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Efficient uptake of prey and nutrients from the environment is an important component in the fitness of
all microorganisms, and its dependence on size may reveal clues to the origins of evolutionary transitions to
multicellularity. Because potential benefits in uptake rates must be viewed in the context of other costs and
benefits of size, such as varying predation rates and the increased metabolic costs associated with larger and more
complex body plans, the uptake rate itself is not necessarily that which is optimized by evolution. Uptake rates
can be strongly dependent on local organism geometry and its swimming speed, providing selective pressure for
particular arrangements. Here we examine these issues for choanoflagellates, filter-feeding microorganisms that
are the closest relatives of the animals. We explore the different morphological variations of the choanoflagellate
Salpingoeca rosetta, which can exist as a swimming cell, as a sessile thecate cell, and as colonies of cells in
various shapes. In the absence of other requirements and in a homogeneously nutritious environment, we find that
the optimal strategy to maximize filter-feeding by the collar of microvilli is to swim fast, which favors swimming
unicells. In large external flows, the sessile thecate cell becomes advantageous. Effects of prey diffusion are
discussed and also found to be to the advantage of the swimming unicell.
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I. INTRODUCTION

Competitive advantages over single cells is one of the
driving forces behind the existence of multicellular life forms.
Certain single-celled organisms mimic true multicellular
behavior by forming colonies. While such colonies do not
have the advantages that accrue with division of labor, they do
obtain potential benefits from their increased size, otherwise
limited by intracellular nutrient mixing by diffusion. In the
closest relatives of animals, the choanoflagellates, the species
Salpingoeca rosetta can form colonies of both chainlike and
rosettelike morphologies [1–3], as illustrated in Fig. 1. These
colonies form by incomplete cell division and are held together
by an extracellular matrix [2]. Given their position relative to
the origins of animal multicellularity, the possible competitive
advantage of these colonies is highly intriguing [4].

Choanoflagellates filter feed by beating their flagella and
thereby driving fluid through a collar of microvilli onto which
prey (bacteria) get trapped and ingested. They live at low
Reynolds numbers [5], are, when swimming freely, force-
and torque-free, and the surrounding flow u obeys the Stokes
equations

μ∇2u = ∇p, ∇ · u = 0, (1)

where p is the pressure field and μ the dynamic viscosity.
Being neutrally buoyant, the far-field flow around both unicells
and colonies of choanoflagellates is dominated by the stresslet
contribution, which decays as r−2 [6]. The advective influx of
fluid through a sphere of radius r is thus independent of r as
r → ∞. Using this result, recent work [4] argued that certain
morphologies of colonies such as chains can increase this flux
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per constituent cell, thus potentially creating a hydrodynamic
feeding advantage for colonies, in a parallel to the situation
previously examined for the green alga Volvox [7,8]. For
choanoflagellates with n constitutent cells, the influx F was
shown to grow faster than linearly with n already from n = 2
and even in the limit n → ∞ [4].

Theoretically, filter-feeding is possible even in the absence
of diffusion of the target particles. In the contrasting case of
absorbers, feeding occurs across a thin diffusive boundary
layer, as has been studied in squirmer-type models [7,9]
consisting of spheres with imposed tangential velocity fields.
For squirmers it has been shown that optimal nutrient uptake
precisely corresponds to optimal swimming, at all Péclet
numbers [10]. If this result carries over to the filter-feeding of
colonies of choanoflagellates, it would suggest that optimally
swimming colonies would also be optimal feeding, in contrast
to conclusions made based on long-range fluxes [4]. Inspired
by these studies, we examine here theoretically the near-field

FIG. 1. Morphologies of S. rosetta [2] considered here. From left
to right: swimming unicell, thecate cell, rosette colony, and chain
colony.
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flows around colonial choanoflagellates and the near-field
fluxes across the cell collars where feeding occurs.

