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Labyrinthine Pattern Formation
in Magnetic Fluids

Akiva J. Dickstein, Shyamsunder Erramilli, Raymond E. Goldstein,*
David P. Jackson, Stephen A. Langer

A quasi two-dimensional drop of a magnetic fluid (ferrofluid) in a magnetic field is one
example of the many systems, including amphiphilic monolayers, thin magnetic films, and
type I superconductors, that form labyrinthine patterns. The formation of the ferrofluid
labyrinth was examined both experimentally and theoretically. Labyrinth formation was
found to be sensitively dependent on initial conditions, indicative of a space of configu-
rations having a vast number of local energy minima. Certain geometric characteristics of
the labyrinths suggest that these multiple minima have nearly equivalent energies. Kinetic
effects on pattern selection were found in studies of fingering in the presence of time-
dependent magnetic fields. The dynamics of this pattern formation was studied within a
simple model that yields shape evolutions in qualitative agreement with experiment.

Several distinct physical systems form
strikingly similar labyrinthine structures.
These include thin magnetic films (1, 2),
amphiphilic "Langmuir" monolayers (3-5),
and type I superconductors in magnetic
fields (6). Similarities between the energet-
ics of these systems suggest a common
mechanism for pattern formation. In each
case, the labyrinth is formed by the bound-
ary between two thermodynamic phases
(oppositely magnetized domains, expanded
and condensed dipolar phases, or normal
and superconducting regions), and has an
associated surface tension favoring a mini-
mum interface length. Each also has long-
range dipolar interactions. These may be
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pendent shape a unique energetic ground
state or does the energy functional contain
multiple minima? (ii) If the latter, are the
minima roughly equivalent in energy? (iii)
Might kinetic considerations force a relax-
ing system into a metastable minimum in-
stead of the true ground state? Such ques-
tions are of course not confined to these
particular examples of pattern formation,
but also arise in systems such as spin glasses
(9) and protein folding (10).

Motivated by the above-mentioned sim-
ilarities among labyrinthine pattern form-
ing systems, we have investigated the fin-
gering instabilities of macroscopic domains
of magnetic fluids (also known as "ferroflu-
ids"), which are colloidal suspensions of
microscopic magnetic particles in a hydro-
carbon medium (1 1) . Ferrofluids are known
to produce complex labyrinthine patterns
when trapped between closely spaced glass
plates (a "Hele-Shaw cell") and subjected
to a magnetic field normal to the plates
(1 1-13). Here, as in the systems described
above, there is a competition between the
ferrofluid-water surface tension and bulk
induced magnetic dipole interactions. The
motion satisfies a global constraint (fixed
fluid volume) and is dominated by viscosity.
The macroscopic nature of this system af-
fords distinct experimental advantages, in-
cluding ease of visualization and direct con-

0 0 X 1

Fig. 1. Stages in the fingering instability of a
magnetic fluid drop of initial diameter 2.1 cm, in
a field of 87 gauss, as seen from above.
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igth of dipolar interactions. which branches met at nearly 120°. They
on the shape evolution of may be classified according to their "topol-

is made unstable by the ap- ogy," the particular connectivity of the
iagnetic field. These exper- nodes. We have observed all possible dis-
plementary to recent studies tinct topologies for n ' 7, and many topol-
e relaxation in amphiphilic ogies for larger n.
). We obtained experimen- Equivalence of multiple minima. As is
the three questions raised apparent from the branched patterns in Fig.
ribe here theoretical models 2, even within a given topology there was
,produce the essential qual- variability of the details of the shape. Nev-
of the experiments. ertheless, the trees formed under given
Fmultiple minima. The ex- experimental conditions (ramp rate and
aratus (17) was similar to final field value) yielded similar values for
scribed (18). Snapshots of two very basic geometric quantities: the
:ion of a drop undergoing a perimeter L and radius of gyration RG,
ility are shown in Fig. 1. We defined as R'=(l/L) i ds[r(s) - rJ2. Here
instability of the circular r(s) is the boundary of the pattern, s is
quickly to a well-defined arc length, and r, (i/L) ; ds r(s) is the
ture (a "tree") that then center of mass of the boundary. A conve-
:any further change in con- nient method for summarizing the shape
ping the field slowly back to evolution is to consider its trajectory in the
he shapes to their original L - RG plane, with time varying paramet-
although rapid quenching rically (Fig. 2). Evidently, patterns which
Ited in fission into droplets. differ in the details of their branching may
of the patterns from one run nevertheless exhibit a high degree of over-
illustrated in Fig. 2, which lap, both during the evolution and in their
oduced by ramps to low and final states. We suggest below that this
hese ramps generally were overlap indicates that these patterns have
i 1 second. The patterns are nearly equivalent energies.
volutions lasting for approx- Kinetic effects. We found that the de-
50 second after the applica- gree of branching of the initially circular
The local stability of these shape depended not only on the magnitude

