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Domains of magnetic and electric dipolar fluids are known to undergo fingering instabilities in Hele-
Shaw flow, forming complex labyrinthine patterns. The hydrodynamics of this process are studied
theoretically with a generalization of Darcy’s law. The boundary condition on the pressure at the inter-
face between the dipolar fluid and that surrounding it is shown to include competing Young-Laplace and
Biot-Savart terms. The spectrum of growth rates in the linear stability analysis of a circular domain has
a complicated wave vector dependence as a consequence of the long-range forces, and reveals that the
fingering arises from a negative effective surface tension. The free boundary problem for the interface
motion is solved numerically using conformal mapping methods, and is compared with experiment. A
simple model is proposed for mode competition and pattern selection under time-dependent magnetic
fields. Aspects of this analysis may be relevant to the description of the intermediate state of type-I su-

perconductors.

PACS number(s): 47.20.—k, 68.10. —m, 75.70. Kw

I. INTRODUCTION

The long-time behavior of driven dissipative systems
characterized by an interfacial instability is typically ei-
ther steady (in an absolute or statistical sense) or station-
ary. Examples of the former are viscous fingering phe-
nomena in Hele-Shaw flow and diffusion-limited aggrega-
tion. In such systems, the fundamental question of pat-
tern selection centers on the chosen wavelength of cellu-
lar structures [1], finger width in a channel geometry [2],
or the fractal dimension of a growing cluster [3]. We
may term such systems open in the sense that the volume
enclosed by the evolving interface varies with time,
reflecting either a fixed pressure difference or fixed flux.
Less well explored are systems whose interfaces are closed
with respect to volume changes, typified by those in
which the bounded fluid is incompressible. In these sys-
tems, nontrivial patterns often arise from a competition
between surface tension and body forces (e.g., centrifugal
[4] or gravitational [5]).

We discuss here interfacial instabilities in Hele-Shaw
flow driven by the competition between surface tension
and long-range dipolar forces, and which, following a
complex dynamical process, appear to result in a variety
of stable stationary states. The dipolar interactions arise
from the magnetization of an incompressible ferrofluid
[6] by an external magnetic field. They could equally well
arise from the polarization of a dielectric fluid in an
external electric field [7], or from the oriented permanent
dipoles of amphiphilic molecules in Langmuir mono-
layers [8,9]. The equilibrium states have been observed
by several groups [6,10—13] and are qualitatively different
from the steady states mentioned above. A recent sys-
tematic study of fingering instabilities in magnetic fluids
[12] has revealed a surprisingly large array of possible
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branched treelike shapes, some of which are shown in the
left-hand panel of Fig. 1. An earlier treatment of this
problem [14] studied the connection between these com-
peting forces and the motion of the domain boundary in
the simplest gradient-flow model. There, the hydro-
dynamics of the medium enters only to the extent that it
provides viscous dissipation, which was further assumed
to be localized at the interface. In reality, the viscous dis-
sipation takes place throughout the domain, as described
approximately by Darcy’s law [15], and the interfacial
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FIG. 1. Experimental and theoretical final state patterns.
The left panel is from the experimental work of Dickstein, Er-
ramilli, and Goldstein [32], showing the variety of patterns ob-
tained following rapid steps in the magnetic field. The theoreti-
cal shapes, obtained from numerical solution of Eq. (19) with
p =20, are arranged according to the values of Nz and the ramp
rate B. As in experiment, higher magnetic fields lead to thinner
fingers, and higher ramp rates lead to more branching.
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motion is determined nonlocally because of the fluid’s in-
compressibility.

In Sec. II we describe a generalization of Darcy’s law
to the flow of dipolar fluids and show that the resulting
interface dynamics is a gradient flow. Section III is a dis-
cussion of the solution to the free-boundary problem by
means of conformal mapping techniques [16], the linear
stability analysis for circular shapes, and aspects of pat-
tern selection which have appeared in an earlier short
communication [12]. The qualitative similarity of the
theoretical patterns seen in the rest of Fig. 1 and in Fig.
2, obtained from the theory outlined herein, suggest the
validity of the simple model proposed for this competi-
tion of forces.