II. MODEL

We approximate the choanoflagellate body by a sphere.
Contrary to the prokaryotic case, eukaryotic flagella, such
as those of choanoflagellates, are not rigid rotating helices
but instead their shape is modulated by distributed molecular
motors along the flagella to yield a whiplike beat. Time
averaging over this beat approximately yields a thin rod, which
we will take as a proxy for the flagella. Although there is
evidence of some influence on the flow of the collar, via
a pressure drop across it [11], we will ignore the collar in
the modeling of the fluid flow. Including such effects would
reduce the absolute flux of each cell, but our interest lies in the
relative flux between colony cells and single cells, and thus
such effects can be neglected here. Our system of (colonies of)
choanoflagellates thus consists only of spheres and thin rods.

To calculate the flow in unbounded domains, we utilize a
boundary element method. Cortez et al. [12] found the Stokes
flow due to a regularized, localized forcing,

μ∇2u − ∇p = δε(r) f = 15ε4

8π (r2 + ε2)7/2
f , (2)

where r = |x − x0| and δε is a regularized version of the Dirac
δ function. The solution,

u(x) = (r2 + 2ε2) f + f · (x − x0) (x − x0)

8πμ(r2 + ε2)3/2

≡ Gε(x − x0) · f , (3)

is called the regularized Stokeslet and indeed tends to the
classic, singular Stokeslet as ε → 0. The flow around a set of
boundaries D in an infinite domain can then be approximated
by the boundary integral equation [12]

u(x) =
∫∫

D

Gε(x − x′) · f (x′) dS, (4)

with a suitable choice of ε(x).

Inspired by spectral methods, and as detailed in the
Appendix, we expand the force distribution on the flagellar
elements in terms of Legendre polynomials and on cell bodies
in terms of spherical harmonics. Boundary conditions are
no-slip on the cell bodies. For the flagella boundary conditions
we consider two cases. In both of these cases we take a constant
velocity along the flagella: u = u0 d̂i (but other velocity
distributions could easily be applied). d̂i is the orientation
of the ith cell’s flagellum. Then u0 may be regarded as
known or we can let it be indirectly defined by letting the
total propulsive force f 0 · d̂i that the flagellum exerts on the
fluid be known. These two choices lead to similar behavior
for single cells, but will matter in the case of colonies. The
method detailed in the Appendix yields the surrounding flow
u and the translational and rotational swimming velocities,
U and �.

III. FLOW AROUND DIMERS

We begin by considering dimers: colonies consisting of two
cells. The two can be placed in various relative orientations; we
focus here on the subset of configurations in which the flagella
lie in a plane and where both flagella make the same angle ϕ

with the y axis, since these are optimal configurations under
variation of the remaining angles. Figures 2(a) and 2(b) show
the resulting flow fields for ϕ = 0 and ϕ = π/2, respectively.
For ϕ = 0 the colony is swimming and the streamlines of
passive tracers pass from the front of the colony to the back,
while for ϕ = π/2 the forces of the two beating flagella
exactly cancel and the colony does not swim. Passive tracers
are dragged in from the sides. For all ϕ, � = 0. From
these calculations we can reproduce qualitatively the results
of Ref. [4]. The long-range flux produced by colonies is
given by

F = lim
R→∞

∫∫
SR,u·n̂>0

u(x) · n̂(x) dS, (5)

where SR is the surface of a sphere with radius R and n̂ is the
inward normal to this surface. The flux per cell, normalized

