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In unicellular �agellates, growing evidence suggests control over a complex repertoire of swimming
gaits is conferred intracellularly by ultrastructural components, resulting in motion that depends
on �agella number and con�guration. We report the discovery of a novel, tripartite motility in an
octo�agellate alga, comprising a forward gait (run), a fast knee-jerk response with dramatic reversals
in beat waveform (shock), and, remarkably, long quiescent periods (stop) within which the �agella
quiver. In a reaction graph representation, transition probabilities show that gait switching is only
weakly reversible. Shocks occur spontaneously but are also triggered by direct mechanical contact.
In this primitive alga, the capability for a millisecond stop-start switch from rest to full speed
implicates an early evolution of excitable signal transduction to and from peripheral appendages.

In his De Incessu Animalium Aristotle had thus de-
scribed the walk of a horse [1]: �the back legs move di-

agonally in relation to the front legs, for after the right

fore leg animals move the left hind leg, and then the left

foreleg, and �nally the right hind leg.� The control mech-
anism of leg activation was unknown to Aristotle, but
is now understood to arise from `central pattern gener-
ators' [2, 3], which produce electrophysiological signals
(action potentials) that drive limbs in a range of spa-
tiotemporal symmetries. While microorganisms achieve
motility through microscale analogues of limbs called cilia
and �agella, absent a nervous system the mechanism of
control must be quite di�erent. Nevertheless, species of
unicellular algae are capable of executing patterns of �ag-
ellar beating akin to the trot and gallop of quadrupeds
[4]. In these cases, the extent of intracellular control of
appendages is becoming increasingly evident [4�7].

Here, we detail the discovery of a surprising motility
in the octo�agellate marine alga Pyramimonas octopus

(Fig. 1). Swimming requires coordination of eight �ag-
ella in a pseudo-breaststroke, in which diametrically op-
posed pairs beat largely in synchrony. We �nd that this
forward run gait can be interrupted by abrupt episodes
involving dramatic changes in �agella beating � here-
after termed shocks, which occur spontaneously but can
also be induced by external stimuli. Cells also display a
distinctive stop gait which can be prolonged, where cell
body movement is stalled but yet the �agella quiver with
minute oscillations. P. octopus belongs to a fascinat-
ing group of unicellular algae bearing 2k �agella, which
substantiates a delicate interplay between passive �uid
mechanics and active intracellular control in the coordi-
nation of multiple �agella [4]. Compared to bacteria, the
larger size of these algae facilitates visualization, allow-
ing us to demonstrate how �agellar beating leads directly
to gait-switching and trajectory reorientation, and to ex-
pose the excitable nature of the eukaryotic �agellum.

Cell cultures were obtained from the Scandanavian
Collection of Algae and Protozoa (SCCAP K-0001, P.

octopus Moestrup et Aa. Kristiansen 1987), and grown
in Guillard's F/2 medium under controlled illumination
(14:10 day/night diurnal cycle, at 22◦C). Cells are ob-
long or rectangular in aspect (Fig. 1), with length
(17.05 ± 1.74 µm) and width (9.05 ± 1.23 µm). In their
vegetative state cells have 8 �agella, each of length com-
parable to the longitudinal dimension of the cell body,
which emerge radially from an apical grove [8]. Imag-
ing was conducted under white light illumination on an
inverted microscope (Nikon Eclipse TE2000-U) and high-
speed recordings made at up to 3000 fps (Phantom v311,
Vision Research). Organisms were harvested during ex-
ponential growth (at 104−105 cells/cm3), and 50−150 µl
of suspension were pipetted gently into shallow quasi-2D
chambers (top + bottom: glass, side: Frame-Seal slide
chambers � BIO-RAD) for imaging and precision cell and
�agella tracking via custom Matlab algorithms and Im-
ageJ extensions � see Supplemental Materials (SM). We
ensured cell viability by minimizing environmental stress
responses: acclimating cells prior to observation, and lim-
iting continuous light exposure to . 15 minutes.