ted by superimposing on the of the applied magnetic field, but also on
Ad a small sinusoidal field. the rate at which that field was ramped to
urbed the arm positions and its final value. This pattern selection may
returned to its original shape be quantified by determining the wave-
rating field was removed. length X of the initial instability by exam-
ees differed in the shapes, ining videotaped images just after the onset
innectivity of their branches of the ramp. Although, as a result of tip-
ied trees had n free ends and splitting or competition between branches,
old coordinated nodes, at the stationary long-time tree and the initial

instability may differ in the number of their
branches, the initial instability is more

I*' 'I,.' l likely to be understandable within a linear
or weakly nonlinear analysis. The initial
mode number n = L/X depended on the
field ramp rate a dH/dt, as ax varied over
three orders of magnitude (Fig. 3). An

r t _ ~~~~approximate power-law behavior, n = (dHI
dt)* is shown in the inset, along with the
prediction i = 0.25, arising from the the-
ory described below. The selection occurred
long before the ramping was complete.

Energetics. A theory for this pattern
formation must address both the energetics
and the dynamics of labyrinthine struc-

I I tures. In designing the simplest model, we
5 10 15 assume that the magnetization M = M2

LILO within the domain is uniform (20), but
account for the energy associated with the

hs (upper left) RO = 0.55 cm, H demagnetizing field, so the magnetic energy
ver right) RO = 1.1 cm, H = 87 is just that of two sheets of opposite charge
idicate radii of gyration. Paths density a = M z, separated by a height h in
perimeter (L) and radius of tne z direction, and boundei by the curve

)rmalized by the values for the r(s) in the xy plane. It is thus equivalent in
wing high degree of overlap. form to the energy of a parallel plate capac-

itor, a model used to describe dipolar am-
phiphilic domains. The field energy may be
expressed (15) as a pair interaction between
the local unit tangent vectors t(s) of the
curve. Apart from a term proportional to
the slab volume, the total energy is
,9o[r]=

yL - M2h;dsids't(s) . t(s')(D(R/h) (1)
where y is the line tension, R = IRI = Ir(s)
- r s' I, and ¢(e) = sinh-'(1/e) + g -

+ . The somewhat complicated func-
tion cP(R/h), arising from integrations over
the thickness of the slab, decays like 1/R at
large R, but crosses over to -InR at small R,
preventing divergences in the integral and
obviating the need for additional small
scale cutoffs (2 1). The form of the magnetic
interaction in Eq. 1 is to be anticipated
from the usual association between magnet-
ic moments and current loops, the scalar
product reflecting the attraction (repulsion)
between parallel (antiparallel) current-car-
rying wires.

Just as the existence of long-range forces
in fluids justifies mean or molecular field
theories, we expect the magnetic energy to
be less sensitive to details of the spatial
arrangement of the interface than to the
overall scale of the pattern, given by RG.
The surface energy naturally scales with the
perimeter L, so different experimentally
observed shapes with similar L and RG are
likely to be similar in energy.