FIG. 2. Fluid flow and flux of dimers. (a),(b) Background color and vector field quantify the velocity field in the laboratory frame, with
color scale in units of μm/s. Streamlines are calculated in the swimming frame with z = 0. Configuration (a) has ϕ = 0 and (b) ϕ = π/2. (c)
Influx through a sphere of radius R → ∞ (neglecting advective flux) shown in purple and flux through the collar of cells in green. Fluxes are
calculated per cell and normalized by the flux of a unicell. Solid lines are calculated with velocity described on the flagella, and dashed lines
are calculated with forces prescribed on the flagella.
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FIG. 3. Prey field. (a) Axially symmetric field around swimming unicell at D = 1 μm2/s (bottom) and D = 25 μm2/s (top). The field is
normalized to c0 = 1 at r ≈ 10 mm. (b) Field around pole-to-pole dimer colony for the same values of D with a velocity-prescribed boundary
condition on the flagella. (c) Ratio of Z for a cell in the dimer configuration to swimming unicell. D = 0 corresponds to infinite Péclet number
and compares to the flux calculations shown in Fig. 2. The solid curve corresponds to configurations shown in (a) and (b) with collar opening
angle ∼20◦. Dashed lines for lower collar opening angles, ∼0◦, 4◦, and 16◦, respectively, from top to bottom. The inset shows a larger range
of D and the asymptote of vanishing Péclet number (dashed line).

by the flux for the single-cell system, is shown in purple in
Fig. 2(c). The solid curves are the cases where u0 is prescribed
and dashed curves are the cases where f 0 · d̂ is prescribed.
Both cases have ϕ = 0 and ϕ = π/2 as local optima, the
latter being globally optimal. This long-range flux per cell is
larger than that of a single cell in the pole-pole configuration,
as previously found [4], although we find an overall lower
magnitude of this long-range flux, due to hydrodynamic
interactions between the two cells and differences in geometry
choices (e.g., distance between cells). We furthermore find
an increased flux in the case of prescribed velocity over the
prescribed force.

The near-field flow enables us also to calculate the flux not
just of an infinite sphere, but also at the actual collars where
the choanoflagellates feed. We define the collars as the surface
of a cone with lower radius 1.8 μm, upper radius 3.3 μm, and
height 4.0 μm. Evaluating such fluxes allows for the inclusion
of the flux due to swimming at speed U . While earlier work [4]
found that this advective flux was negligible, this conclusion
was based on the use of the stresslet flow, which is only valid far
away from the colony. Secondly, although the advective flux
may be small compared to the rest of the flux in a particular
system, it can still be important when evaluating the relative
flux between systems, as indeed turns out to be the case here.
We find that including the advective flux makes a significant
change, and as shown in green in Fig. 2(c) by including
this in the flux calculation across the collar, the swimming
side-by-side configuration becomes globally optimal, and the
advantage over single cells of colonies disappears (but does
not become disadvantageous in the optimal configurations).
Moreover, this behavior is not strongly dependent on the shape
of the collar or the distance between the two cells, in sharp
contrast to the long-range flux, the value of which tends to
infinity as this distance is increased. We also find that the
prescribed force side-to-side system outperforms single cells
slightly due to drag cancellation.

IV. DIFFUSION EFFECTS

The flux calculations above were done in the limit of infinite
Péclet number, i.e., ignoring prey diffusion. This includes
ignoring the effect of crowding: One cell eating leaves less
food in the area for its neighbors. To study these effects,
we consider the axially symmetric pole-to-pole arrangement
shown in Fig. 2(b), the system which has the highest stresslet
flux, and compare it to the single-celled swimmer (which is
also axially symmetric). The prey field c(x), which can be
thought of as a probability field for the occurrence of prey,
obeys the advection-diffusion equation

D∇2c − u · ∇c = −R(x), (6)

with sinks R(x) at the position of the collars: R(x) =∑
k Rk δ(x − xk). By posing the problem in a weak formu-

lation with no-flux conditions at the sphere boundaries, we
obtain∫

�

[
Dρ

∂c

∂ρ

∂q

∂ρ
+ Dρ

∂c

∂x

∂q

∂x
+ ρuρ

∂c

∂ρ
q + ρux

∂c

∂x
q

]
dx

=
∑

k

Zkq(xk) ∀ q ∈ Q, (7)

where q is a test function from some Sobolev space Q,
we have replaced y with ρ to make explicit the use of
cylindrical coordinates, and Zk = ρRk such that Z = ∑

k Zk

is representative for the prey uptake of the axially symmetric
sinks.

