PDE can be derived for the motion of a surface surrounded by an incompressible
fluid. The simplest example of this would naturally be an axisymmetric surface
surrounded by an inviscid fluid. If there is an affirmative answer to this question,
such a PDE should have an explicit flux form.

In the inviscid limit, the moving interface can be represented by a vortex sheet
with surface tension. The predominant approach to this problem has been through
a Lagrangian formulation [3, 10], which is the most appropriate for computational
studies [2,24,29,30]. However, such an approach does not readily lend itself to the
development of asymptotic models appropriate to thin necks, as would be relevant
in the neighborhood of singularities. In contrast, an Eulerian formulation would
not only be amenable to asymptotic analysis, but would also be subject more easily
to rigorous studies.

Here, as a first step, and starting from the Lagrangian formulation, we derive an
exact Eulerian dynamics for axisymmetric vortex sheets with surface tension, and
show that it has an explicit flux form. Naturally, because the problem is deeply
nonlocal due to the Biot-Savart interactions between distant elements of the vortex
sheet, the flux is an integral over the entire sheet whose kernel is precisely the
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FIGURE 1.1. Collapse of a catenoid. Snapshots tens of milliseconds
apart after the distance between the two supporting rings is increased
just beyond the stability threshold. Imaging methods are described in
[17].

mutual induction between two coaxial loops as derived by Helmholtz for fluids
[22] and by Maxwell for electrical currents [27]. As the mutual induction is, by
definition, the flux through one loop due to the circulation in the other, this is
a very intuitive result. We show that known stability results for cylindrical vortex
sheets can be recovered by direct calculation. While nonlocal, the mutual induction
between two coaxial loops of the same radius is sharply peaked as the distance
between the loops vanishes, and this feature suggests a natural asymptotic analysis
to reduce systematically the dynamics to a local PDE. In this limit we recover at
first order the inviscid version [14] of the empirical model first proposed by Eggers
and Dupont [15] for this problem.

2 Flux Equation
We consider an infinite three-dimensional inviscid fluid of density � within

which is a vortex sheet that is axisymmetric about the ´-axis, and whose time-
dependent radius is R.´; t/. In this inviscid limit there is in general a discontinuity
in the tangential fluid velocity across the sheet, and this jump defines the “true vor-
tex sheet strength" x
 [23,33]. In the same way that we use a minimal surface as an
idealization of a static soap film, here the vortex sheet is the idealized representa-
tion of a moving film endowed with surface tension � . As is well-known [3], the
problem of the self-induced motion of the sheet can be expressed, in the so-called
Lagrangian frame labeled by ˛, as the coupled dynamics of the sheet coordinates
r.˛; t/ and ´.˛; t/, and its “unnormalized vortex sheet strength” 
.˛; t/, which
evolves as

(2.1)
@


@t
D �

�

�

@�

@˛
;

where � is the mean curvature of the surface,

(2.2) � D
r˛˛´˛ � ´˛˛r˛

s3˛
�
1

r

´˛

s˛
;

and s˛ D .r2˛ C ´
2
˛/
1=2 is the arclength metric. The vortex sheet strength 
 relates

to the true strength x
 as x
 D 
=s˛. The radial and axial Lagrangian velocities are
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the principal value integrals

´t �
d´

dt
D �

1

4�

«

 0
�
r 0
2
J2 � rr

0J1
�
d˛0;(2.3a)

rt �
dr

dt
D �

1

4�

«

 0r 0.´ � ´0/J1 d˛

0;(2.3b)

where ˛0 is a Lagrangian label, r 0 � r.˛0; t /, 
 0 � 
.˛0; t /, and

J1 D

Z 2�

0

cos � 0
�
.´ � ´0/2 C r2 C r 0

2
� 2rr 0 cos � 0

�� 3
2 d� 0;(2.4a)

J2 D

Z 2�

0

�
.´ � ´0/2 C r2 C r 0

2
� 2rr 0 cos � 0

�� 3
2 d� 0:(2.4b)

Performing the integrations in � 0 yields the following expressions for the velocities
in terms of K and E, the complete elliptic integrals of the first and second kind,
respectively, with argument k2 D 4rr 0=Œ.´ � ´0/2 C .r C r 0/2�:

´t D
1

�

«
d˛0 
 0r 0

�
k2

4rr 0

�3=2�
r 0 � r

1 � k2
E.k/ �

2r

k2
ŒE.k/ �K.k/�

�
(2.5a)

�

«
d˛0
 0P.˛; ˛0/;

rt D
1

�

«
d˛0
 0r 0.´ � ´0/

�

�
k2

4rr 0

�3=2�
2

k2
ŒE.k/ �K.k/�C

1

1 � k2
E.k/

�
(2.5b)

�

«
d˛0 
 0Q.˛; ˛0/:

To obtain a Eulerian equation of motion from these Lagrangian velocities we
make the change of variables from ˛ to ´ D ´.˛; t/. SettingR.´.˛; t/; t/ D r.˛; t/
yields [34]

@R

@t
D rt � ´t

@R

@´
;(2.6a)

@


@t
C ´t

@


@´
D �

�

�
´˛
@�

@´
:(2.6b)

In making the change of variables in equations (2.5a) and (2.5b), it is natural to
consider instead the quantity � D 
=´˛ , so that d˛0 
 0 D d´0 �0.

For this system, conservation of fluid volume should be expressible as a flux
form involving the cross-sectional area �R2, that is,

(2.7)
@R2

@t
D �

@F

@´
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for some function F , which we now seek. The fact that 2R@R=@t D @R2=@t im-
plies that 2R.rt�´t@R=@´/ D �@F=@´. However, to infer F by direct substitution
of (2.5a) and (2.5b) into this expression is cumbersome and nontrivial.

A much better way to find F is to make use of equations (2.3) and (2.4). After
some algebra and integrations by parts, we find

(2.8) F D
1

2�

«
�0rr 0 d´0

Z 2�

0

cos � 0

Œ.´ � ´0/2 C r2 C r 02 � 2rr 0 cos � 0�1=2
d� 0:

The integral over the variable � 0 can be calculated in terms of elliptic integrals,
with the result

(2.9)
@R2

@t
D �

1

�

@

@´

Z
d´0 �0

p
RR0M.k/;

where M.k/ is Maxwell’s function first derived for the mutual induction of a pair
of circular current loops of radii r and r 0 at locations ´ and ´0,

(2.10) M D
2

k

�
K �E �

k2

2
K

�
:

That this remarkably compact result has not been previously obtained in this
context may be a consequence of the natural emphasis on the Lagrangian formula-
tion and its computational applications. The results in (2.9) and (2.10) are intuitive
in that the mutual induction M is, by definition, the flux passing through one loop
due to another, and so F is simply the sum of all the individual fluxes through the
loop at position ´. Moreover, in the case of a vortex loop, the integrand in F was
identified by Helmholtz [22] as the stream function of the flow.

Now, if we rewrite the pair (2.5) as ´t D w and rt D v, then the evolution of
the Eulerian sheet strength �, using equation (2.6b), takes the flux form

(2.11)
@�

@t
C

@

@´
.w�/ D �

�

�

@�

@´
;

with the curvature now re-expressed in terms for R.´; t/ as

(2.12) � D
R´´

s3´
�

1

Rs´
;

where s´ D .1C R2´/
1=2 is the arclength metric factor. Equations (2.7), (2.8), and

(2.11) comprise the flux-form Eulerian dynamics of an axisymmetric vortex sheet.
The Eulerian sheet strength relates to the true vortex sheet strength as � D s´x
 .
That both 
 and � evolve through a flux form in their respective frames reflects
the fact that their total integrals, in ˛ or ´ respectively, give the total conserved
circulation of the sheet.

In closing this section, we demonstrate the connection between the functions F
and the stream function ‰. Let W.r; ´/ and V.r; ´/ be the axial and radial fluid
velocities, respectively, within the sheet. The evolution ofR.´; t/ can be expressed
as @R

@t
D U jrDR � V jrDR

@R
@´

(cf. equation (2.6a)). Multiplying this equation by R
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and integrating the incompressibility relationship .1=r/.rV /r CW´ D 0, one can
easily show

(2.13)
@

@t

�
1

2
R2
�
D �

@

@´

Z R.´/

0

dr 0 r 0W.´; r 0/:

Introducing the Stokes stream function ‰, which we identify as the integral on
the RHS of (2.13), with rV D �@‰=@´ and rW D @‰=@r , we obtain

(2.14)
@

@t

�
1

2
R2
�
D �

@

@´
‰.´;R.´//;

thus confirming the connection between the functions F and ‰.