When swimming freely, cells spin about their long axis.
Restricting to individuals traversing the focal plane, we
can observe the �agella distinctly. The run, shock, and
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FIG. 1. Pyramimonas octopus. (a) Side and (b) top views
(�agella spiral clockwise). Eyespot visible as conspicuous or-
ange organelle. (Scale bar: 5 µm.)
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FIG. 2. Three gaits of P. octopus. (a) Cell viewed from the top (side) during stop (run, shock) gaits. Flagella traced from
successive frames are overlaid onto optical �ow maps following iso-intensity pixels (pixel �ow rate scales with activity). (b)
Transition from stop to run occurs via a shock, with rapid changes in speed v and alignment D (`pusher' to `puller' transition,
shaded = 1 standard deviation). (c) Gaits, and the phase trajectories that connect them, are con�ned to speci�c regions of v-λ
phase space. (d) Top row: sequence of changes in �agellar beating and cell orientation, plotted here on two timescales (coarse
10 ms, �ne: 5 ms). Bottom row: ellipses � cell body, arrows � cell orientation êR (red), direction of motion v̂ (green).

stop gaits (Fig. 2a) are coincident with the three ma-
jor modes of beating, respectively (ciliary, �agellar, and
quiescent) [9]. Changes in �agellar activity produce gait
transitions. However, unlike their bacterial counterparts,
eukaryotic �agellar beating is not due to basal rotors
but rather a coordinated action of dyneins distributed
throughout the axoneme [10]. Forward swimming in P.

octopus arises from ciliary beating (`puller'), but dur-
ing shocks all eight �agella are thrown abruptly in front
of the cell where they undulate in sperm-like fashion
(`pusher'). Signi�cant hydrodynamic interactions syn-
chronize the �agella during shocks. These `knee-jerk'
reactions last only 20 − 30 ms, and are related to the
escape response of Chlamydomonas and Spermatozopsis.
The latter is triggered by intense photo- [11, 12] or me-
chanical stimuli [13], but last much longer (0.2 − 1.0 s)
and do not occur spontaneously. The stop gait has no
equivalent in the repertoire of green algae studied so far.

We focus on the stereotypical sequence stop ⇀ shock

⇀ run: a cell initiates a run from rest via a shock (Fig.
2b). De�ning the instantaneous alignment D = v̂ · êR be-
tween the swimming direction v̂ and the cell body axis
êR, the puller-like run (D = 1) may be distinguished
from the pusher-like shock (D = −1). Averaged over 10
cells, the translational speed rises rapidly from zero to a
maximum of 1, 712±392 µm/s, but relaxation to a mean
run speed of 428± 64 µm/s takes ∼ 0.05 s. To separate
the �agellar motion from body orientation, we track two
dynamically morphing boundaries that are delineated by

image intensity: an inner one for the cell body, and an
outer one exterior to the �agella (SM). The lengthscale

λ(t) =

∥∥∥∥∑x∈B\A x/|B\A|−
∑

x∈A x/|A|
∥∥∥∥, measures the

physical separation between the �agella and the cell body
proper, where || · || is the Euclidean norm, | · | the cardi-
nality of a set, and A, B are pixels interior of the inner
and outer boundaries respectively. Naturally, cells at rest
exhibit minimal shape �uctuations. In Fig. 2c, the three
states (realized at instants t = t1, t2, and t3), localize to
speci�c regions of phase-space. Averaging over multiple
events, bifurcations from stops to runs via shocks appear
as loops with two distinct branches, one involving rapid
changes in speed, and the second in shape (Fig. 2c).
To estimate the transition probabilities between gaits,

we implemented a continuous time Markov model, where
the instantaneous speed v was discretized to automate
a three-state classi�cation from the empirical tracking
data (Fig. 3a). The state variable X(t) takes the values
{0 = stop, 1 = run, 2 = shock}. The transition rate
matrix Q = {qij}, de�ned by qij = lim∆t→0 P(X(∆t) =
j|X(0) = i)/∆t for i 6= j (a time-homogeneous Markov
process), and qii = −

∑
j 6=i qij , was estimated to be:

Q =

stop run shock stop −0.132 0.008 0.124
run 0.281 −1.329 1.049

shock 0 19.77 −19.77

(for details, and 95% con�dence intervals, see SM).
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FIG. 3. Gait transitions. (a) Instantaneous speed v(t) is partitioned into three states (0: stop, 1: run,. 2: shock). Peaks, at
downward triangles, correspond to shocks. (b) Permissible gait bifurcations are indicated by arrows (weighted by transition
probability). (c) Probability density distribution of speeds indicates proportionality of dwell times in each state. (d)-(f)
Trajectories of 3 characteristic transition sequences. (g) Superimposed and averaged v-timeseries exhibit pulse-like maxima
when shocks are involved, but much longer decay if converting from runs to stops. Inset: histogram of track durations.

