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We report a novel form of convection in suspensions of the bioluminiscent marine bacterium Pho-
tobacterium phosphoreum. Suspensions of these bacteria placed in a chamber open to the air create
persistent luminiscent plumes most easily visible when observed in the dark. These flows are strik-
ingly similar to the classical bioconvection pattern of aerotactic swimming bacteria, which create an
unstable stratification by swimming upwards to an air-water interface, but they are a puzzle since
the strain of P. phosphoreum used does not express flagella and therefore cannot swim. Systematic
experimentation with suspensions of microspheres reveals that these flow patterns are driven not
by the bacteria but by the accumulation of salt at the air-water interface due to evaporation of the
culture medium; even at room temperature and humidity, and physiologically relevant salt concen-
trations, the rate of water evaporation is sufficient to drive convection patterns. A mathematical
model is developed to understand the mechanism of plume formation, and linear stability analysis
as well as numerical simulations were carried out to support the conclusions. While evaporation-
driven convection has not been discussed extensively in the context of biological systems, these
results suggest that the phenomenon may be relevant in other systems, particularly those using
microorganisms of limited motility.

I. INTRODUCTION

In the deep ocean animals such as certain fish and squid produce light through a symbiotic relationship with
bioluminescent bacteria [1]. This luminscence requires oxygen and is regulated by the process of quorum sensing,
which guarantees that photons are only emitted when the bacterial concentration is sufficiently high [2]. One well-
known luminiscent bacterium is Photobacterium phosphoreum, a rod-shaped organism ∼ 3.5 µm long and ∼ 0.5 µm
wide, whose bright luminscence can easily be observed when a flask containing a sufficiently concentrated suspension
is swirled gently to oxygenate the fluid. If instead the suspension is placed in a cuvette like that shown in Fig. 1
then after several minutes, during which the bacteria deplete the oxygen and bulk luminiscence fades away, a novel
phenomenon of bright convective plumes is observed. In the figure, which was taken in the dark, regions of blue are
luminiscent and have a high concentration of oxygen. Careful observation shows that the fluid within the plumes
flows downward from the meniscus and the luminscence within gradually fades as the fluid descends and recirculates
in convective rolls.

air-water meniscus

5 mm
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FIG. 1. Convective flow observed in a suspension of Photobacterium phosphoreum. The chamber is 6 cm long, 1 mm deep and
1 cm high. Bacteria were cultured to a density of 5.5× 108 cells/cm3 following the procedure detailed in the text. This image
was acquired with Nikon D300s equipped with a 60 mm f/2.8 macro lens, and an exposure time of 10 seconds.
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The convection pattern in Fig. 1 appears to be a classic example of bioconvection [3], an instability that arises from
the accumulation of swimming microorganisms at the top surface of a suspension typically in response to chemical
gradients or light. As most cells are denser that the suspending fluid, upwards chemo- or phototaxis creates an unstable
nonuniformity in the cell concentration which triggers convective motion. Yet, the strain of P. phosphoreumused in
our experiments is non-motile under the given conditions, presumably as a consequence of generations of culturing
in rich media in which expression of flagella is not triggered. Given this, the macroscopic flow in Fig. 1 cannot be
rationalized as a classical bioconvective instability.

An alternate explanation for the observed convective patterns observed is that a metabolic reaction, for example
the chemical reaction that produces bioluminescence, may release a component that is denser than the background
fluid. This idea was motivated by examples of so-called chemoconvection in the methylene-blue glucose system, where
the chemical reaction creates a product that alters the local buoyancy balance [4]. Using similar arguments, Benoit
et al. [5] explained the buoyant plumes observed in a suspension of non-motile Escherichia coli consuming glucose.

As will be explained in detail below, a series of control experiments allows us to discard the hypothesis that a
chemical reaction or metabolic activity creates the plumes. Instead, we find that the convection arises from evaporation
of the salty suspension. A prior report of evaporation-induced convection was presented by Kang et al. [6], where
flows in a sessile droplet of salty water were observed by adding fluorescent beads. They noticed that the flow was
first oriented towards the perimeter of the drop, in the same way as it moves in the coffee stain phenomenon [7, 8]. An
accumulation of salt occurrs at the surface of the drop, which triggers convective motion. The proposed mathematical
model introduces the “salinity Rayleigh number” Ras by analogy with the Rayleigh number used to predict the onset
convection in a fluid heated from below [9]. The salinity Rayleigh number compares the buoyancy generated by
the accumulation of salt with the stabilizing effects of salt diffusion and fluid viscosity. This concept as been used
previously in the literature to explain the double-diffusion in the phenomenon of salt fingering [10], and it has been
also found to be essential to understand the accumulation of salt in saline groundwater lakes [11].

This paper is organized as follows: Sec. II describes the experimental setup and quantitative observations of plumes.
In the next two sections a mathematical model is introduced, which is based on the coupling of the Navier-Stokes
equation for the evaporating fluid with an advection-diffusion equation for the salt. This model is first studied in
Sec. III using linear stability analysis, and then numerically using a finite element method in Sec. IV. A comparison
between experiments, linear stability analysis and numerical results is presented in section V. Finally, conclusions
and future work are summarized in Sec. VI.