A fundamental feature of this system is that not only is
the interface motion determined nonlocally, but the
ferrofluid is subjected to a body force which is also intrin-
sically nonlocal. In the simplest model, valid for any uni-
formly dipolar fluid, this force may be recast as a self-
interaction of the boundary having the form of the Biot-
Savart force of a current carrying ribbon. The nonlocal
nature of the applied force allows for a secondary struc-
ture of “fingers” to develop, each having a characteristic
field-dependent width (Fig. 1). These are in turn connect-
ed via threefold nodes into a tertiary treelike structure.
Such branched domain patterns are found as well in
many magnetic systems [17] and in the intermediate state
of type-I superconductors in thin-film geometry [18]. In
light of the usual correspondence between magnetization
and current loops, this similarity is to be anticipated, the
superconducting Meissner currents being localized at the
superconductor-normal metal interfaces which are the
boundaries of the domains. It is these currents that pro-
vide the perfect diamagnetism characteristic of supercon-
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FIG. 2. Linear growth rate as a function of mode number for
Np=1.0 and 1.2 with p =20. The solid circles show the exact
result from Eqgs. (22) and (23), while the curves are the Bessel
function approximations. The upper and lower insets show
shape evolutions following instantaneous steps to the two values
of Ng.

ductors. We return to these systems in the concluding
section IV.

II. DARCY’S LAW FOR DIPOLAR FLUIDS

A. Formulation

We proceed first to define the experimental geometry.
The ferrofluid domain is trapped between two horizontal
glass plates separated by a distance h and surrounded by
another fluid with which it is immiscible, such as water.
In the absence of an applied field, the equilibrium shape
of the ferrofluid is determined solely by surface tension to
be that with minimum surface area for a given volume;
when viewed from above, this shape is clearly a circle. A
magnetic field Hy=H €, is then applied perpendicular to
the plates and the resulting motion is seen as a two-
dimensional area-preserving evolution.

To study the problem, we assume the dipole alignment
is along the direction of the applied field, and is a func-
tion only of its magnitude. The net result is a uniformly
distributed array of dipoles, the strength of which is
determined from the applied field M(H)=M (H,J,.
This approximation has been used by others [10,14,19,20]
and amounts to the study of the fringing fields of a paral-
lel plate capacitor. Here we use the lowest nonvanishing
contribution to write

HZHO—%';’-, (1)

where ¥(x,y,z) is the magnetic scalar potential found by
introducing a fictitious ‘“magnetic charge density”
oy =M1, where fi is normal to the planar surfaces of
the domain [21].

Under these approximations, and with the neglect of
inertial terms, the Navier-Stokes equation for the mag-
netic fluid [6] becomes

0=—(VP—MVH)+nV? . @)

Here, P is the pressure of the fluid and 7 is its viscosity.
The magnetic term M VH is reminiscent of the Kelvin
force density [6,21] except H here represent the local field
as opposed to the applied field. Following the standard
approach in Hele-Shaw problems, we take a parabolic ve-
locity profile vanishing on the plate boundaries, and then
average over the perpendicular direction to obtain [16,22]

h2
v= ~ 27 VI, 3)
where
_1 pn 2M
n= 5 fOP(x,y,z)dz+———h PY(x,p,h) (4)

and v(x,y) is a z-averaged quantity.

Equation (3) represents the Darcy approximation for a
magnetic fluid, and, when M =0, is identical to the equa-
tion obtained for a nonmagnetic fluid. Within the as-
sumptions of Darcy’s law, the precise form of the equa-
tion of motion for the ferrofluid-water boundary depends
on the relative viscosities 7; and 7, of the ferrofluid and
water, respectively, as described in Appendix A. Here we
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consider perhaps the conceptually simplest case, where
the outer fluid is taken to have a negligible viscosity.
Then the external pressure may to a good approximation
be assumed constant (say, zero). We are then left to solve
a Dirichlet problem for a simply connected region, the in-
terior of the domain D, in which V2[I=0 by the in-
compressibility constraint. If a is an arbitrary parame-
trization of the interface @, then the boundary condition
is