In total, O(104)s of cumulative recordings (individual
track durations 0.5 − 80 s) were analysed, from which
1, 377 distinct pairwise transitions were obtained from
233 cells. Waiting times were estimated from diagonal
entries −1/qii: stop: 7.60 ± 0.75 s, run: 0.75 ± 0.03
s, shock: 0.05 ± 0.002 s (uncertainties are std. errors).
The process admits an embedded Markov chain for dis-
crete jump times, with entries {kij , i 6= j} analogous to
chemical reaction rates, which represent the probabil-
ity of transitioning from i → j conditioned on a tran-
sition occurring (

∑
j kij = 1, ∀i). Here kii = 0 (no

self-transitions), and k01 = 0.0582, k02 = 0.9418, k10 =
0.2112, k12 = 0.7888, k20 = 0 and k21 = 1.0000 (Fig. 3b).
Every state is positive recurrent and the process is irre-
ducible. While run 
 shock bifurcations occur readily,
the direct reaction shock ⇀ stop is not possible. The
network is weakly reversible, not reversible [14], and de-
tailed balance is clearly violated (as is the Kolmogorov
�ux criterion: k01k12k20 6= k02k21k10). The model pre-
dicts an equilibrium distribution π(stop, run, shock) =
(0.6666, 0.3126, 0.0208). From a histogram of speeds (for
a larger dataset which also includes tracks with no transi-
tions), we estimated the relative dwell times in each state:
(68.6%, 30.8%, 0.6%), according to cut-o�s of 0 ∼ 40,
40 ∼ 500, > 500 µm/s (Fig. 3c), which is similar to {πi}:
with discrepancies arising due to subjectivity in choice of
cut-o�, and prevalence of short-duration tracks.
Gait-switching can greatly a�ect free-swimming tra-

jectories. Fig. 3d-f zooms in on three primary sequences
permitted by Fig. 3b: run⇀ shock⇀ run, stop⇀ shock
⇀ run, and run ⇀ stop. Typically for photosynthetic

unicells, forward swimming is helical with a variable pitch
superimposed onto self-rotation. Tracks comprise low-
curvature portions due to runs, and sharp turns due to
rapid conversion of �agellar beating and transient rever-
sal during shocks (Fig. 2d). Canonical runs decelerate
from ∼ 400 µm/s to full-stop, by sequentially deactivat-
ing subsets of �agella (SM), the ensuing torque imbal-
ance gradually increases track asymmetry and curvature
(Fig. 3f). Gait-switching requires two very disparate
timescales (Fig. 3g): an ultrafast, millisecond, timescale
for bifurcations to and from shocks, but a much slower
one for entry into stop states. The former is reminiscent
of neuronal spiking while the latter is akin to decay of
leakage currents. For the �rst two sequences, the mean
is well-�t to a sharply peaked Gaussian (σ = 8.6 ms, 11.6
ms respectively), whereas run to stop conversions follow
a switch-like pro�le A tanh [(x− x0)/τ ] with τ = 640 ms.
The stopped state can be maintained for up to minutes,

before the next restart (Fig. 4). While cell body motion
is negligible (sub-pixel variance in centroid displacement:
σδC = 0.0253 µm), signi�cant �agellar activity persists
(SM and Movie). More surprisingly, we deduce using
optical analysis that �agellar tip �uctuations can even be
oscillatory! This highly unusual mode may be related to
(the much faster) hyperoscillations of reactivated sperm
�agella, where the noisy dynamics may be signatures of
individual dynein oscillations [15]. Emergence of global
limit-cycle oscillations in the �agella is Hopf-like.
In addition to e�ecting directional reorientation and

sensing [16], the shock gait serves another key phys-
iological function: to enable avoidance of obstacles
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FIG. 4. Arrested, yet still `beating'. a) Cell boundaries (with
or without �agella) in the stop state are tracked. b) The un-
wrapped �agellar envelope exhibits µm-�uctuations. Travel-
ling waves, inferred from image intensity changes, propagate
outwards from base to tip (inset). c) Centroid �uctuations
are sub-pixel, random, but �agellar tips display robust oscil-
lations (e.g. �agella 4,5). Later, activation of full-amplitude
beating occurs simultaneously in all �agella (shock).

