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We present a study of a cylinder of ice melting in warm air in order to quantify the
heat-transfer mechanisms controlling the evolution of its shape, which are inherent
in a range of phenomena involving phase change and fluid flow. Motivated by
the initial melting at the top of a flat-topped cylinder of ice, we analyse laminar,
natural convection above a cooled, finite, horizontal plate (or below a heated, finite,
horizontal plate) and show that, to a very good approximation, the partial-differential,
boundary-layer equations can be separated with self-similar vertical profiles scaled by
the boundary-layer thickness. We find that the horizontal evolution of the boundary-
layer thickness is governed by equations describing a steady, viscous gravity current
fed by diffusive entrainment, and therefore describe such flows as diffusive gravity
currents. We first use the predictions of our model to examine previous experimental
results in two dimensions. Our experimental results relating to the melting of ice in
air are then compared with predictions based on our analysis of the axisymmetric
thermal boundary layer. This comparison confirms the vertical thermal structure and
shows that melting is governed in roughly equal measure by heat transfer from the air,
the latent heat of condensation of water vapour, and the net radiative heat transfer
from the surroundings to the ice.

1. Introduction
The natural environment is full of examples where phase change affects and is

affected by fluid flows, from the intricate patterns of snowflakes to the solidified
forms of lava eruptions and the sculpted shapes of stalactites. One intriguing example
is the formation of icicles, during which melt water, for example from snow on a hot
tin roof, freezes as it drips into cold air. The overall, elongated shape of an icicle,
as well as ripples that form on it, have been thought to be a result of interactions
between the thin film of melt water flowing on its surface and the solid ice beneath
(Ogawa & Furukawa 2002; Ueno 2003, 2004). Recently, Short, Baygents & Goldstein
(2006) suggested that the dominant heat transfer controlling the growth and form of
icicles is not associated with the water film but rather with the convective boundary
layer in the air surrounding them.

The growth of the tip of an icicle may be influenced by the drips that form there,
and a cleaner way to investigate the interactions between convective airflow and
phase change relevant to an icicle is to consider the melting of a cylinder of ice
held vertically in warm air. An example of the melting of a right cylinder of ice is
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Figure 1. A sequence of high-resolution images showing the melting of a cylinder of ice in
air of far-field temperature T∞ = 21.4 ◦C taken at times t = 10, 51, 114, 164, 214 and 266 min.
The white square for scale is 1 cm on a side.

shown in figure 1 and movie 1. The ice cools the surrounding air, which flows radially
outwards along the top of the cylinder and down the curved sides. However, in what
follows we focus our attention on the flow along the top surface of the cylinder of
ice, highlighting the balance of physical effects needed to describe the form of the
boundary layer. We leave for future discussion the ultimate evolution of the shape of
the icicle.

Buoyancy-driven convection above a finite, horizontal, cooled plate without phase
change (or equivalently below a heated plate) has been the subject of many previous
studies, yet open questions remain. The cooled fluid (air) pours over the edges of the
plate, and the flow is controlled by conditions at or near the edges, in the manner of
a weir for example. There are excellent visualizations of such flows in the paper by
Aihara, Yamada & Endo (1972), and of the associated thermal boundary layer in the
paper by Hatfield & Edwards (1981). These papers, as well as our own experiments
and numerical calculations, show the flow to be laminar and provide measurements
of velocity and temperature profiles, as well as local and mean rates of heat transfer
which we compare with our theoretical predictions.

Stewartson (1958) described the differential boundary-layer equations appropriate
to such flows and found a similarity solution to them, which he incorrectly interpreted
as the flow above a cooled, horizontal plate. His solution, which we summarize in
§ 2, actually describes the flow from the leading edge above a heated, horizontal plate
(Gill, Zeh & Del Casal 1965).

Most analytical studies of convective flow adjacent to horizontal plates have used
integral boundary-layer equations with assumed vertical shape functions introduced
to evaluate the integrals. These are nicely summarized by Higuera (1993), who
emphasizes the elliptic character of the problem and the need for a boundary condition
at the edge of the plate. It had variously been proposed that the thickness of the
boundary layer should be zero at the edge of the plate (Wagner 1956), or that it should
attain a critical depth by analogy with open-channel hydraulics (Clifton & Chapman
1969), or that a singularity in the integral equations should coincide with the edge
(Singh & Birkebak 1969), which was later shown to be equivalent to maximizing the
heat flux from the plate (Fujii, Honda & Morioka 1973). More recently, it has been
suggested that the boundary layer should adjust so as to maximize the discharge rate
(mass flux) over the edge (Dayan, Kushnir & Ullmann 2002). Higuera (1993) himself
put considerable effort into an analysis local to the edge of the plate and concluded
that it seems likely that buoyancy in the corner region can deal with any flow supplied
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by the boundary layer, implying therefore that the mass flux reaching the edge must
be as large as possible.

In this paper, we show that the partial differential equations governing flow and
transport in the boundary layer can be separated into ordinary differential equations
describing the vertical structures of the velocity, pressure and temperature fields and
the horizontal variation of the boundary-layer thickness. The separation is exact at
infinite Prandtl number, and we show it to be an excellent approximation for finite
Prandtl numbers as low as that for air (≈0.7). A similar approach has been used by
Higuera & Weidman (1995) to analyse the flow above a cooled plate in a porous
medium. The equation governing the horizontal variation of boundary-layer thickness
has the form of that describing a steady viscous gravity current in which the local
divergence of fluid flux is balanced by diffusive entrainment, and the differential
system is closed uniquely by requiring simply that the mass flux at the edge of the
plate be non-zero and finite.