3 Hamiltonian Structure
In this section we discuss some issues regarding a possible Hamiltonian formu-

lation of the present system for which there is a vortex sheet strength with nontriv-
ial dynamical evolution. It is useful to contrast this case with that of a system of
discrete vortex rings and its continuous limit [28], for despite some fundamental
distinctions involving conservation laws, there are common mathematical struc-
tures involved. As first shown by Dyson [12], the Lagrangian dynamics of a dis-
crete set of coaxial vortex rings with centers Zi on the ´-axis, with radii Ri and
circulation �i , can be written as

Ri PZi D
�i

4�

�
log

8Ri

ai
�
1

4

�
C

NX
jD1;j¤i

�j

2�

@Iij

@Ri
;(3.1a)

Ri PRi D �

NX
jD1;j¤i

�j

2�

@Iij

@Zi
;(3.1b)

where Iij D
p
RiRjM.kij / is the mutual inductance between the two loops i

and j . The first term on the RHS of (3.1a) is the approximate self-induced velocity
of ring i , where ai is the core radius, which serves as a cutoff for the localized
induction approximation.

The evolution equation (2.9) can now be seen as the continuum limit of (3.1b),
expressed in an Eulerian form. A direct calculation shows a less obvious result,
namely that the axial velocity ´t in (2.5a) is the equivalent of (3.1a) without the
self-induction term. In fact,

(3.2) r´t D
1

�

@

@r

Z 1
�1

d˛0 
 0
p
rr 0M.k/ D

@F

@r
:

By analogy to the discrete case, in which one can introduce an energy that is qua-
dratic in the circulations �i , namely,

(3.3) U D

NX
iD1

NX
jD1;j¤i

�i�j

2�
Iij ;
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and from which one obtains the equations of motion

�iRi PZi D
�2i
4�

�
log

8Ri

ai
�
1

4

�
C
@U

@Ri
;(3.4a)

�iRi PRi D �
@U

@Zi
;(3.4b)

one can take the continuum limit to obtain [31]

(3.5) U D
1

2�

Z
d˛

Z
d˛0 
.˛/
.˛0/

p
rr 0M.k/;

which, generalizing to functional derivatives, yields

(3.6) 
r´t D
ıU
ır

and 
rrt D �
ıU
ı´
:

This is of the same form as the discrete dynamics (3.4), but with the important
distinction that the vortex sheet strength 
 itself depends on time (due to surface
tension), whereas the individual circulations �i in the discrete case do not. More-
over, in the discrete case it is possible to rewrite the dynamics so the left-hand sides
are total time derivatives, rendering them truly Hamiltonian. In contrast, the dy-
namics (3.6) do not obviously have this feature. The fact that (2.1) can be thought
of as a nonholonomic constraint may offer a path to obtain an “almost Hamilton-
ian” dynamics [16].

4 Stability Analysis
In this section we show how the vortex sheet dynamics in the Eulerian form re-

produces known stability results [1, 37] for capillary jets, both with and without a
streaming velocity within the fluid enclosed by the sheet. Note that our assump-
tion that the fluids inside and outside the sheet have the same density precludes
recovering the original stability result of Rayleigh [35], which assumed vacuum
outside.

We first consider the case with a quiescent fluid on both sides of a vortex sheet
of radius xR and linearize the equations of motion for small perturbations in � andR
of the form

(4.1) � D y�eiq´Cˇt and R D xRC y�eiq´Cˇt :

At this order the mean curvature has the simplified form � ' R´´ � R
�1. The

resulting vortex sheet evolution equation is

(4.2) ˇy� D iP.1 � P 2/
�

� xR3
y�;

whereP D q xR. Since, in the absence of background fluid motion, � is first order in
the perturbation, the remaining factors on the RHS of (2.9) are those corresponding
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to a cylinder. Let

(4.3) k2xR
D

4 xR2

.´ � ´0/2 C 4 xR2
and x D

.´0 � ´/

2 xR
:

Then, the linearization of (2.9) is

(4.4) ˇy� D �
4

�
iP y�

Z 1
0

M.k xR/ cos.2Px/dx:

After calculating the integral (see the Appendix), we substitute y� from (4.4) into
(4.2) to obtain, in agreement with previous results [1, 37], the growth rate

(4.5) ˇ2 D
�

� xR3
P 2.1 � P 2/I1.P /K1.P /;

where In andKn are the nth-order modified Bessel functions of the first and second
kind, respectively.