upon direct mechanical contact. Compared to Chlamy-

domonas, whose �agella display a certain load-response
[6, 13, 18, 19], P. octopus possess a much heightened
mechanosensitivity, where the same downstream path-
ways leading to spontaneous shocks can be activated by
touch, to produce stimulated shocks that are identical
in morphology and dynamics to those described earlier
(Fig. 2,3). Fig. 5 shows an example of a moving cell
colliding with a cell at rest: cell 1 contacts cell 2 multiple
times but triggers a shock in cell 2 only when the per-
turbation is large enough. For a non-beating �agellum

b) A

B

a)

cell 1
cell 2

attempt 1: fail attempt 2: success
cell 1

cell 2

cell 1

cell 1

cell 2

cell 2

FIG. 5. Mechanosensitivity: a direct cell-cell collision. a)
Contact with only one �agellum is su�cient to trigger a shock,
depending on stimulus strength. b) Cell 1 (at A) approaches
an initially stationary cell 2 (at B), induces shock in the latter.

with bending rigidity EI = 840 pNµm2 [17] we estimate
the contact force F = 3EI · δ/L3 from the measured tip
de�ection in the two cases: fail: ∼ 3.0 pN, success: ∼ 6.6
pN. Signal tranduction from the distal point of contact
must have occurred within milliseconds.

The unusual motility of P. octopus is a signi�cant de-
parture from known classical strategies. Peritrichous en-
teric bacteria rotate rigid �agellar helices one way or
another to cause runs and tumbles, producing a two-
state, paradigmatic strategy for prokaryotic chemotaxis
and gradient sensing based on stochastic switching be-
tween directed swimming and random reorientation [20].
The freshwater alga C. reinhardtii displays a eukaryotic
version of this, swimming an in-phase breaststroke [21�
23] but turning sharply when bi�agellar synchrony is lost
(`phase drift') [24]. Other bacteria species adopt alterna-
tive strategies [25�27], e.g. the monotrichous V. cholerae
undergoes a run-reverse-�ick motion where �agellar hook
elasticity is key. Contrastingly, the mechanism of enslave-
ment of P. octopus swimming to its �agellar dynamics is
neither due to motor reversal at the base of the �agellum
(as in E. coli) nor to loss of bi�agellar synchronization
(as in C. reinhardtii), but rather to a total conversion of
beating waveform along the �agellum axoneme proper.

These algae o�er rare insight into the bifurcations be-
tween di�erent modes of beating in the same organelle.
Identifying principal modes of beating (ciliary, �agellar,
or quiescent) with (run, shock or stop) states, we adopted
a natural framework that is liberated from assumptions of
speci�c prototypical gaits (breaststroke, trot, etc). Pat-
terns of �agellar actuation even during `run' phases are
diverse and species-speci�c [4], and environmental stim-
uli can elicit further changes [18, 30]. The P. octopus

shock, while identi�able with the stimulus-induced (light,
mechanical) avoidance reaction of C. reinhardtii and S.

similis, is importantly only one component of a tripartite
repetoire, is more than an order of magnitude shorter
in duration, and occurs spontaneously. Our three-state
classi�cation therefore does not purport to incorporate
the totality of gaits but rather sheds new light on the
physiology of gait control. By exploring the statistics of
gait transitions, we demonstrated that the gait-switching
process, and not just �agellar beating itself [31], operates
far from equilibrium � thereby providing a route to en-
hanced biological sensitivity [32].