Turning now to the details of the
branched patterns, we find a convenient
dimensionless measure of the relative
strength of dipolar and surface energies is
the Bond number (11)

NB,= 2M2h2/,y (2)
When NBo is small, line tension dominates,
and the droplets will be circular. When NBo

40

30

5=
.520 S
o ~ ~ ~ ~20

10e 10

100 101 102 103 104
dH/dt (gaussas)

0 1, A

0 1000 2000
dH/dt (gaussls)

Fig. 3. Initial mode of instability n as a function
of magnetic field ramp rate, for quenches of a
4.9-cm (diameter) circular drop to 265 gauss.
Inset shows data on a log-log plot. The slope of
the line is 1/4, as shown in Eq. 14.
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is large, dipole forces dominate, and laby-
rinthine patterns develop. The Bond num-
ber for electric dipole systems with dipole
density p, per unit area is obtained by
substituting p, = Mh in Eq. 2.

To understand the well-defined arm width
seen in the experimental patterns, consider a
long, thin, rectangular stripe of width w > h,
length ( > w, and conserved area A = wl. If
we ignore end contributions, the surface en-
ergy of the stripe is 2ye. To estimate its
magnetic energy, we focus on the scaling
properties of the double integral in Eq. 1,
approximating the function (D¢(e) by 1/2t for e
> 1 and 1/2 for 0 < e < 1. Recognizing that
w replaces h as the cutoff for interactions on
opposite sides, we obtain the estimate

-0- 2^y( + 2M2h2f41n(h/w) - 1] (3)
Minimizing with respect to w at fixed A,
and considering the limit h2/A < 1, we find
the equilibrium width

w ~ he2'/NB (4)
Thus the width decreases with increasing
field, as is indeed the case in experiment
(Fig. 2). The observed threefold coordina-
tion of the nodes in the pattern arises from
the interplay of the repulsion of the arms
and surface tension effects. A fourfold node
is unstable to the creation of two threefold
nodes with internal angles of 1200.

Dynamics. At the ferrofluid-water inter-
face the force that leads to shape relaxation
is the pressure difference All arising from
the line tension and magnetic interactions.
That pressure is related to the energy % via

A~~~l=-6~~(5)br
fi is the unit outward normal to the inter-
face. The simplest dynamical model (15)
for the pattern formation is that the shape
follows the path of steepest descent of its
energy: a "gradient flow" in configuration
space. Here, the dissipation is taken to be
local (as one might find for domain wall
motion in solid-state systems), and

ar - - 8%
ia-=raHl=-rfi- (6)at 8r

where F is a kinetic coefficient. The con-
straint of constant enclosed area is enforced
with a Lagrange multiplier p by using a
Legendre-transformed energy % = O- pA
in Eq. 6. The resulting equation of motion
for this "dissipative dynamics" is

ar
f. =-YK+2M2+ds' X t(s')

at

X[Vil+ (h/R) - 1 + p[r(s)] (7)

where K(S) is the curvature, A = R/R, and
plr] is determined by dA/dt = O. The first
term in Eq. 7 is the familiar Laplace pres-
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sure across a curved interface, while the
second is the Biot-Savart contribution from
a current ribbon of finite height h.
A more realistic description of the hydro-

dynamics in the Hele-Shaw cell accounts for
the entire flow field through Darcy's law
(22), which gives the fluid velocity v in
terms of gradients of the total pressure HI,

v=-FVIH (8)
Here, F = h2/12iq, and q is the fluid
viscosity. This law of motion, also applica-
ble to flow in porous media, may be derived
by neglecting the inertial terms in the
Navier Stokes equation and assuming that
the dissipation is dominated by viscous
interactions with the plates. The velocity v
in Eq. 8 is a two-dimensional, z-averaged
quantity, and the pressure jump in Eq. 5
becomes a boundary condition applied at
the ferrofluid-water interface. Area conser-
vation is automatically obtained from the
incompressibility of the flow (23).