Far away from the colony we require the prey field to be
unaffected by the colony, and thus have the boundary condition
c(r) → c0 as r → ∞. Diffusion-dominated decay to c0 will
be of the form c − c0 ∼ r−1, but for swimming colonies and
large Péclet numbers, advection will dominate even far from
the colony. Using a custom mesher, we thus triangulate a
massive domain (∼10 mm) with increasing detail close to
the colony and take c = c0 at the edge of the domain. Taking
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the choanoflagellates to be perfect eaters, the values of Zk

can be calculated by imposing c(x) = 0 on the collars. We
solve Eq. (7) by implementing the finite element method. The
velocity field is taken from the boundary element simulation
and projected onto a solenoidal field to prevent finite numerical
compressibility.

In general, including diffusion increases the prey uptake
for both the swimming unicell and the dimer colony. The
quantity of interest is the prey uptake of the cells in the colony
relative to that of the single swimming cell. Figure 3 shows
the solution c(x) with c0 = 1 for (a) the swimming unicell and
(b) the pole-to-pole colony at two different values of diffusion
constant D. The diffusion coefficient of passive prey, such as
nonmotile bacteria, can be calculated from the Stokes-Einstein
relation D = kBT /6πμa, where a is the effective radius of the
prey. For typical prey such as Algoriphagus machopongenesis
this yields D = 0.5 μm2/s [4] and increases for smaller prey.
For motile prey the diffusion constant can be much larger,
since it is enhanced by swimming. For an organism swimming
with speed v and with rotational diffusion constant Dr ,
the effective diffusion constant scales as D ∼ v2/Dr . Thus,
for v ∼ 10 μm/s and Dr ∼ 0.1 s−1, D ∼ 102–103 μm2/s.
Moreover, even for nonmotile prey, the surrounding fluid
environment may be inhomogeneous and noisy, and such noisy
flow can heuristically be associated with an increased diffusion
constant. Overall, the prey diffusion constant can vary over
several orders of magnitude.

Figure 3(c) shows how increasing the diffusion constant
from zero gives a decrease in feeding of the colony compared to
the swimming unicell at small diffusion constants. This arises
from the fact that diffusion increases, so the fluid flux across
the collar of the nonswimming colony is no longer pristine; the
prey of the fluid crossing the collar in steady state have already
been partly consumed. Swimming counteracts this effect, and
accordingly the unicell is not affected significantly by this. As
the diffusion constant becomes large, the effects of advection
diminish. This regime is shown in the inset of Fig. 3(c). In
the limit D → ∞ (dashed line), the effects of advection can
be ignored, and with it the difference due to flow produced

by the unicell and the colony. However, also in this limit
the unicell outperforms the colony, since there is a reduction
in feeding due to the sharing of prey between cells in a
colony.

The importance of advective fluxes due to swimming
depends on the opening angle of the collar. The solid curve of
Fig. 3(c) corresponds to the angle, 20◦, shown in (a) and (b);
the dashed curves show the result for smaller opening angles.
The top (orange) curve is for straight collars, and even in this
case is it quite advantageous to be swimming.

V. LARGER COLONIES

Colonies of S. rosetta exist with both chain and rosette
morphologies. From the above study of dimers, we expect
the collar fluid flux to be maximized for a straight chain
of cells. Figure 4 shows the result on chains of six cells
with varying exterior cell-to-cell angle ϕ, from straight to
regular hexagonal shapes. Figure 4(a) shows the flow around
the straight configuration (ϕ = 0), and Fig. 4(b) shows a
semicircle (ϕ ≈ 0.63). For the long-range flux, shown by the
purple curve in Fig. 4(c), we find as in Ref. [4] that the
semicircle configuration is the global maximum. This rich
behavior of the long-range flux disappears completely in the
collar flux, as shown by the green curve in Fig. 4(c), and again
we find that the globally optimal configuration is the one that
swims the fastest: the straight chain.