The discoveries that �agellar activity in P. octopus ex-
hibits rapid activation but slow deactivation, and that
apparently quiescent �agella undergo small-amplitude os-
cillations, have great implications for beat emergence
and motor coordination in eukaryotic �agella [28�30].
The millisecond shock timescale facilitates rapid removal
from predators or obstacles, analogously to the escape re-
sponse of ciliates [11]. More generally, depending on the
species, �agella type, and number, the ways of achiev-
ing motion, no motion, or change of motion are diverse.
The purple bacterium B. photometrium has a sudden
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light-induced reaction (the Schreckbewegung reaction, or
`fright movement') [33], whereas sensory inputs that in-
hibit/enhance the �ring rate of a `twiddle generator' [34]
can alter the directionality of bacterial �agellar motors.
The cilia of a more advanced phyllum � ctenophores � rely
on neurons to switch between oscillatory/non-oscillatory
states [35]. As important sensory appendages in animals
[13, 36], rapid transduction of signal must likewise be
an essential attribute of mammalian cilia. Thus, in a
very primitive unicellular alga, we may have found an
evolutionary precedent for the kind of rapid signalling
from a distance that, billions of years hence, would come
to characterize the key physiological functions of mam-
malian cilia.
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the Wellcome Trust (REG).
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In the following, we give further details of some of the
techniques and analyses employed in the main text.

1. A pusher-puller transition

For free-swimming microalgae, the motion of the cell
is tightly coupled to the motion of the flagella [2, 3]. Our
results show that sharp reorientations in swimming tra-
jectories in P. octopus are elicited by dramatic conver-
sion of flagellar beating waveforms. Cells have a well-
defined length-width aspect ratio β which we determined
from a large sample population O(100) of cells to be
β = 1.9± 0.2.

Importantly β 6= 1 which allows us to distinguish the
longitudinal and transverse directions of an organism
moving in the focal plane. The anterior and posterior
poles are defined by the user on frame t0 of each movie,
but tracked automatically thereafter.

t = t0 t = t0

FIG. S1. Cell orientation versus direction of swimming: the
puller-pusher dichotomy.

For a given trajectory, we obtain 2D coordinates for the
anterior Ai(t), posterior Pi(t), and centroid of the cell
Ci(t), at discrete times indexed by t0, t1, t2, · · · , (∆t =
tj+1−tj). From this we take the instantaneous swimming
direction v̂ and the instantaneous orientation êR to be

v(tj) =
C(tj+1)−C(tj−1)

2∆t
(1)

eR(tj) = A(tj)−P(tj) (2)

and define v̂ = v/||v||, êR = eR/||eR||.

In Figure S1 the two quantities are plotted following
the same trajectory, starting at t = t0, which shows a
cell switching from a backward swimming, pusher-like
shock gait to a forward, puller-like run gait. The recov-
ery from a flagellar to ciliary beat is concomitant with
a continuous modulation of the swimming direction. At
this magnification (63x water immersion objective, Zeiss
Plan Apochromat), we see that v̂ is everywhere tangent
to a helical run trajectory (due to self-rotation).

2. Tracing moving boundaries

At sufficiently high magnification, it is possible to dis-
tinguish the cell body from the flagella bundle. For this,
we take advantage of the differences in image intensity
features between the cell body and flagella. The algo-
rithm was written in Matlab with the aid of the Image
Processing Toolbox (version 9.5).

Fig. S2 shows the morphing outer boundary of the or-
ganism (exterior of the flagella) as it transitions from a
stopped state (red), undergoes a shock response (amber),
before moving off in a new direction (green). The exte-
rior boundary was detected from the raw intensity image
using the Sobel method (Fig. S2b) and by morphological
dilation and erosion of the edge-like features, as required
(Fig. S2c). Further, to detect the inner boundary (cell
body only), we restrict to and quantize the sub-image
bounded by this external border (Fig. S2d) into a darker
central region and peripheral pixels that are not part of
the background. Finally, the image is binarized, selecting
only the central region (Fig. S2e).

3. Transition Probabilities between states

The instantaneous swimming speed (v(t) = ||v(t)|| de-
fined above) is an efficient means of segregating the ob-
served dynamics into the three states of interest. A com-
bination of signal processing criteria (e.g. filtering by
minimum peak height, minimum peak to peak separa-
tion etc) was used to convert a typical v−timeseries (e.g.
Fig. 3a) into a discretized signal that takes on only one
of three values: 0 = stop, 1 = run, 2 = shock.
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FIG. S2. a) The flagellar envelope is traced for a cell starting from a stopped state. Arrows follow the direction of motion of
the cell body. The processing algorithm devised for delineating the inner and outer cell boundaries, is summarized in b-e). and
in turn used for computing λ (Fig. 2c, main text).

