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Inertially driven buckling and overturning of jets in a Hele-Shaw cell
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We study a fluid jet descending through stratified surroundings at low Reynolds number in Hele-Shaw flow.
The jet buckles and overturns inside a conduit of entrained fluid which supports smooth or unstable traveling
waves. A model of the recirculating flow within the conduit shows that buckling and waves arise from
Kelvin-Helmholtz instabilities and quantitatively accounts for the main experimental observations. Beyond the
onset of the instability, a damped, forced Burgers’ equation obtained from corrections to Darcy’s law for small
Reynolds number governs the interface dynamics and supports singularities corresponding to the observed jet
overturning and unstable waves.
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Fluid flow between parallel plates, the geometry of He
Shaw cells, is often considered a quintessential low Reyn
number system@1#. Yet, in the laboratory it is straightforwar
to achieve a Reynolds number~Re! of order 1 with conven-
tional fluids and relatively small plate spacings. This rais
the interesting possibility of investigating inertial effects in
controlled manner by varying the fluid viscosity, cell geom
etry, and gravitational forcing. Indeed, some of these iner
effects have been studied, such as irreversibility@2# and in-
stabilities in otherwise stable systems@3–5#.

A classic example of an inertial instability is the bucklin
of fluid jets, whose long history starts from the work of Ta
lor @6# and continues more recently@7,8# with jets sur-
rounded by air impacting on a surface. Variants of these p
nomena have geophysical@9#, astrophysical @10#, and
biological counterparts. Indeed, our primary motivation
the understanding of instabilities of descending jets
bacteria-rich fluid in bioconvecting suspensions@11#. We
study a simplified model of that system suggested
Kessler: the dynamics of saline jets descending throug
surrounding fluid with a linear salinity gradient. We find th
these jets gradually decelerate and buckle~Fig. 1!. Unlike
those mentioned above, our system is dominated by visc
shear. This case has been studied theoretically@12# for jets
surrounded by a fluid of uniform density. As a first approa
to understanding the full three-dimensional jet@13# we study
here the analogous effect in Hele-Shaw flow. As a funct
of the flow rate of the jet, we find experimentally a sup
critical bifurcation in which the amplitude of the buckled j
is the order parameter, and its oscillation frequency is fin
at onset. This buckling occurs within an entrainedconduitof
fresh water, a consequence of the surrounding density gr
ent. The existence and characteristics of this conduit con
tutes a nontrivial free-boundary problem which has not
been solved fully. Instead, we derive an approximate con
shape by proposing its existence and solving the Sto
equations under simplifying assumptions and constraints
key consequence of this analysis is a fluid velocity pro
consistent with the development of linear Kelvin-Helmho
instabilities of the jet and the conduit boundaries. We sh
that this quantitatively explains the major observed featu
of the buckling. To describe the nonlinear behavior of the
within the conduit, specifically its secondary instabiliti
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~Figs. 2 and 3!, we discuss a generalization of Darcy’s law
include weak inertia, expressing the results through coup
partial differential equations for the vortex sheet strengthg at
the interface between the two fluids and the position of
interface itself, by analogy to the approach for the invisc
case of Pugh and Shelley@14#.

The only significant optical distinction between the j
and surrounding fluid is a small difference in their indices

FIG. 1. A 1 M/l jet descending into a gradient 0.04 M/~l cm! at
velocities from 0.02 to 0.18 cm/s. Scale is 1 cm.
©2003 The American Physical Society05-1
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refraction. This feature makes the flow patterns observa
best with a technique such as Schlieren imaging that is s
sitive to gradients of refractive index. Our Schlieren syst
is in the standard ‘‘Z’’ configuration, with video images ac-
quired from a digital charge-coupled device~CCD! camera
under computer control@15#. The Hele-Shaw cell consists o
two 30330 cm polycarbonate sheets 12.7 mm thick, se
rated by a rubber gasket 3 mm thick. A needle with inter
diameter of 0.05 cm~25 ga! at the top of the chamber is th
entry point for the jet. Two needles inserted through po
~Instech Labs, PMINP-SIL-C35! mounted at the bottom o
one of the plates are the entry points for the fluid surrou
The jet is forced into the chamber with a syringe pump dr
ing a gas-tight glass syringe. We shall use the average fl
velocity u at the needle associated with the pump-control
flux as our control parameter. Velocities range from 0.02 t
cm/s. Solutions were made from reverse osmosis puri