In § 2, we present our theoretical approach in two dimensions and compare its
predictions with existing experimental data and our own full numerical calculations.
In § 3, we extend our analysis to an axisymmetric disk and compare the predictions
with measurements taken in air above a melting cylinder of ice. In § 4, we apply our
results to our measurements of the initial melting of a cylinder of ice and discover
surprisingly large roles played by condensation of water vapour from the air and
radiative heat transfer from the surroundings. General conclusions and possible future
applications of this method of treating the boundary-layer structure are presented
in § 5.

2. Convection above a two-dimensional strip
2.1. Theoretical development

We consider buoyancy-driven flows above isothermal, horizontal plates, as illustrated
in figure 2. The flow above a heated or cooled plate is exactly analogous to the flow
beneath a cooled or heated plate, respectively, and our results can be applied to the
latter cases by simply reversing the sign of gravity. When the plate is heated the fluid
above forms a thin, laminar boundary layer that develops and grows as the fluid
flows from the leading edge of the plate (see figure 2a). In contrast, when the surface
is cooled the fluid above forms a thin, laminar boundary layer whose thickness
diminishes as the fluid flows from the centre towards the trailing edge of the plate.
In both cases, we consider laminar flow that can be well described by the usual
Boussinesq boundary-layer equations when the distance along the plate is much
larger than the characteristic boundary-layer thickness (Schlichting & Gersten 2000).

The steady two-dimensional Boussinesq boundary-layer equations describing
momentum balances and heat transfer above a horizontal plate are

u
∂u

∂x
+ w

∂u

∂z
= − 1

ρ∞

∂P

∂x
+ ν

∂2u

∂z2
, (2.1a)
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∂z2
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Figure 2. Geometry of convection above isothermal, horizontal plates. In (a) a warm thermal
boundary-layer flows from the leading edge of a heated plate. The cool thermal boundary layer
above a cold plate is shown in (b). Near the centre of the plate, the flow has the character of
a stagnation-point flow.

(Stewartson 1958). These are coupled by the linear equation of state

ρ = ρ∞ [1 − α(T − T∞)] . (2.2)

Continuity is assured by using a two-dimensional stream function ψ(x, z) such that
the velocity field u = (u, w) = (ψz, −ψx). Here, P (x, z) and T (x, z) are the pressure
and temperature fields, x and z are coordinates along and perpendicular to the plate,
ν and κ are the kinematic viscosity and thermal diffusivity of the fluid, α is the
coefficient of thermal expansion, ρ is the density field, and ρ∞ is a reference density
of the fluid, measured at the far-field temperature T∞.

A number of previous authors (Gill et al. 1965; Wagner 1956; Singh & Birkebak
1969, for example) have approached this problem by assuming a prescribed vertical
structure for the temperature, velocity and pressure fields. Here, we show that both
the vertical structure and its lateral variation can be found independently by judicious
approximation of (2.1) and (2.2). To that end we look for self-similar solutions of
these equations of the form

T (x, z) = T∞ + �T θ(η), (2.3a)

ψ(x, z) = κ q(x) f (η), (2.3b)

P (x, z) = ρ∞α�Tg h(x) p(η), (2.3c)
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where �T = |T0 − T∞| is the temperature difference driving fluid motion and T0 is the
temperature of the plate. The similarity variable

η ≡ z

h(x)
, (2.4)

while the dimensionless functions θ(η), f (η) and p(η) are vertical-structure functions
for temperature, stream function and pressure respectively, and q(x) and h(x) represent
the horizontal variations of the mass flux and the thickness of the boundary layer,
respectively. Note that the spatial variables x and z and the thickness h have so far
been left dimensional. Substitution of these expressions into (2.1) and (2.2) leads to
the set of differential equations

f ′′′ + σ −1
[
hq ′ ff ′′ + (qh′ − hq ′)f ′2] =

αg�T

κν

h3h′

q
(p − ηp′), (2.5a)

p′ = θ, (2.5b)

θ ′′ + hq ′ f θ ′ = 0, (2.5c)

where σ = ν/κ is the Prandtl number. These equations still involve two independent
variables, η and x, but the functions involved in them are all functions of just one
independent variable. The primes denote differentiation with respect to the argument
of the respective functions, either η or x.

These equations can be made dimensionless by scaling x with a horizontal scale
L, such as the length of the plate, scaling z and h with Ra−1/5L and scaling q with
Ra1/5, where the Rayleigh number

Ra =
αg�T L3

κν
. (2.6)

We see, therefore, that the boundary-layer assumption h � x is appropriate provided
the Rayleigh number Ra 	 1. In addition, these scalings provide a natural definition
of the characteristic Reynolds number

Re =
uh

ν
∼ κRa1/5

ν
=

Ra1/5

σ
. (2.7)

For the experiments detailed in §§ 2 and 4 the Reynolds number is Re � 10–35, which
is significantly less than the critical Reynolds number, Recrit ∼ 400, for instability of
shear-driven flows (Drazin & Reid 1981).

With these scalings, the governing equations

f ′′′ + σ −1
[
hq ′ ff ′′ + (qh′ − hq ′)f ′2] =

h3h′

q
(p − ηp′), (2.8a)

p′ = θ, (2.8b)

θ ′′ + hq ′ f θ ′ = 0, (2.8c)

are independent of Rayleigh number and depend only on the Prandtl number, so
there is just a one-parameter family of solutions.