It was suggested [4] that while the long-range flux increase
appears for chain morphologies, rosette-shaped colonies will
not have this effect. To exemplify rosette colonies, we take
a tetrahedron of cells and consider three distinct flagellal
configurations, the resulting flow fields of which are shown
in Fig. 5: (a) flagella pointing outwards parallel with the
line from the center of mass to the cell, (b) flagella pointing
approximately in the same direction, and (c) one flagellum
propelling the colony and the remaining three rotating it.
Configuration (a) will neither swim nor rotate. The flagella
of configuration (b) point almost in the same direction, except
for a small angle necessary to prevent overlap of collars. This

FIG. 4. Fluid flow and flux of chain colonies. (a),(b) Background color shows the magnitude of the velocity field in the laboratory frame,
with color scale in units of μm/s. Streamlines are calculated in the swimming frame from y = −20 μm, z = 0.1 μm and projected onto the
z = 0 plane. Configuration (a) has exterior cell-to-cell angle ϕ = 0 and (b) ϕ = 36◦ ≈ 0.63 rad, corresponding to a half circle and the maximum
long-range flux. (c) Influx through a sphere of radius R → ∞ (neglecting advective flux) shown in purple and flux through the collar of cells
in green. Boundary conditions are velocity prescribed. The graph ends at ϕ = 60◦ ≈ 1.0 rad corresponding to a regular hexagon.
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FIG. 5. Tetrahedron rosette colonies and streamlines of the surrounding flow calculated in the swimming frame. (a) All flagella pointing
outwards. (b) All flagella pointing approximately in the same direction, making the colony swim faster than a unicell. (c) One flagellum
propelling the colony, the remaining rotating it.

configuration swims faster than a unicell due to reduced drag
from the tetrahedron configuration. The collars of a rotating
colony will sweep a larger volume, which is exemplified by
configuration (c). In terms of the flux across the collar, we
compare in Fig. 6 these tetrahedra to the other morphologies
considered. The nonswimming tetrahedron is the worst of all
considered configurations. With all considered configurations
we have found the fastest swimmer also has the highest
collar flux. This does not hold for configuration (b), however.
Although it swims ∼20% faster than a unicell, the proximity
of neighboring cells results in an overall lowered flux. Also
individually, none of the constituent cells surpasses the flux
of a single swimming cell, which is true for all configurations
considered in this study. Furthermore, our flux calculations do
not include the effects of prey sharing, as was considered in the
section on diffusion effects. In fact, in this configuration, many
of the streamlines passing through the middle cell have already
passed through neighboring cells and so the feeding flux that
we calculate is only an upper bound on the true value. The
rotating colony (c) is also at the lower end of the collar flux.

FIG. 6. Overview of flux across collars on the various considered
configurations in no external flow with velocity-prescribed boundary
conditions. All normalized by the flux of the swimming unicell. From
left to right: swimming unicell, side-by-side dimer, straight chain,
straight rosette, long-stalk thecate cell, semicircle chain, pole-to-pole
dimer, rotating rosette, short-stalk thecate cell, hexagonal chain,
parallel rosette.

Since the flagella are already drawing the surrounding fluid
through the collars, the extra volume swept by rotation makes
no difference; one side of the collar will have an increased flux,
but the opposing side will be approximately equally reduced,
since rotating around the colony center of mass gives the
opposite effects on either side of the collar. As in the previous
configuration, the effect of prey sharing is significant here as
well. The propelling cell will have a reduced feeding efficiency
because of the surrounding cells. We do not, however, observe
streamlines from one of the rotating cells reaching one of the
neighbors.