2M?
h

where o is the surface tension and « is the curvature of
the interface. The magnetic integral I(a) may be ex-
pressed in three equivalent forms. The first derives from
the interpretation of the magnetic scalar potential in Eq.
(1) as that arising from magnetic charge along the top
and bottom surfaces of the domain:

M(a)|e=0ok(a)+

Ia), (5)

1
Vix—x'2+(y—y')?

I(s)=fDdA’

- 1 . ©)

Vix—x'+(y—y')+h?

where x =x (a) and y =y(a) are the components of r(a).
A second form for I derives from the relation between
magnetization and current loops [14], J=cM X1,

Is)= @ ds'RXUs[VI+(h/RP—1]. M
Here, T is the unit tangent vector to the curve at arc-

length s, and R is the vector r(s)—r(s’). A third form,
useful in computation, is

(y —y)+R
(y =y )+V'R*+h?

I@)=§ dx'ln : (8)

where x =x (a), x'=x(a'), etc., and
R?=(x—x")*+(y —y')*.

The equivalence between these forms is shown in Appen-
dix B.

The first term in Eq. (5) is simply the excess (“Young-
Laplace™) pressure of an interface with surface tension,
while the second is the magnetic contribution. As no-
ticed previously [14], this term is simply the Biot-Savart
force of a current carrying ribbon on itself. Taken to-
gether, these imply a generalization of the interfacial con-
dition (see also [23]) given by

1 . 86
hI1 =—f—, 9
(a)le s a5 9)
where g =r,'1, is the metric and & is the energy func-
tional of an arbitrary shaped dipolar domain of height &
and contour length L [14,24]:

E=0hL—M*h § ds  dst(s) s )R /h),  (10)
e e
with
®(&)=sinh ™ (1/€)+E—V 1+€

and
R =|R|=]r(s)—r(s")] .

In Appendix B we recall [14] that the origin of the func-
tion ® is integration over the thickness of the slab of the
standard form for self-inductance, and that the familiar
form for a wire loop is recovered for R /h >>1.

B. Darcy’s law as a gradient flow

The generalization of the interfacial boundary condi-
tion in Eq. (9) still preserves an essential aspect of
viscously overdamped motion described by Darcy’s law,
namely, that it is a gradient flow [25]. That is, when the
energy may be expressed as a functional &[r] of the posi-
tion of the boundary in two-phase Darcy’s law flow, then
6 is a decreasing function of time. This is true indepen-
dent of whether & is a local or nonlocal functional of the
boundary. To establish this, first decompose the velocity
of the moving contour into the local Frenet-Serret frame,
of unit normal @ and tangent T,

r,=Ud+Wt. (11)

For an arbitrary functional #[r] whose functional deriva-
tive 8F/8r is in the normal direction, we obtain the gen-
eral relation
=Qds—n-—U, 12
i ¢ e Y g n or (12
where ds =daV'g. Two well-known special cases of this
result pertain to the evolution of the area 4 and length L
of a closed curve in the plane. With 84 /6r=Vg# and
8L /8r=V g ki, we obtain

A= gS@ds U, L= gS@ds kU . (13)

Consider first the case in which the outer fluid is, say,
air, having negligible viscosity (7,=0) and vanishing
external pressure. Then we identify II in Eq. (9) as the
limiting value of the pressure as the interface is ap-
proached from the interior of the fluid domain. Using
Darcy’s law for the fluid velocity on the boundary (equal
to the interface velocity), we may write

h 2 A
6,=— 27 gﬁ@ds I(s)a-VII . (14)

An integration by parts allows this to be expressed as an
area integral over the domain
h 2
6,=— dA(VII)?
127’1 2
=— P f :Dd Av

<0. (15)

The energy thus decreases monotonically in time, reach-
ing a stationary value only when the pressure is constant,
at which point the fluid velocity vanishes. Note [26] that
the dissipation is proportional to the square of the local
(z-averaged) fluid velocity in Darcy’s law (3), rather than
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being related to velocity gradients as in the full Navier-
Stokes equations. This lack of Galilean invariance in the
dissipation associated with Darcy’s law arises, of course,
from the no-slip boundary conditions on the upper and
lower plates.