II. EXPERIMENTAL METEHODS AND RESULTS

A. Culturing of P. phosphoreum

Table I shows the ingredients for the liquid and solid media used in the experiments with P. phosphoreum. Bacterial
cultures were streaked on agar plates and kept in an incubator at 19◦C in the dark, and renewed every two weeks.
Liquid cultures were prepared by picking a bright colony from an agar plate and adding it to 50 ml of bacterial
culture, which was then shaken at 100 rpm in an incubator in the dark at 19◦C. After 15 hours of shaking, the
bacterial suspension reached an optical density OD600nm ∼ 1. For long term storage, the strain was frozen at −80◦C
using the cryoprotective medium described by Dunlap and Kita-Tsukamoto [2], although using 65% (v/v) glycerol in
equal parts worked equally well. The relation between OD and number of bacteria was found using the technique of
serial dilution together with the track method. We found that OD600nm=1 corresponds to 5× 108 bact/ml.

TABLE I. Liquid and solid medium used to grow P. phosphoreum.

Liquid medium (for 1L) Solid medium (for 1L)

Peptone 10g Nutrient broth powder 8 g
sodium chloride 30g sodium chloride 30 g
glycerol 2 g glycerol 10 g
di-potassium hydrogen phosphate 2 g calcium carbonate 5 g
magnesium sulphate 0.25 g agar 15 g
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B. Setup

Suspensions were studied in chambers of the form shown in Fig. 2a, constructed from two glass coverslips (Fisher
12404070) held together by two layers of tape 300 µm thick (Bio-Rad SLF-3001). This tape has internal dimensions
6× 2 cm, and one long side was cut to create an air-liquid interface. The cuvette, 600 µm in depth, was filled using a
plastic syringe connected to a stainless steel needle (Sigma-Aldrich CAD4108). The cuvette was filled with sufficient
suspension to yield a fluid height of 1 cm, which is the initial condition for the model presented in Secs. III and IV.
Figure 2b is a schematic representation of the dark field setup used to observe the plumes. From left to right, the
elements in this setup are a charge-coupled device (CCD) camera (Hamamatsu C7300) to capture dark field images,
the sample, and a red light-emitting diode (LED) ring (CCS FPR-136-RD). The camera is placed in the dark spot
inside of the cone formed by the rays coming from the LED ring. Placing a sample where the rays meet will result in
light being deflected or scattered by the the suspended particles toward the camera.

FIG. 2. Experimental method. (a) Cuvette used in the experiment made with two coverslips held together by 600 µm thick
tape cut in a U-shape. (b) Dark field imaging system where the dashed lines represent the light coming from the LED ring.

C. Bacteria versus beads

The hypothesis that the chemical reaction leading to light production in P. phosphoreum created dense components
that trigger hydrodynamic plumes was excluded by two control experiments. The first one consisted of placing non-
motile, non-bioluminescent bacteria in the same experimental setup. A genetically modified strain of Serratia (ATCC
39006), provided by Dr. Rita Monson (Department of Genetics, University of Cambridge), also created the plumes
observed with P. phosphoreum, even though this bacterium does not produce light when it consumes oxygen. The
second and most important control experiment came from using 3 µm diameter polystyrene beads (Polyscience 18327)
at a similar optical density (OD) as in the experiments with P. phosphoreum. Figure 3 shows side by side experiments
with (a) bacteria and (b) bead suspended in the same bacterial medium and observed using the dark field technique
(see Supplemental videos 1 and 2 [12]). In these experiments we sealed the top boundary except for one small hole
(indicated by an arrow) which allowed evaporation. We found that the position of the plume is precisely correlated
with the position of the source of evaporation. Note in particular that the center of the plumes is depleted of bacteria
or beads, an important feature discussed later.

FIG. 3. Control experiment. P. phosphoreum (left) and 3 µm beads (right) were placed in the cuvettes described in Fig. 2 but
in this case the top boundary was closed except for a single hole (indicated by red arrows). Both experiments were performed
at optical density OD600nm = 1.5 and the images were taken 75 minutes after the experiment started.
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As the plume generation does not depend on any life processes of the bacteria, in subsequent experiments described
below we focused exclusively on suspensions of microspheres instead of bacteria. Switching to beads also allowed us to
explore a wide range of salt concentrations, far beyond that which is physiologically possible using P. phosphoreum.

D. Experiments using beads

Figure 4 shows convective patterns observed in a suspension of 3 µm diameter microspheres in a 1% (weight/weight)
salt solution (see also Supplemental video 3 [12]). The bright horizontal line at the top of the image is the air-water
meniscus. Note that the plumes appear dark in the dark field image, which means an absence of particles deflecting
light in those regions. This situation is very different from conventional bioconvection, in which the plumes appear
bright due to the relatively higher bacterial concentration within them.

5 mm

FIG. 4. Convection in a microsphere suspension. Dark field image of the plumes observed in a suspension of 3 µm diameter
beads with 1% (w/w) salt concentration. The optical density was OD600nm=1 and the image was taken 30 minutes after the
experiment had started.