FIG. S3. A sample track showing discrete transitions between three states (0 = stop, 1 = run, 2 = shock), is obtained by
discretizing the instantaneous cell swimming speed.

Model formulation In order to analyse the likelihood
of gait-switching, we shall model the underlying stochas-
tic process generating the empirical data as a continu-
ous time, discrete space Markov chain for states X(t) ∈
{0, 1, 2}. In realityX is measured at a succession of times
discretized by imaging frame-rate, which we assume to
be sufficient to provide the necessary temporal resolu-
tion. Multiple tracks are then sampled to obtain lon-
gitudinal data in the form {Xmn,m = 1, 2, . . . , N, n =
1, 2, · · · ,mN}, for a total of N -tracks corresponding to
different cells, and in which each track m is observed for
mN frames.

Next, we wish to compute the transition intensity

qij(s, t) = lim
s→t

P(X(t) = j|X(s) = i)

t− s
, (3)

which represents the risk of qij of moving into state j at
time t starting from state i at time s. We shall assume
the Markov property, that is for t0 < t1 < · · · < tn,

P(X(tn) = in|X(t0) = i0, · · · , X(tn−1) = in−1) (4)
= P(X(tn) = in|X(tn−1 = in−1) ,

and that the process is homogeneous: P(X(t) =
j|X(s) = i) = P(X(t − s) = j|X(0) = i) =: pij(t −
s). The instantaneous probability distribution Pi(t) =
P(X(t) = i)) (

∑
i Pi(t) = 1) is then completely deter-

mined by the initial distribution p0 = Pi(0) and the in-
finitesimal transition rate matrix Q = {qij}. Off diagonal
entries qij > 0 for i 6= j are are given by eqn (4), while
diagonal entries

qii = −
∑
j 6=i

qij .

The transition matrix P = {pij} satisfies the Chapman-
Kolomogov equations pij(s, t) =

∑
k pik(s, u)pkj(u, t),

and the matrix differential equation dP/dt = P (t)Q (for-
ward equation), with solution

P (t) = exp(Qt) =

∞∑
k=0

Qktk

k!
. (5)

Defining the sequence {Tn}n∈N of jump times

Tn+1 = inf{t ≥ Tn|X(t) 6= X(Tn)} , (6)
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then the sojourn times Sn = Tn−Tn−1 are exponentially
distributed with rate λ = −qii, i.e.

P(Sn ≤ t) = 1− exp(qiit) ,

and moreover this new state is j 6= i with probability

lim
h→0

P(X(t+ h) = j|X(t) = i)

P(X(t+ h) 6= i|X(t) = i)
= −qij

qii
. (7)

Then the stochastic matrix given by:

p̃ij =


1 (qi = 0; j = i)

0 (qi = 0; j 6= i)

−qij/qii (qi 6= 0; j 6= i)

0 (qi 6= 0; j = i)

(8)

defines a transition matrix for an embedded Markov
chain, where the p̃ij are the probabilities that given a
transition occurs, the state moves from i to j. The em-
bedded chain has no self-transitions.

Recall that a finite-state irreducible Markov chain is
positive recurrent, so in this case we expect a unique
stationary distribution π to exist, and to satisfy:

lim
t→∞

P (t) = 1π .

The process is time-reversible iff it is in detailed balance

πiqij = πjqji

Results We sampled a total of N = 233 tracks each
containing at least one transition event, with mean track
duration 11.5 s and maximum track duration 78.2 s. The
data is reshaped so that there is only one row per tran-
sition, corresponding to observations for a given cell.
Next we sub-sample so that only jump-times are re-
tained {Xmnk

: tnk
corresponding to jump times Tmk } in

the sense of eqn (6). A total of 1377 pairwise transitions
were observed, with the following frequencies

stop run shock stop 0 0.005 0.070
run 0.085 0 0.317
shock 0 0.523 0

The data was fitted to the above Markov state model
using the R-software package msm [1] to obtain maximum
likelihood estimates for unknown parameters. Let {Ti}
be the total time the process is observed in each state,
Ni the total number of observed transitions from state i,
and Nij the number of transitions from i to j. We can
use eqn (7) to initialize the Q-matrix, where Nij/Ni is an
estimate for −qij/qii and Ti/Ni can be used to estimate
the mean waiting time in state i (expected to be −1/qii).
Thus, q̂ij = Nij/Ti.