FIG. 2. Waves at the conduit edge just below the nozzle, a
velocity u51.5 cm/s@uc , for the same jet molarity and gradient a
in Fig. 1. The buckled region of the jet further down is not show
Upper sequence—growth and subsequent decay~white circles!;
lower sequence—unstable growth. Images are 0.8 s apart; scal
is 0.5 cm.

FIG. 3. Buckling and overturning of a jet descending through
gradient, with parameters as in Fig. 1 andu50.3 cm/s. Images are
0.66s apart; scale bar is 1 cm.
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water and reagent-grade NaCl~Sigma!, with a diffusion con-
stant ofD51.531025 cm2/s @16#. Linear salinity gradients
were produced by a variant of the well-known ‘‘two-bucke
method in which the fluid flow was controlled by peristalt
pumps. A typical gradient is 0.04 M/~l cm! (0.024 g/cm4)
and has a concentration of 1.0 M/l at the bottom and 0 M/
the top, with a maximum variation in the index of refractio
of about 0.01@16#. Jet concentrations of 1–2 M/l were in
vestigated. For the above values ofu, the Reynolds numbe
of the jet ~naturally calculated asuw/n), wherew the jet
diameter andn50.01 cm2/s the kinematic viscosity of water
is in the range of 0.03–3.

As shown in Fig. 1, at low flow velocities the jet i
straight, disappearing by diffusion at a termination length,
which increases with flow rate. For each gradient and
molarity there is a critical velocityuc above which the jet
buckles and, grows more slowly. The density of the jet i
this figure equals the fluid density at thebottomof the cham-
ber, so its termination at a small fraction of the depth of t
gradient indicates that it loses salt through diffusion. S
diffusion across w occurs on a time scaletD;w2/D
;170 s, while, at the lowest flow rates the advection timeta
for a fluid element to traverse the length,;2 cm is ta
;,/u;100 s. Clearly, there is sufficient time for appr
ciable diffusive broadening to occur, as seen in the figure

At all flow rates we find that the jet, whether straight
buckled, is traveling inside a conduit whose edges can
clearly seen in Figs. 1–3. Near the nozzle the conduit fla
upward away from the jet, narrows to a minimum somew
below the nozzle, and then increases steadily downw
When the jet buckles, its amplitude maxima always appro
the edges of the conduit as they travel downward. Observ
the motion of tracer particles (10mm hollow glass spheres
Potters Industries!, we determined that the conduit consis
of essentially fresh water viscously entrained from above
the jet to the point at which buoyancy drives it upward alo
the conduit edge. Evidence for recirculation within the co
duit can clearly be seen at large flow rates, when wave
excitations~‘‘ blips’’ ! ~Fig. 2! travel up the edge@9#.

Beyond the critical velocity we see a classical bifurcati
scenario as mentioned earlier. This is shown in Fig. 4, wh
we have recorded the amplitude, frequency, and initial wa
length as a function ofu for a particular gradient and je
density. The amplitude~measured for the wave farthest fro
the nozzle, where the conduit has saturated! and frequency
data are consistent with a supercritical Hopf bifurcatio
Over a wide range of flow rates beyonduc the jet maintains
its thickness as it descends, and its wavelength decrea
Beyonduc and with increasing nozzle velocity the buckle
jet amplitude either transiently grows and then decays
ward the termination point or a secondary instability dev
ops as the jet continues to grow and eventually overtu
~Fig. 3!. Because the density difference between the con
and the surrounding gradient decreases with height, so
the fluid velocity at the conduit edge likewise decreases
similar effect occurs with the blips: they either transien
grow and then decay or continue to grow and eventua
form a separate plume~Fig. 2!. The periodicity of these
waves appears to coincide with the buckling frequency of

a

.