A protocol was designed to find the positions of the plumes in time for different salt concentrations. An image
like that in Fig. 4 was first cropped near the top surface, keeping the horizontal length but narrowing in the vertical
direction. After converting to black and white with a threshold of 0.5, the greyscale was inverted. Then, a one-
dimensional plot was generated by averaging the pixel intensity vertically, where noise was reduced by applying the
Matlab function smooth. The peaks were found using the function findpeaks with the condition that the peaks be
greater than 0.4 mm apart. Figure 5 shows the plume positions corresponding to the conditions of Fig. 4, where
different colors represent the position of the first plume, second plume, and so on until the seventh plume. In this
representation a given plume can change color because a new plume appeared at the left side.
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FIG. 5. Plume dynamics. Graphical representation of the plume position in time for an experiment using 3 µm diameter beads
and 1% (w/w) salt concentration. Different colours indicate the position of the first plume (red), second (orange), third (black),
fourth (green), fifth (pink), sixth (blue) and seventh (grey).

Figure 6 shows convection in suspensions with (a) 0.1% (w/w) salt and (b) 0.01% (w/w) salt. Comparing these
images to that in Fig. 5 one can see that for smaller salt concentrations the thickness of the plumes and the
spacing between them both increase. When these experiments were analyzed using the code described above, the
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average distance between plumes using 1% salt concentration was λexp,1% = 0.67 ± 0.06 cm, while for 0.1% was
λexp,0.1% = 1.58 ± 0.08 cm. In 0.01% suspensions it was difficult to determine the wavelength although it is clearly
larger than when using ten times more salt.

Another feature in these experiments is that the less salt in the suspension, the longer it takes to observe the
appearance of plumes. This can be seen in Fig. 6 where both images were taken once the instability developed: for
0.1% it occurred after 1 hour, while for 0.01% a full 10 hours was needed.

FIG. 6. Plumes at different salt concentration using 2.17 µm polyestyrene beads. (a) 0.1% (w/w) salt concentration, 1 hour
after beginning of the experiment. (b) 0.01% (w/w) salt concentration, 10 hours after the experiment started. The initial height
for both experiments was 1 cm, and in the image on the right the effect of evaporation can be seen by the lower meniscus.

E. Plume mechanism

In the experiments presented above, the plumes appear black in the dark field imaging method, which means
that there are no beads inside the plumes. Our hypothesis is that these dark plumes are a consequence of the
sedimentation of beads; while salt is accumulating at the upper fluid surface due to evaporation the beads are
continuously sedimenting, and once the instability starts, the convective flows carry fluid down from the top surface,
which is depleted of beads. This idea was investigated by performing the experiments using beads of different sizes,
thereby changing the sedimentation speed, while keeping the mean salt concentration fixed. Fig. 7 shows the plumes
observed using monodispersed polystyrene beads 3 µm in diameter (Polyscience 09850-5) and 6 µm in diameter
(Polyscience 07312-5). It is readily apparent that the plumes using larger beads are also wider. In this low Reynolds
number regime the Stokes law for sedimentation holds, with a speed proportional to (radius)2, so the larger beads
sediment four times faster. Using ImageJ the thickness of the plumes in both cases were measured at three different
points, obtaining d3µm = 0.152 ± 0.008 mm, while d6µm = 0.590 ± 0.025 mm, very consistent with the ratio of the
sedimentation speeds.

FIG. 7. Effect of microsphere size. Plumes using 3 µm diameter beads (a) and 6 µm beads (b). The material, initial height,
and salt concentration are the same in both cases. The optical density in both cases is OD600nm=1 and the images were taken
45 minutes after the experiment had started.

The role of salt in the plume formation was tested by suspending the beads in pure water. After 27 hours of obser-
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vation no plumes appeared, confirming that the presence of salt is necessary to create the convection (this experiment
was repeated three times). From these experiments it was also verified that the thermal effect of evaporation is not
strong enough to produce plumes under our experimental conditions. Finally, evaporation was avoided by adding a
layer of mineral oil on top of the solution of water and 1% (w/w) salt, which is the same salt concentration used in
the experiment in Fig. 4). After 10 hours no plumes were observed, while the air-fluid interface remained fixed. This
experiment highlighted the importance of evaporation in accumulating salt at the interface.

In summary, experimental results have shown: a) the center of the plumes is depleted of beads, b) the thickness of
the plumes is directly related to the sedimentation rate of beads, c) plumes do not appear when beads are suspended
in pure water, and d) evaporation is needed to observe plumes. Based on these observations, the following mechanism
for plume formation is proposed. Initially, the system has a nearly homogeneous distribution of beads. Before the
instability starts, beads sediment, and an accumulation of salt is built up at the air-water interface during this time.
When the salt concentration at the top surface has reached a critical value, the hydrodynamic instability is triggered
by a buoyancy imbalance, carrying down the fluid near the top surface which contains no beads.

III. LINEAR STABILITY ANALYSIS

The hypothesis that accumulation of salt due to evaporation is responsible for plume formation is studied in this
section using linear stability analysis. A classical example of the use of this technique is in explaining Rayleigh-Bénard
convection, observed when a fluid is heated from below, in which an instability arises as a consequence of the thermal
expansion of the fluid. Bénard’s observations in 1900 [13] were followed by Rayleigh’s analytical work in 1916 [9],
which established that the instability takes place when what we now term the Rayleigh number Ra exceeds a critical
value. Ra = βTαgd

4/κν compares the buoyancy force with the dissipative forces (viscosity and thermal diffusion),
where βT is the temperature gradient, α the coefficient of thermal expansion, g the acceleration due to gravity, d the
depth of the fluid layer, κ the thermal diffusivity and ν the kinematic viscosity.