Our aim is to separate the vertical and horizontal structures of the boundary
layer, resulting in decoupled sets of ordinary differential equations describing each.
Equation (2.8b) already involves only the independent variable η. Equation (2.8c) and
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the viscous and buoyancy terms of (2.8a) can be separated by choosing

hq ′ = 1 and
h3h′

q
= ±1. (2.9a, b)

Separation of (2.8c) requires that hq ′ be constant, and it is necessary for that constant
to be positive in order that θ decays as η → ∞. Without loss of generality, the
constant can be set equal to unity in (2.9a). The right-hand side of (2.8a) must be
negative in order that the vertical gradient of vorticity be negative near the plate, so
h3h′/q must be positive when θ is positive (the plate is heated) and negative when θ

is negative (the plate is cooled). Again, without loss of generality, the magnitude of
the constant in (2.9b) can be taken to be unity.

Once (2.9a–b) are satisfied, the equations describing the vertical structure (2.8a–c)
become

f ′′′ + σ −1
[
ff ′′ − (1 − qh′)f ′2] = ±(p − ηp′), (2.10a)

p′ = θ, (2.10b)

θ ′′ + f θ ′ = 0. (2.10c)

These equations are subject to the boundary conditions

θ = ±1, f = f ′ = 0 (η = 0), (2.11a–c)

θ → 0, p → 0, f ′ → 0 (η → ∞), (2.11d–f )

which express the fact that the plate is isothermal and that the air is stationary there,
and that in the far field, the temperature has a different uniform value, the pressure
is known and the horizontal velocity vanishes.

We see that (2.10a) is not quite separated because x-dependence remains in the
term qh′. Below, we examine two cases in which the separation can be completed
exactly: flow above a heated or cooled plate. We also show that, in the case of flow
above a cooled plate, qh′ is mostly very small, and that good approximate solutions
can be obtained by either neglecting it or evaluating it locally.

2.2. The heated plate

It is clear that separation of (2.10a) is complete if qh′ is constant. It is straightforward
to show that for convection above a heated plate, as illustrated in figure 2(a), this
condition with (2.9) leads to the power-law solutions

h =

(
25

6

)1/5

x2/5, q =
2

5

(
25

6

)4/5

x3/5, (2.12a, b)

and that the momentum equation (2.10a) becomes

f ′′′ + σ −1
[
ff ′′ − 1

3
f ′2] = p − ηp′. (2.13)

Note that the plus sign has been taken on the right-hand side, which is required
for the flow above a heated plate, and that the plus sign must correspondingly be
taken for the boundary condition on θ in (2.11a). Stewartson (1958) showed that
such a power-law similarity solution does not exist when a minus sign is taken on
the right-hand side of (2.10a), which is the case for flow above a cooled plate. The
solution to (2.13) with (2.10b), (2.10c) and boundary conditions (2.11) was presented
by Stewartson (1958).
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2.3. The cooled plate at infinite Prandtl number

For either a cooled or a heated plate, it is straightforward to show that separation
of the vertical and horizontal structure is complete in the limit σ → ∞, when (2.10a)
becomes

f ′′′ = ±(p − ηp′). (2.14)

This equation describes the dynamics of the ‘inner’ thermal boundary layer, for which
the appropriate far-field boundary condition on the velocity field is one of zero
tangential stress, namely

f ′′ → 0 (η → ∞) (2.15)

(see e.g. Kuiken 1968). The velocity relaxes to the far-field condition given by
(2.11f ) much farther from the plate in an ‘outer’ boundary layer that has a uniform
temperature field and a balance between inertia and viscous dissipation. In the case
of a cooled plate, illustrated in figure 2(b), solution of the governing equations for
the thermal boundary layer shows that the dimensionless shear stress f ′′(0) = 1.378,
and the dimensionless temperature gradient θ ′(0) = 0.607.

The full, two-dimensional solution for the thermal boundary layer is completed by
solving (2.9) for the horizontal variation of its thickness h and volume flux q . Those
equations can be written in the form

−h3h′ = q and q ′ = h−1. (2.16a, b)

The first of these equations is recognizable as the relationship between the thickness
and the volume flux in a two-dimensional, viscous gravity current. The second equation
expresses a balance between the divergence of the horizontal volume flux, which gives
the vertical entrainment velocity into the boundary layer, and the conductive heat
flux across the boundary layer, which is inversely proportional to its thickness. This
is the fundamental advection–diffusion balance that confines the boundary layer. We
see here that the thermal boundary-layer flows exactly like a steady viscous gravity
current whose thickness obeys the equation

(h3h′)′ = −1/h. (2.17)

The only difference is that the density field is smeared out by diffusion, according
to (2.10c), rather than forming a discrete, two-layer system. We therefore call this a
diffusive gravity current.

The boundary conditions for these equations on a finite plate are

q = 0 (x = 0) and q = q0 (x = 1), (2.18a, b)

where the constant volume flux q0 at the edge of the plate is finite. The first of these
is the natural symmetry condition at the centre of the plate. The second is obviously
true but would not seem to give sufficient additional information. However, we couple
this statement with the observation that (2.17) is singular where h = 0 and that the
strength and form of the singularity can be chosen to ensure a finite volume flux.
In other words, the flow over most of the plate ‘sees’ a finite sink near the edge
of the plate. We expect that the location of the sink singularity should be within
approximately one boundary-layer thickness of the edge of the plate so, within the
same order of approximation as boundary-layer theory or lubrication theory, we place
the singularity at the edge of the plate, where x = 1.
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Figure 3. (a) Boundary-layer thickness and (b) volume flux as functions of distance along
the plate x. The solid curves show the solution to (2.16) with q0 = 1.023 and h(0) = 1.162. The
dashed curves show the approximate solution (2.19), with q0 = (64/81)1/5.