bar

a

5-2



an
o

ow
je
it

ud
t
g

e
al
nt
lo

is

n
o-
-

,
vi
tw
in
o

xi
t

in-

t a

the

in

e
e
al
e

ant
t
KH

.
ar
ta-
to
r-

en-

r-

-

tain

4

t

INERTIALLY DRIVEN BUCKLING AND OVERTURNING . . . PHYSICAL REVIEW E 68, 056305 ~2003!
jet far below the region shown. There are corresponding ‘‘
tiblips’’ on the jet itself that travel downward and may als
grow so large as to detach.

A three-dimensional model of the conduit shape at l
Reynolds number leads to a quantitative explanation of
buckling as a Kelvin-Helmholtz instability. Since the condu
size varies on a scale large compared to its width, we st
as a first approximation athree-fluidmodel consisting of a je
of densityr j and widthw surrounded by an upward-flowin
fresh-water conduit~densityr0 and widthwc), in turn sur-
rounded by a denser outer fluid (rs), all with uniform den-
sities and only vertical velocitiesu. Fixing the three densities
and the jet width, we determine numerically the single fr
parameterwc by the simple hypothesis of zero total vertic
flux. The shape of the conduit in the presence of a gradie
then deduced by taking these results and parametrically p
ting the conduit width versus vertical density difference.

For rectangular channel geometry, with the piecew
constant density described above, we first solveh¹2u
5gr(x) using Green’s function and then averageu over the
gap width to obtainū, the reverse order of that used whe
applying Darcy’s law. This yields a continuous velocity pr
file, such as that in Fig. 5~a!, which corresponds to the ex
perimental case in which the gap spacingd is comparable to
the jet width. The associated conduit, shown in Fig. 5~b!,
displays the experimental feature of narrowing with depth
consequence of the slower jet velocity and thus weaker
cous entrainment. Parallel to the jet-conduit interface are
flows in opposite directions, and this gives rise to a Kelv
Helmholtz instability. The transition zone connecting the tw
flows has a finite width and can be shown to follow appro
mately the form tanh(px/d); the transition zone width is se

FIG. 4. Maximum buckling amplitude~a!, frequency~b!, and
initial wavelength ~c! versus flow rate for a gradient of 0.0
M/~l cm! and a 1.0 M/l jet. Critical velocityuc and dashed lines in
~b! and ~c! are theoretical predictions.
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by the Hele-Shaw gap. Using Drazin’s results for the Kelv
Helmholtz ~KH! instability of this profile@17#, we deduce
that the most unstable mode of that instability will be a
wavelength of 4d;1.2 cm. As shown in Fig. 4~c! this is in
good agreement with the experiments. Ifu and ũ are the
maximum jet and conduit velocities, respectively, then
propagation speed of the wave,c5(u2ũ)/2, follows di-
rectly from a generalization of the KH stability analysis
Hele-Shaw flow@5#. Near the top of the chamber,ũ!u, as
the conduit is much wider than the jet, soc;u/2, yielding a
frequencyv;(p/4d)u, also in good agreement with th
data near onset@Fig. 4~b!#. The corresponding period of th
KH wave is 8d/u. When this time is shorter than the typic
diffusion time tD , the instability can occur. Equating thes
two time scales leads to a predicted critical velocityuc
58Dd/w2. For the data shown,uc;0.015 cm/s, in good
agreement with the observed value. An additional import
feature of the velocity profile in Fig. 5 is an inflection poin
near the conduit edge, providing the source for a second
instability, corresponding to the blips shown in Fig. 2.