The calculation presented here uses a salinity Rayleigh number that compares the buoyancy created by salt with
the stabilizing effects of salt diffusion and fluid viscosity. It is

Ras =
βc0gd

3

Dν
, (1)

where β is the solute expansion coefficient (which gives the change in suspension density due to the salt concentration),
c0 is the initial salt concentration, and D is the salt diffusion constant. It is important to note that the salinity Rayleigh
number has often been defined in the literature using the change in salinity between top and bottom instead of the
initial salt concentration (see for example Ref. [14]). Yet, even an initially uniform concentration profile will create a
gradient due to evaporation, so the present definition is more useful here, and was adopted by Kang et al. [6].

The problem analyzed in this section is a laterally infinite two-dimensional cuvette filled with a saline solution. The
salt concentration is initially homogeneous with a value c0 and the initial height of the column of water is h0 (1 cm in
the experiments). Evaporation has the effect of decreasing the fluid height h(t∗) at a constant speed ve, so we assume

h(t∗) = h0 − vet∗. (2)

A. Governing equations

The dynamics of the salt concentration c∗ follow the advection-diffusion equation

∂c∗

∂t∗
+∇ · (c∗u∗) = D∇2c∗, (3)

with D the salt diffusion constant, and u∗ the velocity field. For the fluid flow, the Navier-Stokes equations with the
Bousinesq approximation are used:

∇ · u∗ = 0, (4a)

∂u∗

∂t∗
+ u∗ · ∇u∗ = −∇p

∗

ρ0
+ ν∇2u∗ − ρ

ρ0
gk̂. (4b)

Eq. (4a) is the incompressibility condition, and in Eq. (4b) p∗ is the pressure, ρ0 the fluid density in the initial state
with a homogenous distribution of salt, ν is the kinematic viscosity, ρ the density of the fluid considering the salt

distribution, g is the acceleration of gravity, and k̂ is the unit vector in the vertical direction.
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To account for the moving top boundary we normalize the vertical direction by the instantaneous height h(t∗),
while the horizontal direction is normalized by h0, yielding dimensionless quantities

z =
z∗

h(t∗)
, x =

x∗

h0
, t =

D

h20
t∗. (5)

With these definitions and making use of a dimensionless height

H =
h(t)

h0
, (6)

and the Péclet number

Pe =
h0ve
D

, (7)

the dynamics of the salt concentration in terms of dimensionless variables is

∂c

∂t
= −Pe z

H

∂c

∂z
+
∂2c

∂x2
+

1

H2

∂2c

∂z2
− u ∂c

∂x
− w

H

∂c

∂z
. (8)

In the equation for the fluid flow, the notation u = (u,w) is introduced to identify the horizontal and vertical
components of the fluid velocity. The incompressibility condition is

∂u

∂x
+

1

H

∂w

∂z
= 0, (9)

and the Navier-Stokes equations for the fluid flow are

∂u

∂t
= −Pe z

H

∂u

∂z
− u∂u

∂x
− w

H

∂u

∂z
− ∂p

∂x
+ Sc

(
∂2u

∂x2
+

1

H2

∂2u

∂z2

)
, (10)

in the horizontal direction, and

∂w

∂t
= −Pe z

H

∂w

∂z
− u∂w

∂x
− w

H

∂w

∂z
− 1

H

∂

∂z
p̃+ Sc

(
∂2w

∂x2
+

1

H2

∂2w

∂z2

)
−RasSc (c− 1) , (11)

in the vertical direction, where the pressure as p̃ = p − gzH and Sc = ν/D is the Schmidt number. Finally, the
rescaled height evolves as

H(t) = 1− Pe t. (12)

Typical values of the experimental and material parameters are given in Table II.

TABLE II. Numerical values of the parameters used in the calculations

Parameter Symbol Value

Kinematic viscosity of water ν 10−6 m2/s
Salt diffusion constant D 10−9 m2/s

Salt expansion coefficient β = ρ−1
0 ∂ρ/∂c 0.007 (w/w)−1

Initial height h0 10−2 m
Evaporation rate ve 2 × 10−8 m/s
Péclet number Pe = h0ve/D 0.2

Schmidt number Sc = ν/D 103

B. Base state

Equations (8), (10) and (11) are now linearized around a base state, which is assumed to be homogeneous in the x
direction:

∂

∂x
= 0,

∂

∂x

∣∣∣
t=0

= 0. (13)
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Then, the continuity condition enforces ∂w/∂z = 0. Given the boundary condition w = 0 at z = 0 and ∂w/∂z = 0 at
z = 1, the fluid must be at rest, i.e. u0(t, z) = (0, 0). Similarly, c = c0(z, t) satisfies Eq. (8) in the absence of fluid
flow,

∂c0
∂t

=
1

H2

∂2c0
∂z2

− Pez

H

∂c0
∂z

. (14)

To find the boundary conditions for c0 it is useful to go back to the dimensionful equations and then translate them
to dimensionless variables. Integrating the conservation equation along the z-direction,∫ h(t)

0

(
∂c∗0
∂t∗
−Dd2c∗0

dz∗2

)
dz∗ = 0, (15)

and using the Leibniz integral rule for the first term, we obtain∫ h(t)