With these conditions, (2.16) can be expanded near x = 1 to give

h ∼ (4q0)
1/4(1 − x)1/4 − (3q0)

−1(1 − x) and q ∼ q0 − 4
3
(4q0)

−1/4(1 − x)3/4. (2.19a, b)

These asymptotic expressions can be used to initialize a relaxation scheme (we used
Matlab’s bvp4c routine) in which equations (2.16) are solved subject to condition
(2.18a) at x = 0 and the asymptotic expressions (2.19) at x = 1. These three constraints
provide the conditions necessary to determine the structure of the boundary layer and
the flux q0 at the edge of the plate x = 1. The results are shown by the solid curves in
figure 3, for which q0 = 1.023 and h(0) = 1.162.

The asymptotic expressions near the nose can be used to provide approximate
solutions over the whole domain by choosing q0 = (64/81)1/5 ≈ 0.954 so that the value
of q given by (2.19b) is equal to zero at x = 0. The result is shown by the dashed
curves in figure 3.

The thickness of the thermal boundary layer h(x) and the resultant portrait of
streamlines above the cooled plate are shown in figure 4. The picture that emerges
above the cold plate is of a steady, cold, viscous current fed by entrainment along its
length as it propagates towards the edge of the plate.

The vertical structure is dominantly that of a thermal boundary layer in a stagnation
point flow, for which the boundary-layer thickness is uniform (Worster 2000). The
analysis of the gravity-current equation (2.17) including the singular edge condition
is key to determining the strain rate of the stagnation point flow.

We can piece together the solutions above to find that the local dimensional heat
flux from the plate

FT = −k
∂T

∂z

∣∣∣∣
z=0

= −k�T

L
Ra1/5 θ ′(0)

h(x)
, (2.20)
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Figure 4. The thin curves show streamlines as functions of the horizontal and vertical
coordinates x and z, calculated at infinite Prandtl number. The bold curve indicates the
boundary-layer thickness as a function of position along the plate and corresponds to an
isotherm.

where k is the thermal conductivity of the air. The non-dimensional heat flux towards
the plate can be expressed in terms of a Nusselt number defined by

Nu ≡ FT

k�T/L
= Ra1/5 θ ′(0)

h(x)
. (2.21)

This measure of the local heat flux can be integrated to find the total heat flux
towards the plate expressed in terms of a global Nusselt number

Nu = Ra1/5θ ′
0

∫ 1

0

dx

h(x)
. (2.22)

In the limit of infinite Prandtl number, our solution gives

Nu Ra−1/5 � 0.620. (2.23)

This is shown by the dashed line in figure 6. We see that it gives a good approximation
(to within 10 %) of Nu(σ ) Ra−1/5 down to Prandtl numbers of about 10.

2.4. Approximate results at finite Prandtl number

When the Prandtl number is finite, effects of inertia begin to affect the thermal
boundary layer. We see from (2.10a) that there are two inertial terms. The first term
in square brackets, proportional to ff ′′, represents the vertical advection of vorticity
and acts to increase the shear in the boundary layer and therefore to retard the flow.
The second term, proportional to f ′2, represents the divergence of the downstream
momentum flux and can also be thought of as the kinetic energy that must be
imparted to the fluid. This latter term has a coefficient that involves qh′, which is the
sole component frustrating complete separation of the boundary-layer equations at
finite Prandtl number. However, q and h′ are both equal to zero at the centre of the
plate, and figure 5 shows that the magnitude of qh′ remains small for about 80 % of
the plate.

We can proceed to find approximate solutions either by setting qh′ to zero or
by treating qh′ as a parameter given by the solutions to (2.16) above, and solving
equations (2.10) subject to boundary conditions (2.11) at each downstream location
x. The results obtained for the global Nusselt number from these two approaches are
shown in figure 6 and differ by less than 10 % for Prandtl numbers down to 0.5. The
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Figure 5. The magnitude of the residual inertial coefficient, qh′, as a function of position
along the plate.
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Figure 6. The solid curve shows the global Nusselt number Nu scaled by Ra1/5, as a function
of Prandtl number σ , computed by setting the residual inertial coefficient qh′ ≡ 0 in (2.10a).
The dotted curve shows the solution obtained by evaluating the residual inertial coefficient
locally. The heat flux in the limit σ → ∞ is shown by the dashed line.

simplest approach is simply to neglect qh′, so we do this henceforward in order to
assess the utility of this approximation.

We compare our predictions with the results of Aihara et al. (1972), who conducted
careful experiments in air below a heated plate 25 cm long. The experiments were
confined by two glass plates, through which photographs were taken to record
the trajectories of fine particles, from which measurements of the velocity field were
made. In addition, vertical profiles of the temperature were recorded in various planes
perpendicular to the plate using carefully suspended chromel–alumel thermocouples.
Their data are shown in figures 7 and 8 alongside our theoretical predictions. We
see that the velocity field is well predicted over most of the plate, though there are
slight discrepancies near the edge, particularly in the outer part of the boundary layer.
There seem to be slightly larger discrepancies in the structure of the temperature field.
Importantly, however, the temperature gradient at the surface of the plate seems very
well predicted. It should also be noted that no theory (ours included) predicts any
negative velocities in the far-field (z → ∞) and that this aspect of the data may be
primarily due to the return flow resulting from the necessity of doing experiments in
a finite container.