In the more general case of nonzero external viscosity,
the analysis proceeds as above, except that we identify
the functional derivative of the energy with the jump in
the pressure across the interface:

h[Hl(a)I@—Hz(a)I@]=7§—n-§ , (16)
Then the energy evolves as
6,=5ﬁ@ds(nl—n2)v , (17)

which by the divergence theorem and the kinematic
boundary condition fi-v;=fi-v, in the interface leads to

h2
127,
B2
129,
<0, (18)

6:=——5— [ dany

J davny

where O is the domain outside the contour @.

III. INTERFACE DYNAMICS
A. Conformal mapping

The evolution of the interface is given by the condition
that its normal velocity be that of the fluid, while the
tangential velocity is as yet unspecified. Since tangential
motions have no physical meaning, we may choose a
tangential velocity for computational convenience. The
solution to the Dirichlet problem is known on the unit
disk, and we use conformal mapping techniques to map
that solution to the domain of interest. The interface
evolution equation then becomes one for the map itself
[16]. If the interface is described in the complex plane by
the function p(a), then

Re[29, A {11} ],ia
13qp!? ]

The integral operator A is similar to the Poisson integral
but takes a real function II(a) and returns an analytic
function whose real part evaluated at e’®is II(a). This is
most easily seen as follows: Given

M(a)=ay+ 3 (a,e™*+are "), (20)

(19)

9,p=i(3,pMA { ,

then
A{l(a)}=ay+2 Y a,z" . 21

The dynamical variables in the problem are thus the
Fourier coefficients a,,.

B. Linear stability analysis

To determine the stability of the initial shape, we
linearize Eq. (19) in the amplitude of small disturbances

about a circle. Setting

y(6,0)=[Ro+ 3, &, cosnbexplw,t)]e’®

and solving to lowest order in §, /R, we obtain

h’o 2 2
L= (1—n?)+p?NpD,(p)], (22)
) 12"7R(3) |n|[ n P Np p)]
where
n /2 cos(2nw)— cos(2w)
D, (p)= 2 —— 4o,
P k2="2 2k—1 2 fo V1+p%inte

(23)

and we have found it convenient to use the dimensionless
numbers

p=2R,/h and Ny=2M?h/o . (24)

The first is simply a geometric aspect ratio, while the
second is a magnetic Bond number, giving the relative
strength of dipolar to surface forces.

The form of Eq. (22) is identical to that obtained in an
earlier work [14], except for the overall factor of |n| /R,
and the particular coefficients in the prefactor
h%0 /129R 3. This modified n dependence arises from the
fact that in Darcy’s law the velocity is proportional to
gradients of pressure, whereas in the local dissipation
model, it is proportional to the pressure itself [27]. Fig-
ure 2 shows the function @, for p =20 and two values of
Njp. Note that ©,=0, since this mode corresponds to a
translation of the circle, and that the peak location and
width of the band of unstable modes increase with in-
creasing Bond number. At fields high enough that there
is more than one unstable mode, the competition between
those modes can translate slight variations in initial con-
ditions into large differences in the final shapes. Shown
as insets in Fig. 2 are shape evolutions at the two values
of N, obtained from the conformal mapping approach.
There is a strong correlation between the number of arms
in the final shape and the fastest growing mode from the
dispersion relation. Such instantaneous jumps cannot be
realized experimentally. Rather, the field is ramped to its
final value. Section IIIC discusses the consequences of
this ramping in more detail.