Demonstrating that the flux form PDE reproduces the stability results in the
presence of streaming flows, obtained by Alterman [1] and by Sterling and Sleicher
[37], follows the same procedure as the calculation above, but requires a more
delicate analysis. This complexity is related to the limiting procedure of vanishing
sheet thickness ı and vanishing viscosity used to arrive at the evolution equation
for the vortex sheet strength (2.6). While it is not possible to determine a unique
value of the tangential sheet velocity ´t , the usual Lagrangian one ´t D U=2 [3]
would not be compatible with the new Eulerian system of reference. In fact, the
Ampère integral is calculated in a frame for which the velocities at infinity are
zero, and this is not true for Eulerian frames where the vortex sheet is moving in
the presence of a streaming flow; hence the need to “reframe” the results.

To make sure that all the velocities involved in the calculation are measured with
respect to the same laboratory frame of reference, we went back to the original
boundary conditions when the vortex sheet has a nonzero infinitesimal thickness.
From there we deduce what should be the corresponding tangential velocities ´t
in each one of the auxiliary equations for the vortex sheet evolution so that they
would match the boundary conditions corresponding to the external flows on either
side of the interface.

For concreteness, consider the situation in which the streaming velocities inside
and outside of the cylindrical vortex sheet are U and 0, respectively. In this case
the standard Lagrangian choice cannot satisfy the boundary conditions on either
side of the sheet in the Eulerian frame. It is therefore necessary to reinstate the
appropriate boundary conditions, which would be equivalent to taking the limit
ı ! 0 at the end of the calculation.

The calculation proceeds by systematic perturbation of the terms within the flux
integral. We expand separately the two, obtaining

(4.6) M.k/ DM.k xR/C
dM

dk

ˇ̌̌̌
k xR

.k � k xR/C � � �
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and

(4.7) �0
p
rr 0 ' xR.�0 C z�/

�
1C

�0 C �

2 xR

�
C � � � ;

where k xR is defined in (4.3). Using

(4.8) k � k xR ' k xR.1 � k
2
xR
/

�
�0 C �

2 xR

�
and collecting terms, we obtain (see the Appendix)

(4.9)
�0
p
rr 0M.k/ ' �0 xRM.k xR/C

xRz�0M.k xR/

� �0 xRk xRŒE.k xR/ �K.k xR/�

�
�0 C �

2 xR

�
:

Substituting into the equations of motion and retaining only first-order terms, we
find

(4.10)

ˇy� D �
1

�

�
2iP y�

Z 1
0

M.k xR/ cos.2Px/ dx

� i
P �0y�

xR

Z 1
0

Œ1C cos.2Px/�k xR
�
E.k xR/ �K.k xR/

�
dx

�
:

After some laborious calculation of these nontrivial integrals we obtain

ˇy� D �iPI1.P /K1.P /y�

� i
�0

2 xR
P Œ1C P .I0.P /K1.P / � I1.P /K0.P //�y�:

(4.11)

Using the Bessel function identity P.I0K1 C I1K0/ D 1, we further reduce this
expression to

(4.12)
�
ˇ C i

P �0
xR
K1.P /I0.P /

�
y� D �iPI1.P /K1.P /y�:

This equation is the evolution for perturbations to the mean radius, i.e., the mean
location of the vortex sheet: R D .RCCR�/=2/, where RC and R� are the outer
and inner radius of the infinitesimally thin sheet, respectively (RC�R� D ı ! 0).
To reinstate the proper boundary conditions, we note that (4.12) should be split into
two parts, the contribution from RC and the one from R�. To do so we rewrite
(4.12) as

(4.13)

�
P

�
ˇ C i

P �0
xR

�
K1.P /I0.P /C P.ˇ � 0/K0.P /I1.P /

�
y�

D �
iP

2
y�K1.P /I1.P / �

iP

2
y�K1.P /I1.P /:

In this equation all terms involving I0 are connected to the inner region, that isR�,
while those involving I1 correspond to the outer one (RC) yielding two equations,
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one for each region:

(4.14) P

�
ˇ C i

P �0
xR

�
K1.P /I0.P /y� D �

iP

2
y�K1.P /I1.P /

and

(4.15) Pˇy�K0.P /I1.P / D �
iP

2
y�K1.P /I1.P /:

A similar expansion of the vortex sheet evolution equation (2.1) yields for the inner
region

(4.16)
�
ˇ C i

P �0
xR

�
y� D

�

�

iP.1 � P 2/

xR3
y�;

and for the outer one

(4.17) ˇy� D
�

�

iP.1 � P 2/

xR3
y�:

Substituting (4.16) and (4.17) into (4.14) and (4.15), respectively, and adding
the contributions to obtain the total expansion for R D .R�=2/C .RC=2/ yields

ˇ2 C 2iˇ
�0
xR
P 2I0.P /K1.P / D

�

� xR3
P 2.1 � P 2/I1.P /K1.P /

C
�20
xR2
P 3I0.P /K1.P /;

(4.18)

which coincides with previous results [1, 37] for the case where the inner fluid
velocity is U D �0 and the outer fluid is stationary.

5 Derivation of a Local PDE
To obtain an approximate PDE that describes the dynamics of slender necks, it is

necessary to find a suitable approximation to M.k/ that would make it possible to
calculate the integral in the flux equation in a controlled manner. With this purpose
in mind, it is very useful to note [21] that M.k/ D Q1=2.�/, with Q1=2.�/ the
associated Legendre function of index 1

2
with variable � D .2=k2/ � 1, which

obeys the differential equation

(5.1) .1 � �2/
d2Q

d�2
� 2�

d2Q

d�2
C
3

4
Q D 0:

This identity makes it possible to obtain a uniform approximation for M.k/ by
matching the inner and outer solutions (� ! 1 and � ! 1, respectively). In the
inner region the limiting behavior is

(5.2) Q1=2 ' A ln

 s
2

� � 1

!
for �! 1;
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FIGURE 5.1. Uniform approximation to the Maxwell function. Solid
black line is the exact expression M.k.x//. Dash-dot and dashed blue
lines are the inner and outer approximations, respectively. Dashed red
line is the uniform approximation Mu.k/.

while in the outer one is

(5.3) Q1=2 ' B

s
.�C 1/3.� � 1/

16
for �!1;

where A and B are constants to be adjusted by matching the inner and outer solu-
tions, with the final result in terms of k given by

(5.4) M.k/ 'Mu.k/ D
1

4

�
3 ln

�
1

.1 � k2/

�
� �k3=2

p

1 � k2
�
:

The fit of M.k/ provided by the uniform approximation Mu.k/ is remarkable;
M.k/�Mu.k/ ' 0 only in a small neighborhood of k2 D 1

2
; everywhere else it is

almost impossible to distinguish Mu.k/ from the exact solution (see Figure 5.1).
We can now approximate M.k/ by Mu.k/ in the evolution equation (2.9) for

R2.t/. In order to express Mu.k/ in a form that allows calculation, we use the
expression for k in terms of ´, ´0, R, and R0. In particular, by using

(5.5) k2 D
4RR0

.´0 � ´/2 C .r C r 0/2
;

the denominator inside the logarithm in (5.4) is expandable in Taylor series in the
limit ´! ´0 because the ratio .R0�R/=.´0�´/! r´. In this limit, R! R0, and
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rescaling R D � zR we find

ln
�

1

.1 � k2/

�
' ln

"
.´0 � ´/2 C �2.2 zR/2

.´0 � ´/2
�
1C �2 zR2´

�#(5.6a)

D ln
�
x2 C �2

x2

�
� ln

�
1C �2 zR2´

�
;

k2
p

1 � k2 ' 8�3 zR3
j´0 � ´j

�
1C �2 zR2´

�1=2�
.´0 � ´/2 C �2.2 zR/2

�2(5.6b)

D
�3jxj

.x2 C �2/2

�
1C �2 zR2´

�1=2
;

where x is the same as defined in (4.3). The contribution to the flux F arising from
the two terms in the uniform approximation (5.4) involves I1 and I2, where, by the
symmetry of the integrand,