In figure 9, we compare our results with the experimental measurements (Aihara
et al. 1972) and our own numerical computations (see Appendix) of the local Nusselt
number, scaled by the Rayleigh number, as a function of position along the plate, and
find excellent agreement. We note that the local Nusselt number is constant along
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Figure 7. A comparison of the theoretical horizontal velocity structure (solid curves) and the
experimental results of Aihara et al. (1972). Profiles are taken at x =0.2 (squares), x = 0.4
(circles), x = 0.6 (triangles), x = 0.8 (diamonds), x = 0.9 (inverted triangles) and x = 0.95
(crosses). Open symbols correspond to a temperature difference of �T = 55.2 ◦C with an
associated Rayleigh number of Ra = 8.20 × 106. Solid symbols correspond to a temperature
difference of �T = 104.0 ◦C and a Rayleigh number of Ra =1.17 × 107. We note that Aihara
et al. (1972) ascribe a maximum error of 5 % in the velocity measurements and discuss further
in the text possible causes for u(z > 2) < 0.
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Figure 8. A comparison of the theoretical thermal structure (solid curves) and the
experimental results of Aihara et al. (1972), for which �T = 52.8 ◦C and hence Ra = 7.16 × 106.
Profiles are from x = 0.0 (plus), x = 0.4 (circles), x = 0.6 (triangles), x = 0.8 (diamonds),
x =0.9 (inverted triangles), x = 0.95 (crosses) and x = 0.99 (sideways diamonds). Experimental
temperatures and distances are reported to have been measured to within 0.6 % and 0.1 mm,
respectively (Aihara et al. 1972).

much of the plate, reflecting the structure found in the boundary-layer thickness h(x).
By integrating our results, we find the global Nusselt number Nu Ra−1/5 ≈ 0.496, which
is within 3 % of the experimental estimates of Nu Ra−1/5 ≈ 0.509 for Ra = 1.02 × 107

and Nu Ra−1/5 ≈ 0.500 for Ra = 7.16 × 106.
Such good agreement may well be fortuitous given uncertainties in the experimental

measurements as well as our own approximations. For example, there are likely to
be edge effects in the experiments, associated with the difficulty of maintaining an
isothermal plate in the presence of large heat fluxes and with the finite size of
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Figure 9. Local Nusselt number scaled by Ra−1/5 as a function of position along the plate
for σ = 0.7. The solid curve is the theoretical prediction made by ignoring the residual inertial
coefficient. Results of the full numerical simulation for flow over a flat plate with σ = 0.7 and
Ra = 2.83 × 106 are shown as diamonds (see the Appendix for full details of the calculation).
Data from Aihara et al. (1972) are shown for two experiments in which Ra = 7.16 × 106 (solid
circles) and Ra = 1.02 × 107 (open circles).

the bounding container, as well as edge effects in the theory associated with the
breakdown of the boundary-layer hypothesis.

3. Convection above a cooled circular disk
The Boussinesq boundary-layer equations governing flow above an axisymmetric disk
are identical to those for the flat plate (2.1)–(2.2), with x replaced by the radial
coordinate r . Continuity is now assured by introducing a Stokes stream function such
that u = (u, w) = r−1(ψz, −ψr ).

Again, we look for self-similar solutions of the equations of the form

T (r, z) = T∞ + �T θ(η), (3.1a)

ψ(r, z) = κ r q(r) f (η), (3.1b)

P (r, z) = ρ∞α�Tg h(r) p(η), (3.1c)

where �T = |T0 − T∞| and the similarity variable η = z/h(r). We scale r by the radius
of the disk R, the thickness of the boundary layer h by Ra−1/5R and the flux q by
Ra1/5, where now

Ra =
αg�T R3

κν
. (3.2)

The dimensionless functions θ(η), f (η) and p(η), specifying the vertical structure
of the thermal field, the stream function and the pressure respectively, obey the
unseparated differential equations

f ′′′ + σ −1

[
h

r
(rq)′ff ′′ + (qh′ − hq ′)f ′2

]
=

h3h′

q
(p − ηp′), (3.3a)

p′ = θ, (3.3b)

θ ′′ +
h

r
(rq)′ f θ ′ = 0. (3.3c)
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Figure 10. Radial boundary-layer profile h(r) (solid), flux q(r) (dashed) and the residual
term 1

2
− hq/r − qh′ (dotted) as functions of radial position.

Following the same procedure to separate these equations as we used in the two-
dimensional case, we choose

h

r
(rq)′ = 1 and h3h′ = −q. (3.4a, b)

We identify the leading-order contribution to the horizontal inertia (proportional to
f ′2) by noting from (3.4a) that

hq ′ ∼ hq

r
→ 1

2
as r → 0, (3.5)

and writing the equations governing the vertical structure in the form

f ′′′ + σ −1

[
ff ′′ − 1

2
f ′2 +

(
qh′ +

qh

r
− 1

2

)
f ′2

]
= −(p − ηp′), (3.6a)

p′ = θ, (3.6b)

θ ′′ + f θ ′ = 0. (3.6c)

Note that the three (non-separated) terms enclosed in round brackets multiplying the
inertial term f ′2 sum to zero at r = 0, and we find below that their sum remains small
over most of the plate.

Equations (3.4) were solved numerically using the boundary conditions

q = 0 (r = 0) and q = q0 (r = 1), (3.7a, b)

and noting that the asymptotic form of h(r) near r = 1 is identical (to the order
shown) to that given by (2.19a), with x replaced by r . The resultant boundary-layer
structure is shown in figure 10. We find the boundary-layer depth at the origin
h(0) = 1.018 and the flux at the edge of the disk q0 = 0.643. These solutions are used
to calculate the non-separated inertial coefficient (in the round brackets in (3.6a)),
which is shown by the dotted curve in figure 10. We see again that this term is
very small over most of the plate, and we therefore neglect it in our analysis for
simplicity.
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Figure 11. The solid curve shows the global Nusselt number scaled by the Rayleigh number,
Nu Ra−1/5, as a function of Prandtl number σ . The limit σ → ∞, in which the separation of
horizontal and vertical structures is exact, is shown by the dashed line.