We may gain some physical insight into the mechanism
of the instability by considering the case of thin layers
(p>>1) and using the aysmptotic properties of the in-
tegrals in Eq. (23) established by Thiele [28]. We obtain

ho|n|
“n=129R} {(”Z—U—%NB (n?—1)[ In(4p)—1]
.
+(1—2n2)
;Ez 2j—1 ] ]
+0(1/pY . (25)

The complicated dependence on the mode number in Eq.
(25) reflects the long-range dipolar forces. An accurate
analytic approximation in this limit is [14]
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D,(p)=i[In(n)+Ky(2n/p)—Ky(2/p)],

which may be manipulated to yield
2
w,~———((1—n?){1—L1Ng[1+ In(p)—C]}

—1Ngn2in(n)) , (26)

where C=0.57721... is Euler’s constant. Apart from
the final term, there is a common factor of |n|(1—n?),
which, upon review of Eq. (22), comes from the curva-
ture, thus indicating the interpretation of an effective ten-
sion

og=0{1—31Np[1—C+1n(p)]}, 27

a result established in [14] in the context of the local
model of dissipation and by De Koker and McConnell by
similar means [29]. From this, we deduce the critical
Bond number for a negative tension:

N3 =~2/[1—C+In(p)] .

Of particular interest is the most unstable mode n* as a
function of magnetic Bond number, which from the ap-
proximation (26) is expected to have an exponential
dependence on the inverse of Ngz. This can be equally
well seen in the buckling instability of a straight interface
[10], wherein the energy of a weakly perturbed interface
has the form

_ dk A
é’—émigm*—f—z—;ﬂ(k)lg(k)|2+ e (28)
The coefficients (k) are
QUk)=0chk*—4M?*{C + In(1hk)+K,(hK)} ,  (29)

where K, is a Bessel function. If we consider the case of
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FIG. 3. Fastest-growing mode as a function of Bond number
in the limit of large aspect ratios. Shown are results for three
different aspect ratios (p =10, 25, and 50 from bottom to top).
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FIG. 4. Dimensionless wave vector k* with largest growth
rate, obtained from graphs in Fig. 3, demonstrating the ex-
ponential dependence on the inverse Bond number.

wavelengths long compared to the three-dimensional
cutoff, hk << 1, then we may expand the Bessel function
and obtain

Q=[oh—M?h*(1—-C)]k>+M*h*k*In(Lhk) . (30)

Thus, on purely energetic grounds the most unstable
mode is again exponential with the Bond number

—2/Ny

hk*=~2e€~ 12 (31)

To the extent that the magnetization is proportional to
the applied magnetic field H, in an experiment, we have
Njp < H3, providing a simple guide to experiment. Figure
3 shows overlaid plots of the most unstable mode as a
function of N, obtained from the large-aspect-ratio limit
in Eq. (25). Figure 4 displays the same data rescaled by
the aspect ratio to yield a dimensionless wave vector
hk*=2n*/p and plotted semilogarithmically versus
1/Ng. The good approximation to an exponential is
clear, and we see in this limit that there is indeed a well-
defined most-unstable wavelength, independent of
domain radius. Experiments testing this relation will be
reported elsewhere [30].

C. Pattern selection

Experiments [12] have revealed that the wavelength of
the initial instability of a circular domain depends on the
rate at which the magnetic field is ramped through the bi-
furcation. This is to be expected, since the fastest-
growing mode is then itself a function of time. Most
striking is the appearance of an approximate scaling law
between the initial mode of instability n* and the ramp
rate (dH /dt) of the magnetic field. Thus, if the magnetic
field was of the form H(t)=pt, where B is a constant,
then there is a relation of the form
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n*~pg*, 32)

with ¢~0.2-0.25.

To explain this behavior, we first hypothesize that the
initial shape is a circle perturbed by a random distribu-
tion of modes &, with no n dependence to those ampli-
tudes. Second, we assume that mode selection is com-
plete when some amplitude reaches a critical value. Be-
cause the magnetization M (¢)=yH (t) is time dependent,
so too is the growth rate o, in the linear stability analysis
[31]. This implies that the amplification factor by which
the mode n has grown in time ¢ is not simply exp(w,?),
but rather

exp

JJaro,u]. (33)

It is then reasonable to expect that the selected mode will
be the one that reaches its critical amplitude in the shor-
test time.