VI. THECATE CELLS

For completeness, we must include in this study the sessile
form of S. rosetta. These attach to a wall by building a so-called
theca. Such single-celled sessile feeders have previously been
studied [13,14]. To account for the no-slip condition on the
nearby wall, we add image singularity solutions to Eq. (3) at the
mirror point over the wall. For a singular Stokeslet, the images
that give no slip on the wall are a Stokeslet of opposite sign,
a potential dipole, and a Stokeslet doublet [15,16]. Similar
to the unbounded version, Eq. (3), a regularized version is
known [17], which we exploit and replace G [in the Appendix,
Eq. (A4)] with a tensor including these images. Figure 7 shows
the resulting flow. We consider straight thecate cells, which is
the configuration with highest flux, although in the absence
of external flow, feeding at an angle can be advantageous in
order to reduce recirculating eddies [14]. In the inset of Fig. 7
the collar flux is plotted as a function of the height h above
the wall that the cell is attached to. Overall, the flux is reduced
compared to the swimming unicell, but this result holds only in
the absence of external flow. Being stuck to the wall, thecate
cells gain an advantage from external flows that suspended
cells do not. As long as the external flow is comparable to
or larger than the swimming speed of a unicell, the thecate
form becomes advantageous. Not surprisingly, Fig. 7 shows
that placing the cell further away from the wall increases the
flux; this is the very reason that the cells build a stalk on the
theca. The difference in terms of flux between no stalk and an
infinitely long stalk (dashed line in Fig. 7 inset) is about 10%
of the flux of the swimming unicell.

052401-5



JULIUS B. KIRKEGAARD AND RAYMOND E. GOLDSTEIN PHYSICAL REVIEW E 94, 052401 (2016)

FIG. 7. Thecate cell above wall at y = 0. Background color and
vector field shows the velocity field, with color scale in units of μm/s.
Streamlines are at z = 0. The inset shows collar flux normalized by
that of a swimming unicell as a function of height h above the wall.

VII. CONCLUSIONS

We have found that swimming is the best strategy to
maximize the prey flux across the feeding collar in choanoflag-
ellates, in agreement with the result found for absorbing
feeders modeled as squirmers [10], and that there is no
hydrodynamic feeding advantage for colonies compared to
single cells. With flagella orientations parallel to cell positions
in rosette colonies, the swimming speeds will be significantly
lowered. However, real rosette colonies tend to swim at
speeds that are comparable to unicell slow swimmers [2,18].
One might hypothesize that the advective flux is a selec-
tion factor for flagellar orientations that allow swimming.
Swimming moreover is a natural method for replenishing
the surrounding fluid and, as discussed, thereby limits the
hindering effects of diffusion. However, in this study we have
only considered uniform and steady prey distributions. One
could imagine distributions that disfavor fast swimmers, i.e.,
where such swimmers would quickly escape the local prey-
rich areas, but where stationary rosette colonies could feed
efficiently.

Prey trajectories are more aligned with the collar for
swimming cells than for stationary cells, and if the capture
probability decreases with alignment (e.g., if prey bounce
off the collar) this will favor stationary cells. However, live
imaging is needed to asses the magnitude of such an effect,
and it would have to be very large in order to give to colonies
the overall advantage. For S. rosetta the fact that colonies
tend to form when a culture is kept in log phase, i.e., with
plenty of prey, suggests that enhanced feeding efficiency
per se is not a driving force behind colony formation, and
other factors such as size as a prevention against predation
could be more important. Taken together with the fact that a
molecular species released by certain prey bacteria triggers
the formation of the multicellular form [3] suggests that the
driving forces behind transitions to multicellularity are subtle
indeed.
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APPENDIX: NUMERICAL METHOD

The Stokes flow around thin elements such as thin rods is
often described by slender body theory. Utilizing the present
framework, they may also be described as in Eq. (3) by a line
integral of regularized Stokeslets with ε suitably chosen to
model the thickness of the line [19]. Instead of discretizing
f (x) over triangular elements, for example, we parametrize
f (x) on the spheres in terms of spherical harmonics and on
the lines with Legendre polynomials. On a sphere Si we thus
write

f
Si

j =
∞∑
l=0

l∑
m=−l

c
ij

lmYlm(φ,θ ), (A1)

where Ylm are the real spherical harmonics defined in terms of
the conventional spherical harmonics as