In the radial geometry, the local Nusselt number is defined by

Nu ≡ FT

k�T/R
= Ra1/5 θ ′

0

h(r)
, (3.8)

where the local dimensional heat flux

FT = −k
∂T

∂z

∣∣∣∣
z=0

. (3.9)

The local Nusselt number determines the melt rate as a function of r which is shown
below in figure 13, where it is compared with results obtained from the experiment
on the melting of a cylinder of ice described in § 4.

A global Nusselt number can be defined as

Nu ≡

∫ R

0

Nu 2πr dr

πR2
= 2Ra1/5θ ′(0)

∫ 1

0

r dr

h(r)
. (3.10)

We show the variation in the scaled global Nusselt number with Prandtl number in
figure 11. For air at 0 ◦C, for which σ = 0.7, we find that Nu Ra−1/5 � 0.615, a value
which compares well with the experiments described below.

4. The melting of ice
Our study of convective boundary layers above cooled, horizontal surfaces is
motivated by the shapes of icicles and spurred by the experimental results described
below. We started with a block of cylindrical ice with a flat, horizontal top (see
figure 1). These ice cylinders were placed in an enclosure at room temperature to
protect them from air currents. Digital images were acquired every 15 s with a
4 × 4 kb high-resolution Hasselblad camera. Illumination was provided by a flash
unit triggered simultaneously with the camera to minimize heating from the light
source.

Using a pair of 6′′, f/4 parabolic mirrors, we also acquired a series of Schlieren
images, from which a measure of the thermal field in the air above the icicles could
be derived. The intensity I (x, z) of a Schlieren image is proportional to the integral
of vertical temperature gradients along ray paths. Inverting the image to reconstruct
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Figure 12. The thermal profile above an icicle of radius R = 2.7 cm, as measured by the
Schlieren apparatus (circles), is compared with the predicted thermal profile at the centre of
the disk (solid curve) using the parameters given in tables 1 and 2.

the axisymmetric temperature field is a complex inverse problem. However, given that
the boundary layer has a roughly constant thickness, we can estimate the temperature
profile at the centre of the disk Tc(z) by

Tc(z) = T∞ + (T0 − T∞)

∫ ∞

z

I (z′) − I∞ dz′

∫ ∞

0

I (z′) − I∞ dz′
, (4.1)

where I∞ is the intensity of the background. The result is shown in figure 12, where
we see that the data fit the theoretical prediction for the shape (in particular the
boundary-layer thickness) of the thermal profile reasonably well. This gives us some
confidence that our theory gives the correct rate of heat transfer from the air when
we try to predict the melt rate of the ice below.

The optical images were analysed using a thresholding procedure to produce
measurements of the position of the surface of the ice as it evolved in time. From
these profiles we measured the rate of melting v(r) along the top of the ice. The local
melt rate at the top of the block of ice can be quantitatively explained in terms of
three heat-transfer processes as detailed below: heat transfer from the air, the latent
heat of condensation of water vapour and the net radiative heat transfer from the
surroundings.

4.1. Heat transfer from the air

Conservation of heat at the ice–air interface is described by the Stefan condition

ρsLv = k
∂T

∂z

∣∣∣∣
z=0

, (4.2)

where ρs is the density of ice, and L is the latent heat of melting per unit mass. This
equation can be rearranged and evaluated using the theoretical model from § 3 to
obtain the melt rate at the centre of the top surface

v =
ρ

ρs

cp�T

L
κ

R
Ra1/5 θ ′(0)

h0

, (4.3)

recalling that k = ρcpκ , where cp is the specific heat capacity of the air.
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Parameter Symbol Value

Air (0 ◦C)
Density ρ 1.29 × 10−3 g cm−3

Viscosity ν 0.133 cm2 s−1

Coefficient of thermal expansion α 3.67 × 10−3 ◦C−1

Thermal diffusivity κ 0.187 cm2 s−1

Specific heat cp 1.005 J g−1 ◦C−1

Latent heat of vaporization of water Lv 2, 500 J g−1

Saturated vapour density ρsat 4.85 × 10−6 g cm−3

Molar mass of water M 18 g mol−1

Gas constant R 8.31 J K−1mol−1

Ice (0 ◦C)
Density ρs 0.9167 g cm−3

Latent heat L 334 J g−1

Table 1. Physical properties for air and ice.

Parameter Symbol Value

Radius R 2.7 cm
Relative humidity RH 55%
Far-field temperature T∞ 21.4 ◦C
Icicle temperature T0 0 ◦C

Table 2. Parameters specific to the ice analysed in the experiment detailed in the text.

Using the physical parameters given in table 1 and the experimental parameters
given in table 2, in which we have assumed that the surface of the ice is isothermal at
the melting temperature 0 ◦C, we calculate the Rayleigh number Ra ≈ 61 000 and the
melt rate v ≈ 5.59 × 10−5θ ′(0) cm s−1. At a Prandtl number of σ = 0.7, our solutions
give θ ′(0) ≈ 0.483, which gives a melt rate v ≈ 2.70 × 10−5 cm s−1. This prediction
contrasts with our measurement of v ≈ 7.9 ± 0.1 × 10−5 cm s−1, which indicates that
the thermal boundary layer is not solely responsible for the observed melting.