To see the role of the time-dependent magnetic field,
consider for the moment an infinite system, replacing
modes n by wave vector k, with a simplified growth rate
o(k,t) having a competition between two terms:

o(k,t)=a(Bt)’k™—bk" , (34)

where n > m. Integrating with respect to time, and mak-
ing the additional simplifying assumption that the critical
amplitude for mode selection is k independent, we find
the time 7(k) for the mode k to reach criticality is the
solution to

a
v+1

with C, a constant. Now differentiate with respect to %,
and set d7(k)/dk =0, and substitute back into (35) to ob-
tain the critical wave vector k*, which scales with ramp
rate as

Brr(k) kM —rk)k"=C, , (35)

v
n(l+v)—m '

In the context of the fully hydrodynamic calculation,
the time constant 7(n) satisfies

2

129R}

k*~pY, ¢p= (36)

|nl{o(1—n?)r, +2h (pBx 3D, (p)}=C, .

(37)

Figure 5 shows the function 7, obtained from Eq. (37) for
a particular (arbitrary) value of C, and three hundredfold
multiples of some S, The shallow minimum in 7, clearly
moves out with increasing field ramp rate, and, as shown
in the inset, displays a good power law with an exponent
¥Y=~1/4.2~0.24, in fair agreement with experiments.
The fact that ¥y=~1 may be understood by recognizing
that the experiments probe wave vectors which begin to
approach the regime kh ~1. The fact that the domain is
circular is then unimportant, and we may refer to the
buckling instability of the edge of a semi-infinite domain
described by Eq. (28). In this regime, the magnetic con-
tribution D, is dominated by the logarithmic term, so the
exponent m in (34) is 1, apart from logarithmic correc-
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FIG. 5. Curves of 7, for various ramp rates 8. Each curve
has a B of 100 times the previous. Note how the mode selection
time is reduced for higher ramp rates. The inset shows theoreti-
cal results (solid line) and experimental data for n(B) [32] on
three domains of differing size.

tions, while the bare surface tension dominates at high k,
so n =3. From Eq. (37), with v=2, we find ¢y=1. The
data in the inset of Fig. 5, taken from [12] and [32], show
the scaling observed for ferrofluid drops of three different
initial radii. Although the prefactors of the experimental
power laws vary with drop size, the exponent is robust, as
is predicted from this analysis.

D. Numerical results

Numerical solutions were begun with circular initial
states perturbed by a small amount of random noise dis-
tributed in the first eight azimuthal modes. The evolu-
tion was then accomplished by Euler stepping forward in
time, respacing the points after each iteration. We also
increased the number of points periodically in order to
preserve accuracy, but kept as few as possible in the in-
terest of speed. A typical simulation begins with a grid of
64 points and ends with 512, taking on the order of 250
mfloph. Computationally, it was inconvenient to use
ramp rates leading to final states of high complexity, so
most of our results are for relatively simple shapes and
are summarized in Fig. 1. There is certainly a qualitative
resemblance between the experimental and theoretical
shapes, and, indeed, faster ramp rates do indeed result in
higher complexity. We are also encouraged by the con-
stant arm width, which depends on the final field value,
and the slightly bulbous ends.

Figures 6 and 7 show overlaid contours from the near-
circular initial shape to a branched figure in the late
stages of the dynamics. As in experiment, we see quite
rapid evolution from the circle to a particular branched
geometry, followed by a more gradual spreading of the
pattern primarily accomplished by motion at the tips of
the fingers and accompanied by a gradual thinning of
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FIG. 6. Fingering instability from conformal mapping solu-
tion, overlaid in time to illustrate the stages of shape evolution.
The initial near-circular shape has aspect ratio p =2.0, and the
evolution takes place for Ny =21.

their widths.

Finally, while it wyas quite clear that the experimentally
obtained final states were stable, it was a much more
difficult task to determine this computationally. We end-
ed up stopping the routine when the motion had slowed
down considerably from its peak value (at least an order
of magnitude). In some sense, this is equivalent to the ad-
dition of an extra “sticking force” of some kind, which
probably exists to some degree experimentally; however,
it does make it impossible to say for sure whether the
theoretical final states are truly stationary, or just ex-
tremely slowly varying.