I1 D
3

2
�
 zR2

Z 1
0

ln
�
x2 C �2

x2

�
dx CO

�
�3 zR zR2´

�
;(5.7a)

I2 D ��
4
 zR2

Z 1
0

x

Œx2 C �2�2
dx CO

�
�3 zR zR2´

�
:(5.7b)

Performing the integrations we obtain

(5.8) I1 D
3�

2
�2
 zR2 and I2 D

�

2
�2
 zR2:

Collecting terms and substituting r D � zR in the LHS of the flux equation (2.9),
we obtain

(5.9)
@ zR2

@t
D �

@

@´
.
 zR2/:

While this result was obtained in a systematic way that would be useful in cases
where it is necessary or desirable to obtain the next terms of the expansion, the
procedure is not very intuitive. In fact, the origin of (5.9) can be more easily under-
stood by recognizing that the first-order approximation corresponds to a cylindrical
vortex sheet, where R D R0 and � D �0. Then, starting as before from (2.9), we
may write

(5.10)
@R2

@t
D �

2

�

@

@´

�
�R2

Z C1
�1

dxM.k.x//

�
;

where we have used a variant of the usual variable x, namely x D .´0 � ´/=2R.
Using the relationship M.k/ D Q1=2.�/ and the limit P ! 0 in result (A.11)
of the Appendix, we find that the value of the integral is �=2. Thus (5.10) yields
the same result (5.9) that was obtained for the first-order term by employing the
expansion method, which makes clear its geometric interpretation.
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6 Discussion
The present work has shown how the familiar axisymmetric vortex sheet dy-

namics can be recast exactly in a Eulerian form that clearly displays the inherent
flux form of the motion. Previously established linear stability results are easily
recovered with this formulation. Most significantly, the Eulerian dynamics is well-
suited to the development of a systematic reduction to a local approximation when
the aspect ratio of the system is suitably small. This controlled approximation,
which at leading order recovers well-known empirical results [15], should lend it-
self to more rigorous studies both of the form and validity of the governing PDEs
as well as the singularities they produce. As the underlying model includes the
dynamics of an incompressible fluid surrounding the vortex sheet, it constitutes a
more physically relevant starting point for understanding singularity formation by
moving soap films than that provided by mean curvature flows.

In light of the large body of existing work on axisymmetric vortex sheets, there
are many possible extensions of the present work, including the introduction of
swirl [4] or helical symmetry [3]. Greater challenges would be to incorporate weak
viscous effects [5,25] and to complete the Hamiltonization of the inviscid Eulerian
case in the presence of surface tension.

Appendix: Details of Stability Analysis
Here we show some intermediate steps in the stability analysis. We begin from

the first equation of (4.7),

(A.1) M.k/ DM.kR/C
dM

dk

ˇ̌̌̌
kR

.k � kR/

where kR is as defined in (4.3); using the relationships between the elliptic func-
tions and its derivatives, we find

(A.2)
dM

dk
D

2

k2
.E �K/ �

2

k

�
dE

dk
�
dK

dk

�
�K � k

dK

dk
:

The corresponding first-order expansions of the relevant quantities are

(A.3) k2 D
4.RC �0/.RC �/

.´ � ´0/2 C .2RC �0 C �//2
' k2R

�
1C .1 � k2R/

�
�0 C �

R

��
;

which yields (4.8), and

(A.4)
dM

dk

ˇ̌̌̌
kR

D
2 � k2R

k2R.1 � k
2
R/
E.kR/ �

2

k2R
K.kR/;

where we have used the relationships dE=dk D .E � K/=k and kdK=dk D
E=.1 � k2/ � K [21], and have substituted k D kR. Introducing the convenient
notation

(A.5) M0 �M.kR/ and M1 �
dM

dk

ˇ̌̌̌
kR

kR.1 � k
2
R/;
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we note that, after straightforward algebra, the quantity M0 CM1, which will be
needed later, reduces to �kR.E �K/.