The following Q-matrix was obtained (together with
95% confidence intervals)

stop run shock stop −0.13166 (−0.159709,−0.10854) 0.00767 (0.003446, 0.01707) 0.12399 (0.101617, 0.15129)
run 0.28075 (0.234222, 0.33652) −1.32937 (−1.444803,−1.22315) 1.04862 (0.954768, 1.15169)
shock 0 19.76936 (18.376811, 21.26743) −19.76936 (−21.267428,−18.37681)

(9)

We can also compute the transition matrix P (t), which
estimates the transition probabilities at different times.

P (0.01) =

stop run shock stop 0.9987 0.0002 0.0011
run 0.0028 0.9878 0.0095
shock 0.0003 0.1782 0.8215

(10)

P (0.1) =

stop run shock stop 0.9870 0.0074 0.0055
run 0.0267 0.9299 0.0434
shock 0.0152 0.8163 0.1685

(11)

P (1) =

stop run shock stop 0.8902 0.0992 0.0106
run 0.2201 0.7389 0.0410
shock 0.2109 0.7477 0.0414

(12)

where time is measured in units of seconds, and stochas-

tic matrices are truncated to 4 decimal places. The
above has interesting interpretations, for instance the
shock state is confirmed to be the most transient, since
the probability of arriving from a shock state to another
shock state drops from 0.8215 at time t = 0.01 s down to
0.1685 at t = 0.1 s.

As t→∞, the rows of P converge to:

π(stop, run, shock) = (0.6666, 0.3126, 0.0208) .

The MLEs for diagonal entries q̂ii, by the Markov as-
sumption, give estimates (together with standard errors)
for the mean waiting time in state i:

{E(Ti) =− 1/q̂ii}(stop, run, shock)
= (7.60± 0.75, 0.75± 0.03, 0.05± 0.002) .

Futhermore, the transition matrix for the embedded
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Markov process [eqn (8)] is given by

q̃ij =

stop run shock stop 0 0.0582 0.9418
run 0.2112 0 0.7888
shock 0 1.0000 0
/, .

Finally, we estimate the relative time spent in each
state within a certain time window (t0, t1), here taken
to be 10 s, coincident with the average duration of an
observed track. Note this is different from the expected
waiting times – which considers only single stays. For

1

t1 − t0

∫ 10

0

P (t) dt = (stop : 0.71, run : 0.27, shock : 0.02) .

In the long time limit as t1 − t0 → ∞ we recover the
stationary distribution πi.

4. An(other) example of a single-cell trajectory

A cell experiencing multiple shocks in quick succession
makes several sharp turns (Fig. S3). Given a 2D set
of trajectory coordinates r(t) = (x1(t), x2(t)) obtained
from tracking of cell centroids, we measure instantaneous
speeds v = ||v(t)|| as before (recall Eqn. 1). Writing
v(t) = v(cos(θ), sin(θ)), we define the angular speed |ω|
(where |.| denotes absolute value):

ω(t) =
1

2∆t
(θ(t+ ∆t)− θ(t−∆t)) .

However, the orientation variable θ(t) is especially sensi-
tive to noise, and derivative computations become prob-
lematic at high frame rates.

We resolve this problem by obtaining a track simplifi-
cation via a recursive Ramer-Douglas-Peucker algorithm
[4] with a relative tolerance of 0.5/γ, where γ is the cal-
ibration for the number of µms per pixel on the image
frame. Briefly, the algorithm recursively removes points
that lie within the given tolerance of the line defined by
the end points obtained from the previous iteration. The
output polygonal line is then a simplification of the orig-
inal trajectory, with the advantage that sharp disconti-
nuities are usually preserved. ω can then be determined
from the simplified track (Fig. S5).

5. Velocity pulse alignment

A few additional comments are in order regarding the
signal alignment procedure used in Fig. 3g. In each
case, the alignment must be determined relative to a
well-defined feature of interest. The first two sequences
(run ⇀ shock ⇀ run or stop ⇀ shock ⇀ run) contain
shock events, which correspond to highly reproducible

FIG. S4. The cumulative effect of shocks on swimming tra-
jectories.