IV. CONCLUSIONS

While the present work has addressed the shape insta-
bilities and dynamics of a single magnetic domain, we
suggest that these results have bearing on the complex
many-domain problem often encountered in magnetic
and superconducting systems. The range of morpholo-
gies observed, from well-ordered stripe patterns to intri-
cately interdigitated branched structures, mirrors those
seen in single domains. We suggest that a fruitful ap-
proach to the many-domain problem, from both concep-
tual and calculational points of view, is its reduction to a
many-interface representation. Indeed, the competition
between surface tension and Biot-Savart forces studied
here emerges as a particular limit of the interface motion
appropriate to the Ginzburg-Landau model for supercon-
ductors [33].

The simplest energetic model [34] for the many-domain
problem would be the generalization of Eq. (10) to a set of
interacting current loops whose positions are given by the
set of vectors {r;},

6l{r;}1= 3 vL,
— 13 M?h $ds; Pdsfis,)s))
)

X®(|r(s;)—r(s])|/h) ,
(38)

where L; is the length of a given loop and the second sum
runs over all pairs of loops, each loop traversed in the
same direction. In its application to type-I superconduc-
tors, additional terms proportional to the area of each
loop would be present, reflecting the difference in free en-
ergy between the bulk superconducting and normal
states.

This simplified representation should allow one to un-
derstand how the interactions between domains affects
the shape transitions of each, particularly as they relate
to the collective instabilities of ordered arrays such as
stripes and bubbles. While it appears that detailed nu-
merical study of a model with such long-range interac-
tions will require significant computational effort, recent
work on spectral approaches to the associated vortex
sheet. calculations [35], coupled with fast-summation
techniques and multipole expansions for far-field contri-
butions, should make this study tractable.

Finally, it is of interest to address the hydrodynamics
of fingering instabilities in amphiphilic monolayers.
Here, one may consider a very simple model based on
Stokes flow in two dimensions, where the balance be-
tween viscous dissipation and pressure takes the form

puviv=vp . (39)

The linear stability problem in this limit has recently
been considered, while the full interface problem is under
active study [36], as is the coupling between the in-plane

FIG. 7. Asin Fig. 6, but for a different initial condition.
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flow and that of the underlying fluid [37]. Inclusion of
thermal fluctuations into such hydrodynamic approaches
should allow for the study of finite-temperature fluctuat-
ing interface dynamics. A simpler dynamical approach
described elsewhere [38] begins to address the effects of
thermal fluctuations in dipolar systems.
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APPENDIX A: BOUNDARY INTEGRAL METHOD
FOR GENERALIZED DARCY’S LAW

Here we provide a brief discussion of the vortex sheet
representation for Hele-Shaw flow, generalizing existing
analyses for motion driven by surface tension and an
external gravitational force [39]. First, observe from
Darcy’s law that the tangential components of the fluid
velocity are related to the pressure boundary condition
through

127,
h 2

127,
h2

A

(VHZ—VH1)|@=—t v2— V] (Al)

Define the average fluid velocity V=(v,+v,)/2, average
viscosity 7=(7,+1,)/2, and viscosity Atwood ratio

_ MM

. (A2)
Tt
Then (A1) becomes
1271 ~
as<An)=—T;l[?-(v,—vz)—zA,,t-V] . (A3)

The pressure jump AII is given by Eq. (5), while the
tangential velocity discontinuity gives the vortex sheet
strength ¥ =t-(v,—v,). In addition, the mean velocity V
is given by the Birkhoff-Rott integral [40]

V= lp [ar XTI e as
s)=— s s')ds' ,
2m )-GO |
where P means a principal-value integral. Hence, the
vortex sheet strength solves the integral equation
1 €, X[r(s)—r(s")]
(s)—2A4,—P | ds’ (s’)ds’
L4 2w f Ir(s)—r(s")|? yisas
__ h? 2M?
T oK, + h I (AS)

In the simplest case of zero viscosity contrast (A4, =0),
we see that the integral equation simplifies to give the

vortex sheet strength directly in terms of the competing
Young-Laplace and Biot-Savart forces.