0

∂c∗0(z∗, t∗)

∂t∗
dz∗ =

∂

∂t∗

(∫ h(t)

0

c∗0(z∗, t∗)dz∗

)
− c∗0(h(t∗), t∗)

dh(t∗)

dt∗
. (16)

Because the total amount of salt in the system is constant, the first term on the right hand side of Eq. (16) vanishes.
Then, by using Eq. (16) in (15), we obtain

D
dc∗0
dz∗

∣∣∣∣
z∗=h(t)

= −c∗0(h(t∗), t∗)
dh(t∗)

dt∗
= c∗0ve

∣∣∣∣
z∗=h(t)

, (17)

where the constant evaporation rate ve was identified. Returning to the dimensionless variables, the upper boundary
condition is

dc0
dt

∣∣∣∣
z=1

= PeHc0

∣∣∣∣
z=1

. (18)

Similarly, at z = 0 the boundary condition of zero flux implies dc0/dz = 0. Finally, the initial condition for the salt
concentration is a homogenous distribution, therefore c0(z, 0) = 1.

Equation (14) with the initial and boundary conditions described above was solved numerically using the function
“pdepe” [15] in Matlab, yielding an approximate solution on a given one dimensional grid. The dimensionless concen-
tration c0 as a function of the dimensionless vertical direction z is plotted in Fig. 8, where different colours represent
the salt profiles after a given numbers of hours. In the figure it is possible to observe how the salt accumulates near
z = 1, and how the overall concentration increases as a result of the decrease in height while the total amount of salt
is conserved.

0 0.2 0.4 0.6 0.8 1
1

1.01

1.02

1.03

1.04

1.05

t0=0
30 mins
1 hour
1.5 hours
2 hours
3 hours

FIG. 8. Base state. Normalized salt concentration as a function of the normalized z-direction. The plot corresponds to the
numerical solution of Eq. (14) with no-flux boundary conditions (18) and no flux at z = 0, with Pe = 0.2, calculated from
experimental parameters. The colors correspond to different elapsed times since start of evaporation.
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C. Linearized equations for small perturbations

The timescale required to evaporate the suspension completely, around 50-100 hours, is much longer than the tens
of minutes over which plumes develop, and therefore it can be assumed that the timescale t of the plume dynamics
is much shorter than that needed to reach a base state (t0). The first step to linearize Eqs. (8), (10) and (11) is to
consider a small perturbation around the base state at order ε such that

u(x, t) = 0 + εu′(x, t) +O(ε2), (19a)

c(x, t) = c0(z, t0) + εc′(x, t) +O(ε2), (19b)

p(x, t) = p0(z, t0) + εp′(x, t) +O(ε2), (19c)

where u′ = (u′, w′) is the perturbed velocity field, and c′ is the perturbed salt concentration. Substituting Eqs. (19c)
into Eqs. (8), (10) and (11), and collecting the terms at O(ε), we obtain

∂c′

∂t
= −Pe

z

H

∂c′

∂z
+
∂2c′

∂x2
+

1

H2

∂2c′

∂z2
− w′

H

∂c0
∂z

, (20a)

0 =
∂u′

∂x
+

1

H

∂w′

∂z
, (20b)

∂u′

∂t
= −Pe z

H

∂u′

∂z
− ∂p′

∂x
+ Sc

(
∂2u′

∂x2
+

1

H2

∂2u′

∂z2

)
, (20c)

∂w′

∂t
= −Pe z

H

∂w′

∂z
− 1

H

∂p′

∂z
+ Sc

(
∂2w′

∂x2
+

1

H2

∂2w′

∂z2

)
− ScRas c′. (20d)

Since the evaporation speed is so small, the variation of height can be neglected in the perturbed equation. Thus,
at any given moment t = t0, H(t) = h(t)/h0 can be treated as a constant in time such that H(t) = H(t0) ≡ H0.
Equations (20a)-(20d) can be reduced to two coupled equations by introducing the streamfunction ψ(x, z, t), which
satisfies

u′ =
1

H0

∂ψ

∂z
, and w′ = −∂ψ

∂x
. (21)

Taking (1/H0)∂/∂z of Eq. (20c) and subtracting ∂/∂x of Eq. (20d), we obtain

∂

∂t
4̂ψ = Pe

z

H0

∂

∂z
4̂ψ + Sc4̂2ψ +RaSc

∂c′

∂x
, (22)

where 4̂ = ∂2/∂x2 + (1/H2
0 )∂2/∂z2. Then, the equation for the perturbed salt concentration in terms of ψ becomes

∂c′

∂t
= −Pe z

H0

∂c′

∂z
+
∂2c′

∂x2
+

1

H2
0

∂2c′

∂z2
+
∂ψ

∂x

∂c0
∂z

. (23)

To find the solution for these coupled equations, a normal-mode solution is considered

ψ(x, z, t) = ψ̂(z)e(ikx+σt) + c.c, and c′(x, z, t) = ĉ(z)e(ikx+σt) + c.c, (24)

where k gives the modulation of the pattern in the horizontal direction and the sign of σ indicates the stability of the
solution. Using this solution, Eqs. (22)-(23) can be written as a linear system