Utilizing the second of the equations in (4.7) and collecting all the contributions,
we obtain

(A.6) 
 0
p
rr 0M.k/ ' 
0RM0 C 
0R.M0 CM1/

�
�0 C �

2R

�
C z
RM0:

Using again the identity M.kR/ D Q1=2.�/, with argument � D 2=kR � 1, and
substituting into (A.6), we obtain the first-order result


 0
p
rr 0M.k/ ' 
0RM.kR/CRz


0Q1=2.�R/

� 
0RkRŒE.kR/ �K.kR/�

�
�0 C �

2R

�
:

(A.7)

Substituting (A.7) into the equations of motion and retaining only first-order terms,
we find

(A.8)
2R
@�

@t
D �

1

�

@

@´

�Z 1
�1

d˛0 
0M0RCR

Z 1
�1

d˛0 z
Q1=2

� 
0

Z 1
�1

kRŒE.kR/ �K.kR/�

�
�0 C �

2R

�
d˛0

�
:

The first integral on the RHS does not contribute to the equation of motion, for

0 D 0 identically when the fluids on both sides of the vortex sheet are stationary,
and the integral is a constant when there is a streaming velocity in either one of
the two regions. The other integrals involve the Lagrangian parameter ˛, and to
be able to obtain the result in the Eulerian frame as a function of the coordinate ´,
we note that ds D

p
r2˛ C ´

2
˛ d˛ and ds D

q
1C r2´ d´. Using these identities

allows us to rewrite

(A.9) d´ D

s
1C r2´

r2˛ C ´
2
˛

d˛ ' .1CO.�2//d˛;

making it possible to approximate d˛0 ' d´0 to the required order. Replacing
the expressions for the perturbations (4.1) into (A.8), rewriting all exponentials in
terms of ´0 � ´, and expressing them in terms of sines and cosines makes it clear
that the only nonzero contributions to the integrals come from the cosine terms,
which are the only ones that produce even integrands. Then, defining P D qR

and performing the usual change of variables x D .´0 � ´/=2R, we find kR.x/ D
1=.1Cx2/ and �.x/ D 1C2x2, yielding the first one of the two stability equations

(A.10)

ˇy� D �
1

�

�
2iP y


Z 1
0

Q1=2.�.x// cos.2Px/dx

� i
P 
0y�

R

Z 1
0

Œ1C cos.2Px/�kRŒE.kR/ �K.kR/�dx
�
:
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The integrals have been calculated with the help of [21,32]. In particular, after a
further change of variable, y D

p
2x, the first integral acquires its canonical form

7.162.6 [21] with � D 1
2

and a D
p
2P ; thus

(A.11)
Z 1
0

Q1=2.1C y
2/ cos.

p
2Py/dy D

�

2
K1.P /I1.P /:

The second integral can be divided in two contributions,

I1 D
Z 1
0

kRŒE.kR/ �K.kR/�dx;(A.12a)

I2 D
Z 1
0

cos.2Px/ kRŒE.kR/ �K.kR/�dx:(A.12b)

To calculate I1 we use the identity 3.2(2) in [32] for p D 1 and a D x:

(A.13)
kR

2�p2
ŒE.kR/ �K.kR/� D

Z 1
0

e�2ptN0.at/J0.at/dt;

where N0 and J0 are the Bessel functions. With this replacement we obtain I1 D
��=2. The second integral can be solved using identity 6.3(5), also in [32], for
a D x and b D 1:

(A.14)
kR

b2
ŒE.kR/ �K.kR/� D

Z 1
0

K0.at/J1.at/dt;

to obtain

(A.15) I2 D
�

2

Z 1
0

tJ1.t/
p
4P 2 C t2

dt:

This can be reduced to the standard form 6.565.1 (with a D 2P and b D ˛) found
in [21] by noting that I2 can also be written as

I2 D
�

2
lim
˛!1

@

@˛

�Z 1
0

J0.˛t/
p
4P 2 C t2

dt

�
D
�

2
P ŒI1.P /K0.P / � I0.P /K1.P /�:

(A.16)

Finally, after collecting all the contributions and replacing them into (A.10), we
find the first-order equation

ˇy� D �iP y
K1.P /I1.P /

� i
P 
0y�

2R
Œ1C P ŒK1.P /I0.P / �K0.P /I1.P /��:

(A.17)

Making use of standard Bessel function identities, it is possible to further reduce
this expression to

(A.18)
�
ˇ C i

P 
0

R
K1.P /I0.P /

�
y� D �iPK1.P /I1.P /y
:
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