APPENDIX B: EQUIVALENCE OF TWO
EXPRESSIONS FOR THE MAGNETIC PRESSURE

In this appendix we show the equivalence between the
two expressions for the magnetic integral I(s), Egs. (6)
and (7),

I9)=§ ds'RXRUsN[—1+V1+(h/R)]

=1,+1, (B1)
and
1 1
II — Al —_———_—
(5)=[ da'| 3 rayy
=I1+15, (B2)

which follow, respectively, from the alternative views of
magnetization as arising from magnetic “‘charge” and cir-
culating currents. Here,

R=Vi(x—x")V+(y—y)?,

and in (B1) points on the contour ar given by the vectors
r(s)=(x,y) and r(s')=(x",p’), with x =x(s), x'=x(s"),
etc. In (B2) the primed coordinates x’ and y’ are integra-
tion variables within the domain.

To begin, note that T(s’)=(x,.,y,.), arrd thus

(x —x")y, —(y —y')x,

Vix —x")P2+(y —y')

The equivalence with I] is shown first by using the Stokes
theorem

$ F-dl'= [ dA'(VXF)d

Iis)=—§ ds' (B3)

with VXF=R "!¢,. The vector F may be written as
F=f(x,y|lx',y')e,, with

flxplx',y")=In[y —y'+R],
or as
F=—f(y,xly’,x")e, ,

or, more symmetrically, as one-half the sum of these. We
then obtain

(B4)

Ii(s)=$ ds'x; Inl(y —y")+R] . (BS)
An integration by parts yields
1=¢ds'(x —x )—{ln[(y —y')+R]} . (B6)

After carrying through the differentiation, performing a

number of rearrangements easily recovers Eq. (B3),
demonstrating that I, =1I].
To relate the integrals I, and I, we first write
Lis)=¢ dsr BXUS) prs (B7)
e R
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and note that RXt(s')=R-fi(s’). Further, since
V'[In(R)]=—R/R?,
I=—§ ds'&"V'(InR)VR>+h?, (BS)
By Green’s identity, we then have
— [ d4'TVR7+h?V(InR)
+V'(InR)-V'VR>+h?] . (B9)

Since V'*(InR)=0, we obtain I, =1},

Finally, we discuss the relationship between the mag-
netic integrals entering the energy and boundary condi-
tions and those familiar from treatments of the self-
induction and Biot-Savart force on current-carrying wires
[21,41]. We recall first that the magnetic energy in Eq.
(10) arises from integrations over the thickness of the slab
of a Coulombic interaction between the tangent vectors
to the boundary [14,24],

) HUs”
6=—Mm*["az§ ds ['dz' § ds lr(stz)s—tr((ss)z)l

(B10)

This is fully equivalent to the general formula for the
magnetostatic energy due to currents j(r) [41]:

sl fair J(’—Jﬁ— (B11)

if we take the currents to have magnitude |j|=cM per
unit height and be confined to the ribbon-shaped bound-
ary of the slab. For distances |r(s)—r(s’')| large com-
pared to A, the self-induction integral is approximately

T(s)E(s")

Ir(s)—r(s")] (B12)

6=—1M*h>$ ds$ ds’

the familiar form for wires of negligible thickness.
The force integral, Eq. (7), also simplifies in this limit,
giving a pressure

ERE TR
Ir(s)—r(s")]

the familiar Biot-Savart force which is partner to (B12).

U(s)=—M*h>$ads’ (B13)
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FIG. 6. Fingering instability from conformal mapping solu-
tion, overlaid in time to illustrate the stages of shape evolution.
The initial near-circular shape has aspect ratio p =2.0, and the
evolution takes place for Ny =21.



FIG. 7. Asin Fig. 6, but for a different initial condition.