σ

(
D2 − k2 0

0 I

)(
ψ̂
ĉ

)
=

(
A ikRaSc

ik dc0dz B

)(
ψ̂
ĉ

)
, (25)

with D = (1/H0)d/dz, and the operators A and B are

A = PezD
(
D2 − k2

)
+ Sc(D2 − k2)2, (26a)

B = −PezD + (D2 − k2). (26b)

In the linear system, dc0/dz is the numerical derivative of c0(z, t), which is found by solving Eq. (14). To find the
boundary conditions we recall that the perturbed fluid velocity is u(x, t) = 0 + εu′(x, t). At z = 0, u = 0, this yields

u′ =
1

H0

dψ

dz
= 0, and w′ = −ikψ = 0. (27)
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Since ψ = ψ̂(z)eikx+σt, these conditions imply ψ̂ = dψ̂/dz = 0 at z = 0. At z = 1 there is a free surface and no

vertical velocity, w′ = 0, which implies ψ̂ = 0. Similarly, imposing the zero-stress condition,

1

H0

∂u′

∂z
+
∂w′

∂x
= 0, (28)

which in terms of the streamfunction ψ is equivalent to (1/H2
0 )d2ψ/dz2 = 0. Thus, at z = 1, ψ̂ = d2ψ̂/dz2 = 0.

D. Numerical implementation

A numerical solution to the governing equations begins with the solution of Eq. (14), which yields the salt con-
centration profile c0(z) at a given time t0. Then, Eq. (25) is solved by discretizing the interval z = [0, 1] into
N = 100 equally spaced nodes, and the derivatives are calculated using second-order central finite differences. Since
the matrices have size 2N × 2N , there are 2N eigenvalues and 2N eigenvectors, but because the equations for the
boundary conditions were explicitly written in the matrices, there are six spurious eigenvalues, which can be easily
discarded from the final solution. We identify the eigenvalue with the largest real part, as this corresponds to the

fastest growing mode. The corresponding eigenvector contains the information about ψ̂ and ĉ for the mode which
leads to the instability. In order to test the code, the traditional Rayleigh-Bénard convection was solved for rigid-rigid
boundary conditions, obtaining a neutral stability curve that compares very well to the standard result [16]. The
physical parameters used to solve the linear system are shown in Table II. The value of β was taken from Kang et al.
[6], and the evaporation speed was measured experimentally.

E. Results

Considering the salt profile at t0 = 1 h, the largest eigenvalues were calculated for different wavevectors k and
salinity Rayleigh numbers. Figure 9 shows the k −Ras plane color-coded by the value of the growth rate σ, and the
neutral stability curve along which σ = 0. The smallest critical Rayleigh number is Ra∗s = 3.8 × 104, with a critical
wavenumber k∗ = 2.3. From the definition of the salinity Rayleigh number, this occurs at a salt concentration of
5×10−4% (w/w), and implies a critical wavelength of 2.73 cm. A comparison with experiments is given in Section V.

FIG. 9. Stability analysis. Values of the largest eigenvalue σ in the plane of salinity Rayleigh number Ras and wavevector k.
In black is the neutral stability curve. Parameters are those in Table II.
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1. Varying Schmidt and Péclet numbers

The results above were obtained for Pe = 0.2 and Sc = 1000. When Sc = 1, the neutral stability curve does not
change with respect to the one with Sc = 1000, but the eigenvalues are different. This result is also obtained in the
Rayleigh-Bénard instability, in which case it is possible to demonstrate analytically that the Schmidt number does
not affect the condition for stability but it does affect the magnitude of the eigenvalues [16]. Conversely, and as shown
in Fig. 10, a higher Péclet number has the effect of lowering the critical Rayleigh number as well making the neutral
stability curve broader. These results are expected from the definition of the Péclet number Pe = h0ve/D. A higher
value can be achieved for example by increasing the evaporation rate, which increases the salt accumulation at the
top. From the plots in Fig. 10 one can see that a higher Péclet number also has the effect of increasing the value of
the largest eigenvalue, which results in the instability appearing sooner.

FIG. 10. Effect of Péclet number on the neutral stability curve. (a) Pe = 0.1 and Sc = 1, (b) Pe = 0.4 and Sc = 1.

2. Varying the time at which the base state is calculated: t0

All the results shown above were obtained by considering that the base state is reached within one hour, independent
of the initial salt concentration; the salt profile has been calculated according to Eq. (14) and evaluated at time t0
(=1 hour). As the dimensionless height was assumed to be constant in the linearized equations H(t0) = H0, the
choice of t0 also affects the value of H0. Nevertheless, the evaporation speed is so small that the height decreases only
1 mm in 10 hours.
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FIG. 11. Effects of varying t0. (a) Largest eigenvalue for different choices of t0, with Pe = 0.2 and Ras = 6.6 × 107. Neutral
stability curves for t0 = 15 min. (b) and t0 = 2 hours (c), both with Sc = 1 and Pe = 0.2.

Figure 11a shows the largest eigenvalue σ as a function of k when the be state is calculated after 15 min., 30 min.,
1 hour and 2 hours. As expected, the longer one waits, the more salt has accumulated at the top, and the faster the
convection starts. Nevertheless the position of the peak remains almost the same, so the wavelength of the pattern
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is not significantly dependent of the choice of t0. Similarly, the largest eigenvalues changes for different values of t0.
Figure 11 shows the neutral stability curve for (b) t0 = 15 minutes and (c) at t0 = 2 hours. Comparing these figures
to Fig. 9 (for t0 = 1 hour) one observes that the choice of t0 modifies the value of the critical salinity Rayleigh number
without changing the critical wavelength significantly.