A theory of the fully developed buckled jet is lacking
However, it is possible to gain insight into that nonline
behavior and the onset of inertially driven secondary ins
bilities by extending leading-order inertial corrections
Darcy’s law@3,5# to the vortex sheet representation for inte
face dynamics. Consider a Hele-Shaw cell of lateral dim
sions L3L, with plate spacingd!L, filled with fluids of
common viscosityh. Assuming that there exists a characte
istic velocity U, we define anisotropic rescalingsũ5Uv, t
5(L/U)t, x85x/L, y85y/L, andz85z/d, where (x,y) are
in-plane coordinates andz is perpendicular to the plates. Ne
glecting the component ofv in the z direction, and introduc-
ing the rescalings into the Navier-Stokes equation, we ob

Re
d

L F ]v

]t
1~v•“8!vG52

d2

U0hL
“8p1

]2 v

]z82
, ~1!

where“85(]/]x8) x̂1(]/]y8) ŷ and Re5rUd/h.

FIG. 5. Theoretical velocity profile~a! showing jet and conduit
~inner and outer pairs of dashed lines! and interpolated condui
shape~b! on a larger scale, showing jet~dashed!.
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Expanding v in powers of Re as v5v01Re v1
1O(Re2), it is then a straightforward exercise to substitu
into Eq. ~1!, solve for v0 and v1 subject to the usual stick
boundary conditions at the plates, average over thez coordi-
nate, and then undo the original rescalings to obtain the
eraged velocityu up to first order in Re. The velocity field
can be recast in terms of the vortex sheet strengthg at the
interface~s! G between the two fluids, whereg5 t̂•(u1
2u2)uG @18#. Expandingg asg01Reg11••• and using the
continuity of n̂•u at G yields the inhomogeneous dampe
Burgers’ equation

g1
d2

10n Fg t1
9

7
ggyG5 t̂•Du0uG . ~2!

In general, the right-hand side of Eq.~2! is a function of the
interface shape. For simplicity, consider a nearly straight
terface between two fluids with density differenceDr that
varies linearly with vertical positiony. Then the right-hand
side of Eq.~2! is proportional toDr(y)g, which we write as
K2ay. The nonlinearity is responsible for steepening t
vorticity, while the standard contribution arising from Da
cy’s law ~first term on the left-hand side! is responsible for
damping it. The competing effects in the damped version
Burgers’ equation allow shocks to occur only under suita
initial conditions. Solving Eq.~2! by the method of charac
teristics@19#, shocks occur if

d

U
gy,2

35

9
~11A124a!

1

Re
. ~3!

This result shows that a singularity will occur more read
for larger Reynolds numbers and will not occur in the str
limit of Darcy’s law.
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For thin fluid layers, such as the jet itself or the condu
the dynamics ofg can be incorporated into an equation
motion of the interface~s! @20#. For two interfaces whose
displacements are reflection-symmetric about a midline~as
in Fig. 2!, one obtains a lubrication-type equation which
leading order inh is ht52(hg)y . As discussed by Pugh an
Shelley@14#, given suitable initial conditions, these couple
partial differential equations can display an unbound
finite-time singularity forh or can simply relax to a traveling
wave with constantg. This is consistent with the observa
tions shown in Fig. 2, even though the unstable growth m
is not truly unbounded. This discrepancy stems from the l
ited domain of validity of the lubrication approximation.

For meandering displacements the leading-order inte
cial equation of motion describes a wave,ht52ghy , and as
such does not have the flux form of the reflection-symme
case. Here, the singularity ing is inherited directly byh,
which will become multivalued at a finite time. This is con
sistent with the overturning in Fig. 3.

We have presented a number of experimental observat
concerning the rich dynamics of decelerated jets at fin
Reynolds number, as well as a theoretical scenario wh
should serve as a starting point for a more rigorous und
standing of the phenomena in Hele-Shaw flow, as well
providing general mechanisms that hold in three dimensi
@13#. Among the important open problems are a detailed
derstanding of the conduit formation and its nonlinear int
action with the buckled jet.
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