FIG. S5. Angular speed during shocks can reach several hun-
dred radians per second.

pulse-like signatures in the time series of speeds, which
provide a natural reference point. All signals are then
time-shifted so that the origin is at these local minima.
However, we should note that cells can undergo signifi-
cant out-of-plane reorientations during shocks so that the
maximum speed reached is highly variable. For instance
any centroid motion of a cell that reverses perpendic-
ularly to the focal plane will not be detected in a 2D
projection. Future work could seek to improve tracking
fidelity by extending the imaging to 3D.

In Fig. 3g, we focused on determining a common
timescale for shocks by rescaling the ith sequence by
vimax, that is, t = 0 where vimax = maxtmin≤t≤tmax v

i(t).
The most accurate estimate for the maximum speed
reached during shocks is 1, 712 ± 392m/s (see Fig. 2b),
accounting for only those individuals for whom shocks
occurred in the focal plane.

However there are no such peaks in run ⇀ stop tran-
sitions. Instead, we use the derivative of the velocity,
obtained by first filtering the signal with a lowpass filter.

FIG. S6. Alignment of velocities for run ⇀ stop transitions
using local maxima in acceleration. Peak deceleration occurs
at the time indicated by the asterisk.
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The decay response from run speed to full stop exhibits
a tanh-like or hyperbolic profile, centred about the time
point where the derivative is most negative (Fig. S6).

6. Flagellar activation versus flagellar deactivation

In the main text, we have discussed the separation in
timescales between a very fast activation and a much
slower deactivation. Here, we show further how activa-
tion generally involves simultaneous bifurcation to full-
amplitude oscillations but yet in the reverse process the
flagella do not stop beating at the same time.
Partial deactivation. A cell undergoing a run ⇀ stop

transition requires several seconds to slow down to rest
from full speed. The continuous convergence of θ(t) to a
fixed orientation angle is shown on Fig. S7. The trajec-
tory loops several times before terminating, as a result
of the torque imbalance produced by a subset of flagella
that would continue to beat well after the remainder have
already stopped.

FIG. S7. Evolution of orientation angle over time, with cor-
responding trajectory (inset).

Simultaneous activation. In Fig. S8 we follow the ex-
terior boundary traced by the flagella during a stop ⇀
shock transition. Within 20 ms, the boundary has mor-
phed from the red outline to the green. In particular, by
identifying peaks corresponding to the 8 flagella (from
unwrapped polar angle), we can obtain the trajectories
of each of the flagella tips during this process (dark blue
to light indicates increasing time coordinate).
Slow small-amplitude ‘oscillations’ . Finally, recall

that the eight flagella shown in Fig. 4 (main text), to
varying degrees, exhibit oscillations. To investigate if
there is global periodicity, Instead of measuring all pos-
sible permutations of interflagellar cross-correlations, we
consider the total area spanned by the flagellar envelope
(487 ± 9.88 µm), which fluctuates over time. The exis-
tence of a 12 ∼ 13 Hz oscillation is evident from the area
auto-correlation function Carea(τ) = 〈X(t)X(t+ τ)〉τ .
Oscillations in Carea(τ) is indicative of an intracellular
origin for the ‘globally’ quivering state – signalling to the

FIG. S8. Simultaneous activation of all flagella at shock onset.

flagella bundle collectively, as opposed to an intraflag-
ellar phenomenon occurring in a single flagellum only.

FIG. S9. Area fluctuations (a) and its auto-correlation func-
tion (b) for a cell observed during the stop state.

7. Captions for supplemental movies

MovieSM1 threesequences Examples of the three
primary sequences discussed in the text, namely run ⇀
shock ⇀ run, stop ⇀ shock ⇀ run, and run ⇀ stop.

MovieSM2 quiverandshock A cell observed dur-
ing the stop state. Despite no cell body motion, the flag-
ella continue to ‘quiver’. Remarkably, these fluctuations
are not random, but exhibit very small-amplitude, slow
oscillations.

MovieSM3 collision Stimulated initiation of a
shock reaction in a P. octpus cell, initially at rest, due to
mechanical contact with another cell.
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