IV. TWO-DIMENSIONAL FINITE ELEMENT STUDIES

The formation of plumes was further investigated by performing numerical simulation in the two-dimensional
geometry sketched in Fig. 12. As in the experiments, the initial height of the column of water is h0= 1 cm, the length
of the cuvette is 6 cm, and the salt concentration is initially homogeneous and equal to c0.

FIG. 12. Geometry for full numerical studies. The Navier-Stokes equations are solved in this two-dimensional geometry, with
dimensions indicated, g the acceleration of gravity and the height h(t) decreasing in time due to evaporation.

The numerical studies were performed using the finite element package Comsol Multiphysics. In this case, the
Navier Stokes equation for the fluid was coupled to the advection-diffusion equation for the salt concentration, as
in previous sections. The program was benchmarked on the traditional Rayleigh-Bénard convection with solid-solid
boundaries, obtaining a critical Rayligh number of 1700, in good agreement with the known result of 1707.7 [16].
Comsol can handle the moving top boundary due to evaporation by use of the “Deformable Geometry” module, which
works as follows : The equations for the fluid flow and salt concentration are written considering a fixed height h0, and
an equation for the movement of the top boundary is specified. The code then calculates a new mesh by propagating
the deformation throughout the domain. Material is added or removed depending on the movement of the boundaries,
thus the total concentration of species is not conserved between iterations [17]. As in our case the total amount of
salt must be conserved, a flux of salt is added at the top.

For the numerical computations, Equations (3) and (4b)-(4a) are rescaled using the following expressions for length,
time, flow speed, pressure and salt concentration:

x =
x∗

h0
, t =

D

h20
t∗; u =

h0
D

u∗, p =
h20
ρ0D2

p∗, c =
c∗

c0
.

The dimensionless equations to be solved numerically are then

∇ · u = 0, (29a)

∂u

∂t
+ u · ∇u = −∇p+ Sc∇2u−RaSc(c− 1)ẑ, (29b)

∂c

∂t
+ u · ∇c = ∇2c. (29c)

A. Numerical implementation

The boundary conditions for the fluid were non-slip at the lateral and bottom sides, and force-free at the top
boundary. The buoyancy force due to the salt concentration was implemented using the “Volume Force” feature of
Comsol. The boundary conditions for the salt concentration were no-flux in the lateral and bottom sides. As stated
earlier, when a salty suspension evaporates, water leaves the system, but the salt concentration at the top surface
increases as this component is conserved in time. This was implemented in Comsol by adding a flux of salt at that the
top boundary, which was given by vec, where ve is the dimensionless rate of evaporation (measured experimentally)
and c is the dimensionless salt concentration at the top surface. The mesh used was the predefine normal mesh
calibrated for fluid dynamics, with a maximum element size 0.045 and minimum element size 0.002. In addition,
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FIG. 13. Numerical results for 1% (w/w) initial salt concentration and 60 minutes after the experiment has started. (top) flow
field; (bottom) normalized salt concentration.

a corner refinement was added in such way that the elements at the boundaries are scaled by a factor 0.25. The
numerical values for the parameters in the simulations are the ones shown in Table II.

B. Results

Figure 13 shows the numerical results for experiments with 1% (w/w) salt concentration. The flow speed (in mm/s)
and the salt concentration (normalized by its initial value) are shown 60 minutes after the experiment had started.
Here one can see the correspondence between high concentrations of salt and the position of the plumes. These
numerics also show the rich plume dynamics noticed in the experiments (see Supplemental videos 4 and 5 [12]). In
both cases the number of plumes is not constant and coalescence events are observed. The average distance between
plumes can be calculated from these images using a similar code to the one described in section II, using the color-
coding of the velocity field to identify plumes. After the image was cropped to narrow it in the vertical direction, it
was converted to black and white with a threshold of 0.2, and the pixels were averaged vertically. This analysis gives
a separation between plumes, averaged over time, for 1% (w/w) salt concentration of λsim,1% = 0.83± 0.17 cm.

In the experiments it was clear that the lower the overall salt concentration, the longer it takes for plumes to
develop, which can be understood from the fact that a longer time is needed to accumulate sufficient salt at the top
boundary. As can be seen in Fig. 14, the same feature is observed in the simulations. Here, the snapshots were
taken when the plumes first developed, which is longer as the initial salt concentration decreases. In addition, the
flow field magnitude also decreases with lower initial salt concentrations. In particular, using 0.001% (w/w) initial
salt concentration, we obtain a typical plume speed of 10−4 µm/s, too small to be measured experimentally.

V. COMPARISON BETWEEN EXPERIMENTS, LINEAR STABILITY ANALYSIS AND NUMERICAL
SIMULATIONS

In this section we summarize some of the quantitative measurements of plume obtained using the three approaches.
We recall that in the linear stability analysis an infinite two dimensional system was considered, while in the experi-
ments and numerical simulations the system was laterally finite, so geometric confinement effects can occur. Moreover,
in the experiments, the cuvette of course had front and back glass walls, so that the dynamics might be considered
more like Hele-Shaw flow that a true two-dimensional system.