4.2. The meltwater film

Many previous theoretical studies of the growth of icicles have focused attention on the
thin film of water coating their surfaces. In the present context, it is straightforward
to take account of the film within the same self-similar framework used in § 3 to
evaluate the thermal boundary layer in the air. Thin-film (lubrication) theory shows
that the thickness hw of the meltwater film satisfies

ρw

g

3νw

1

r

∂

∂r

(
rh3

w

∂hw

∂r

)
= ρsv, (4.4)

where ρw and νw are the density and kinematic viscosity of water. This equation can
be combined with (4.3) to show that hw satisfies exactly the same form of equation
as h and therefore, given also that they satisfy the same boundary conditions, that
hw = λh, where

λ4 = 3α�T
ρ

ρw

νw

ν

cp�T

L θ ′(0). (4.5)

The parameter values in tables 1 and 2 give λ≈ 0.025, so the meltwater film has a
thickness of about 100 μm, compared with the thermal boundary-layer thickness of
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about 6 mm. The balance of heat flux across the film requires that

kw

�Tw

hw

∼ k
�T

h
, (4.6)

which shows that the temperature difference across the film �Tw is less than
approximately one hundredth of a degree (Short 2006). The meltwater film is therefore
entirely negligible and, in particular, cannot account for the discrepancy between
observed and predicted melt rates.

4.3. Condensation of water vapour

Having estimated and eliminated several other hypotheses for this discrepancy, we
came to wonder about the role of water vapour in the air, recalling the adage,
“It’s not the heat that’ll kill you, it’s the humidity!” The water vapour has little
influence on the thermal conductivity of the air at the temperatures involved in our
experiments (Tsilingiris 2008). However, the airflow resulting from thermal convection
carries water vapour to the surface of the ice, where it condenses and releases latent
heat. The water vapour can be treated as a passive scalar because it has negligible
influence on the density of air compared with temperature (see below). The vapour
density satisfies (2.1c) with the thermal diffusivity κ replaced by the diffusivity of
water vapour D. It is readily shown by scaling that the gradient of vapour density
is therefore equal to (�ρv/�T )(κ/D) times the thermal gradient, and that the flux of
water from the air to the ice surface is therefore

Fw = κ
�ρv

R
Ra1/5 θ ′(0)

h
, (4.7)

independent of D, where �ρv is the difference in the partial density of water vapour
between the far field and the ice surface.

The saturated partial water–vapour density is given as a function of absolute
temperature T by

ρsat (T ) = ρsat (T0)
T0

T
exp

[
−MLv

R

(
1

T
− 1

T0

)]
, (4.8)

(Wood & Battino 1990) where T0 is a reference temperature (taken here to be the
freezing temperature T0 = 273 K), M is the molar mass of water, Lv is the latent heat
of vaporization, and R is the gas constant. We assume that the air is saturated at the
ice surface, in which case

�ρv =RHρsat (T∞) − ρsat (T0), (4.9)

where RH is the relative humidity of the air in the laboratory. Given the values in
tables 1 and 2, �ρv ≈ 1.09 × 10−5 g cm−3. This is about 100 times smaller than the
density difference α�T associated with temperature variations in the air, so it is
appropriate to treat the water vapour as a passive scalar.

The Stefan condition is modified by the additional latent heat associated with
condensation of water vapour to become

ρsLv = k
∂T

∂z

∣∣∣∣
z=0

+ LvFw, (4.10)

which can be rearranged to determine the melt rate

v =
ρ

ρs

cp�T

L
κ

R

[
1 +

�ρv

ρ

Lv

cp�T

]
Ra1/5 θ ′(0)

h0

. (4.11)
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Figure 13. The predicted (solid curve) and measured (circles with error bars) melt rate as
functions of radial position along the top of an icicle.

The second term in the square brackets has a value close to unity, which shows that
the latent heat associated with condensation of water vapour contributes roughly the
same amount of heat as is supplied by conduction. Our new prediction for the melt
rate based on (4.11) is v ≈ 4.06 × 10−5 cm s−1, which is still only about 55 % of the
measured value.

4.4. Radiative heat flux

The final piece of the jigsaw comes from a realization that the radiative heat transfer
plays a role of similar magnitude to the sensible and latent heat fluxes. Conservation
of heat at the ice–air interface is therefore given by

ρsLv = k
∂T

∂z

∣∣∣∣
z=0

+ LvFw + FR, (4.12)

where the radiative flux

FR = σB

(
T 4

∞ − T 4
0

)
, (4.13)

in which σB is the Stefan–Boltzmann constant, and the temperatures must be
expressed in Kelvin. This estimate of the radiation flux is based on assuming that
the experimental surroundings radiate as a black body. Ice itself is almost a black
body in the infra-red spectrum: it has a reflectivity of only about 1 % and an ‘optical’
depth around 10 μm at wavelengths around 10 μm (Warren 1984), which is the peak
of the black-body spectrum at the room temperature of 295 K. Water has similar
optical properties to ice in these conditions, so any water film present may also serve
to absorb incoming radiation. Therefore, nearly all the incident radiation is absorbed
at or near the ice surface, where it contributes to melting.

The melt rate at the centre of the ice based on (4.12) is v ≈ 7.71 × 10−5 cm s−1,
which is within 3 % of the measured value of v ≈ 7.9±0.1 × 10−5 cm s−1 and therefore
well within the accuracy of our experiment.