Ylm =
⎧⎨
⎩

Y l
m m = 0,

(−1)m
√

2 Im[Y l
m] m < 0,

(−1)m
√

2 Re[Y l
m] m > 0.

(A2)

And on line �i we write

f
�i

j =
∞∑

n=0

cij
n Pn(s), (A3)

where Pn is the nth Legendre polynomial. Equation (4) thus
becomes

u(x)j =
nS∑
i=1

∞∑
l=0

l∑
m=−l

cik
lm

∫ π

−π

dφ

∫ π

0
sin θ dθ

×Gjk{x − [r i + a y(φ,θ )]} Ylm(φ,θ )

+
n�∑

i=1

∞∑
n=0

cik
n

∫ 1

−1
ds Gjk[x − yi(s)]Pn(s), (A4)

where the Einstein summation is implied over k and

y(φ,θ ) =
⎛
⎝sin θ cos φ

sin θ sin φ

cos θ

⎞
⎠ (A5)

spans a sphere such that r i + a y(φ,θ ) is a sphere of radius a

centered on r i . The flagella lines are spanned by

yi(s) = �i + s + 1

2
di , s ∈ [−1,1], (A6)

where �i is the base position, d̂i its orientation, and |di | its
length. Truncating the spherical harmonic expansion at l = nY

and the Legendre expansion at n = nP , we have 3nS(1 +
nH )2 + 3n�(nP + 1) unknown coefficients to determine. The
integrals must be evaluated numerically. Gauss-Legendre
quadrature enables exact numerical integration of polynomials
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and for other functions gives good approximations to the
integrals by ∫

f (s) ds 
∑

i

w�
i f (si), (A7)

where w�
i are weights associated with the quadrature points

si . Likewise, Lebedev quadrature enables exact numerical
integration of spherical harmonics. Thus, spherical integrals
can be numerically approximated as∫∫

f (φ,θ ) sin θdθdφ 
∑

i

wS
i f (φi,θi), (A8)

where wS
i are weights associated with the quadrature points

(θi,φi). The numerical schemes become exact if f can be
expanded precisely up to some order by using an appropriate
number of quadrature points.

Neutrally buoyant microorganisms, of which choanoflag-
ellates are good approximations, are furthermore force and
torque free. Therefore,

nS∑
i=1

∫
Si

f Si (x) dS +
n�∑

i=1

∫
�i

f �i (x) d� = 0, (A9)

nS∑
i=1

∫
Si

x × f Si (x) dS +
n�∑

i=1

∫
�i

x × f �i (x) d� = 0. (A10)

These equations set the swimming velocity U and rotational
velocity � such that swimming drag forces and torques

precisely cancel the propulsive ones. In the frame of reference
of the swimming organism we thus add to Eq. (A4) the
term (U + x × �)j = U j + εjpq xp �q , where εjpq is the
Levi-Civita symbol. In terms of the coefficients {c}, Eq. (A9)
becomes

2
√

π

nS∑
i=1

c
ij

00 + 2
n�∑

i=1

c
ij

0 = 0 (A11)

and Eq. (A10) becomes

nS∑
i=1

εjpq

[
2
√

π (r i)pc
iq

00 + 2a

√
π

3
c
iq

1,m(q)

]

+
n�∑

i=1

εjpq

{
[2(�i)p + (di)p]ciq

0 + 1

3
(di)pc

iq

1

}
= 0,

(A12)

where m(1) = 1, m(2) = −1, m(3) = 0.
By choosing the same of number collocation points {xi}

for evaluating the velocities {u(xi)} as the total number of
coefficients {c}, the linear system of equations can be solved for
{c}, U , and �. By exploiting orthogonality, we could expand
u on the spheres and lines in terms of spherical harmonics and
Legendre polynomials, respectively. However, for the systems
considered here the computational bottle neck is the Gaussian
quadratures, the number of which would be squared if this
method were employed.
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