Separation between plumes. For 1% salt concentration experiments, the time-average over several plumes gave a
distance between plumes of λexp,1% = 0.67±0.06 cm. From the linear stability analysis, a separation of λlinear = 1.05
cm was obtained, and for the same salt concentration, full non-linear numerical simulations gave λsim,1% = 0.83±0.17
cm. In addition, the linear stability analysis gives information about the distance between plumes at the onset of
the instability, which can be compared with experimental results before the plumes fully develop. For an initial salt
concentration of 0.1% (w/w), the approximate initial separation between plumes is λexp,0.1% = 1.58± 0.08 cm, which
compares very well to the value given by the linear stability analysis of λlinear,0.1% = 1.43 cm.

Minimal salt concentration needed to observe plumes. In the experiments, the lowest salt concentration for which
we could identify a wavelength was 10−2% (w/w). On the other hand, the linear stability analysis predicts that
the critical salt concentration is 5 × 10−4 % (w/w). This discrepancy can be due to multiple factors, including, as



14

0

0.5

1

1 2 3 4 5

0

0

x

y

1

2

3x10-8

2

4x10-7

4x10-3

2

0

0

2x10-2

1

(a)

(b)

(c)

(d)

mm/s

FIG. 14. Numerical flow fields for different initial salt concentrations. Snapshots at times corresponding to appearance of
plumes for (a) 0.1% at t = 45 min., (b) 0.01% at t = 120 min, (c) 0.001% at t = 80 min, and (d) 0.0001% at ten hours, at
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mentioned above, the presence of lateral walls and the added viscous drag associated with the experimental Hele-Shaw
geometry. In the numerical simulations, as shown in Fig. 14, no plumes were observed for a salt concentration of
10−4% (w/w), while for 10−3% (w/w), very slow plumes can be identified. Therefore, from this approach we obtained
that the critical salt concentration is in between 10−3 and 10−4% (w/w), which is in very good agreement with the
linear stability analysis result.

Time required to observe plumes. Experimental observations indicate that when using 1% (w/w) salt concentration,
the instability developed within 15 minutes, while for 0.1% (w/w) plumes appeared 2 hours after the experiment had
started. In a conventional linear stability analysis, the time needed for the instability to start is reflected in the value
of the largest eigenvalue, but the in present case there is also the need to wait a sufficient time for evaporation to
create a substantial density stratification. Nevertheless, we found that the largest eigenvalue for 1% (w/w) salt was
7 times larger than for 0.1% (w/w), remarkably close to the experimental ratio of approximately 8. Similarly, in
the numerical simulations with 1% salt, plumes were observable within 15 minutes while 45 minutes were needed to
identify plumes in suspensions with 0.1% salt.

VI. CONCLUSIONS

We have proposed that accumulation of salt due to evaporation can explain the convective patterns observed in
suspensions of a non-motile marine bacterium. This hypothesis was studied using experimental approaches involving
control experiments with microspheres of various sizes suspended in growth media with varying salinity. A mathe-
matical model similar in spirit to that used for bioconvection was developed, but focusing on the salt flux created by
evaporation at the suspension’s upper surface, and was studied by linear stability analysis and fully nonlinear numer-
ical simulations. The key dimensionless quantity in the model is the salinity Rayleigh number, the critical value of
which corresponds to the the threshold of salt concentration needed to observe plumes and determines the wavelength
at the onset of the instability. Both results compare well with experimental observations. Similarly, finite-element
method simulations showed a plume dynamics very similar to experimental observations, and the dependence on the
salt concentration is in agreement with the results obtained using the other two methods.

The phenomenon of interest here was discovered in a suspension of non-motile marine bacteria, but plumes were
also observed using a non-marine bacterium (Serratia) with low salt concentration in the medium. Therefore the
convection does not require salt in particular, but merely some component that accumulates due to evaporation. The
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accumulation of solute is always present in experiments with an open-to-air surface, and this effect may have been
underestimated in other systems. For the bacterial medium used, the patterns appeared within 15 minutes, which
may certainly be comparable to the duration of typical laboratory experiments. On the other hand, when using motile
bacteria, the directed movement (chemotaxis) of cells toward the suspension-air interface is likely to be much stronger
than the convection created by solute accumulation [19].

In the ocean, an accumulation of salt can generate “salt fingers”, which are formed when cold fresh water surrounds
warm salty water. This phenomenon is explained by the fact that thermal diffusion is faster than the salt diffusion,
which has the consequence that a region high in salt will cool before the salt can diffuse, creating a descending plume of
dense salty water [18]. In the ocean this instability has a profound effect on mixing, which influences factors such as the
availability of nutrients, heat storage, dispersal of pollutants and the fixation of carbon dioxide, to mention only some
effects [20]. An analogy between the convection in the ocean and the fluid flow observed in a suspension of non-motile
P. phosphoreumis particularly interesting, as one could argue that the motion created by evaporation may enhance
nutrient mixing. The possibility that bioconvective enhancement of mixing may improve population-level growth has
been considered previously and found not to occur [21]. The relevance of a mixing effect on microorganisms associated
with evaporation remains to be studied quantitatively, as does its effect on the so-called “sea surface microlayer”, the
submillimeter interfacial layer within which much important geobiochemistry occurs [22].
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