The measured and computed vertical melt rates are shown as functions of radial
position in figure 13. Note that the calculations assume a perfectly horizontal top
surface, whereas the ice quickly gains a slightly rounded surface. Once that happens,
the component of gravity parallel to the flow should accelerate the air, creating
additional horizontal divergence and an associated thinning of the boundary layer
and enhancement of the heat transfer. This effect is likely to be most important near
the rounded edge of the ice and may account for the discrepancy in figure 13 for



On the mechanisms of icicle evolution 305

r > 0.7. Prediction of the subsequent evolution of the shape of icicles awaits future
evaluation.

5. Conclusions
In this paper, we have revisited the natural, buoyancy-driven flow above a cooled,
finite, horizontal plate, which is equivalent to the flow below a heated plate. We have
shown that, to a very good approximation, the thermal boundary-layer equations can
be satisfied with self-similar solutions in which the horizontal variation of the scale
height of the boundary layer obeys the thin-film (lubrication) equations for a viscous
gravity current. These solutions make predictions that are in excellent agreement
with previous experimental measurements and with a numerical simulation based
on the full Navier–Stokes equations. However, while this validates the approach,
our solutions are not significantly more accurate than previous approximations made
using integral approaches. The importance of our work lies rather in the identification
of the relationship between the boundary-layer equations and those governing viscous
gravity currents, and the simplicity of the approach: the solution consists in solving
one system of ordinary differential equations for the self-similar vertical structure
of the boundary layer and another ordinary differential equation for the horizontal
variation. This approach might prove useful in analysing other types of diffusive
gravity currents.

A particular feature of our approach is the recognition that, in the case of a
horizontal plate, the interior of the boundary layer sees the edge of the plate, where
the dense fluid spills over, as a point sink whose strength is uniquely determined by
the upstream conditions. It is likely therefore that the various conditions that have
been proposed at the edge of the plate only affect conditions locally and do not have
a leading-order effect on the global heat transfer.

We have applied our analysis of the thermal boundary layer to the air flow above
a cylinder of ice placed in warm, still air in order to calculate the corresponding
initial rate of melting, while the ice block has a horizontal top surface. We have
shown that heat transfer from the air is insufficient to account for the observed rate
of melting but that both the latent heat of condensation of water vapour and the net
radiative heat flux from the surroundings to the ice must be accounted for. For typical
icicles in air, these three mechanisms provide roughly equal contributions to the melt
rate.

We have shown that the film of meltwater is entirely negligible. Given its very
narrow width and high thermal conductivity relative to the thermal boundary layer
in the air, it is almost isothermal and the heat flux across it is determined by heat
transfer in the air. This can be deduced by scaling analysis and we speculate here that
the film of water on a growing icicle is similarly negligible except that, in the case of
a growing icicle, it must exist in order for the icicle to continue to grow: a distinction
can be made between icicles that are dripping, which therefore have a continuous
film of water covering them and whose length can therefore increase, and those for
which the film freezes before reaching the tip and simply fatten. An intriguing feature
of growing icicles is that their surfaces become rippled, which is thought to be a
consequence of some form of morphological instability. The results of this paper
suggest that analyses of such instabilities should incorporate the convection in the
air, the condensation or evaporation of water vapour, and radiation, one or more
of which might account for the observed features, and should perhaps disregard the
water film as a key component of the system.
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Figure 14. Numerical simulations of the full Navier–Stokes equations are compared with
the theoretical predictions outlined in § 2. Vertical profiles of the velocity are shown in (a)
at horizontal positions x = 0.2, 0.4, 0.6, 0.8 and 0.9. The thermal profiles are shown in (b) at
horizontal positions x = 0, 0.4, 0.6, 0.8, 0.9. The inset shows the thermal field around the blunt
wedge with length (centre to edge) L =12.5 cm. The temperature difference is �T = 10 ◦C;
parameters representative of air were used, thus σ = 0.7 and Ra = 2.83 × 106.
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Appendix. Numerical solution of full Navier–Stokes equations
As a complement to the boundary-layer approximation developed in the body of the
present work, we have performed direct numerical simulations of the Boussinesq equa-
tions of motion for the thermal and velocity fields around a solid body held at fixed
temperature. The numerical calculations were done with a commercial finite-element
code (Comsol) which allowed for a non-uniform grid near the corners of the body.
The upper surface of the body was chosen to have the shape of a rectangular slab,
the bottom of which was deformed into a downward-facing blunted point in order to
shed the descending boundary layer in a smooth manner (see the inset in figure 14b).
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All computations started with uniform plate and far-field temperatures and
were conducted with �T = 10 ◦C. Parameters representative of the experiments of
Aihara et al. (1972) were chosen, namely α = 3.67 × 10−3 ◦C−1, κ = 0.187 cm2 s−1,
ν = 0.133 cm2 s−1 and L =12.5 cm, which correspond to governing non-dimensional
parameters σ = 0.7 and Ra =2.83 × 106. The thermal boundary-layer structure was
resolved with approximately 10 elements and was examined once the system had
reached a steady state, characterized by the transport time across the plate. The
resultant comparison between the numerically calculated velocity and thermal
structure shown in figure 14 shows excellent agreement over most of the plate
with the boundary-layer model of § 2. Indeed, the excellent comparison between
the boundary-layer model, experimental results and full numerical calculations lends
credence to both the boundary-layer approximations and the explicit separation of
vertical and horizontal structure. Thus, we find that the contribution of the thermal
boundary layer to the melting of ice as exemplified by the variation of the local
Nusselt number shown in figure 9 is well characterized by the boundary-layer method
developed throughout this paper.
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