These two approaches to the interface
evolution are complementary; the first, in
focusing on the forces and ignoring the
nonlocality associated with the fluid incom-
pressibility, is computationally simpler,
while the second is more faithful to the
hydrodynamics but computationally inten-
sive. We have studied both in detail and
find their predictions to be qualitatively
similar, although quantitatively distinct.

Insight into the basic mechanism of the
fingering instability comes from a linear sta-
bility analysis of a circle of radius Ro (12,
15), particularly in the limit of large aspect
ratio, Ro/h > 1, which is the case for our
experiments. A perturbation of the radius of
the circle in the form ~n(t)cos(n6) evolves as
adi/at = cni,, where the growth rate con in
Hele-Shaw flow is given for small n by

r
rn [i3n'1 - n2) - M2h2n2ln(n)

(9)
The result from dissipative dynamics dif-
fers only in the absence of an overall factor
of n/RO, reflecting the additional gradient
in Eq. 8. Here, the effective line tension is

y = --M2h2[1 -C + In(2Ro/h)]

selection in the ramping experiments follows
from these results. Let us suppose that the field
is linear in time, as in our experiments: H =
At. Then, for fields below the saturation
magnetization, M will also be linear: M =
Xat, where X is the susceptibility. From Eq.
11, at different times different modes will be
growing fastest, and the mode which is ob-
served at long times will be the mode which
was growing fast enough and long enough to
acquire a sufficient amplitude to suppress the
other modes. If the ramp is slow, low-order
modes grow large before higher ones become
unstable, and the pattern has few branches. In
a fast ramp, the low modes have not had time
to grow before higher modes, with faster
growth rates, become unstable and overtake
them.
When the wavelength of a mode is small

compared to the perimeter of the circle,
and the magnetization has the above-men-
tioned time dependence, we find that the
dispersion relation is well approximated by
the form

(7n(t) = i3 (X0,)R,~-7Ro)
(12)

If there were no explicit time dependence to
a, it would be plausible to postulate that the
fastest-growing mode would be selected.
With time dependence, however, we claim
that mode selection occurs through nonlin-
ear effects when the amplitudes reach some
threshold value. The time Tn required for the
nth mode to reach the threshold is given by

L(0) [e Jt (t)= constant

(13)

--8

a-

-9

(10) Wl

where C is Euler's constant. Equations 9
and 10 show that, as the magnetic field (or
aspect ratio) is increased, the circle be-
comes unstable (cra > 0) due to an effec-
tive negative line tension while the mag-
netic forces stabilize the short-wavelength
modes. Within this approximation, the
fastest growing mode n* is given by

n* -

R

e - 2/NBO,lh
increasing with increasing field.
A qualitative explanation for the mode
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Fig. 4. Shape evolution and energy relaxation
from the dissipative dynamics formalism, for
NBO = 1.12 and Rolh = 10.0. Dashed line
indicates the energy of a perfect circle, solid
lines are for three initial conditions weakly per-
turbed from a circle. The unbranched structure
lies lower in energy.
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The selected mode n* will be the one with
the smallest Tn. From Eqs. 12 and 13, we
find that n* scales as a power of the ramp
rate a,

(14)
in fair agreement with the data (see Fig. 3).

The linear analysis is of limited predic-
tive ability regarding the final state. At
present, an understanding of the nonlinear
regime requires numerical study. The mod-
els described above allow us to study branch
competition near the linear regime, as well
as to compare the energies of the patterns
obtained at long times. Figure 4 shows three
evolutions from nearby initial conditions
obtained with the use of the dissipative
dynamics in Eq. 7. We see that the un-
branched tree lies lowest in energy, and
that there is apparently a "vertex energy"
associated with each threefold coordinated
node.

The fingering of several branched struc-
tures obtained from a conformal mapping
approach (16, 24) to the Hele-Shaw dy-
namics is shown in Fig. 5. The overall
structure is in good qualitative accord with
the experimental patterns, displaying a
well-defined finger width and the proper
internal node structure. We do not expect
nonuniformities in the magnetization to
make qualitative changes to the pattern
formation although there may be quantita-
tive effects, such as a lowering of the energy
below that estimated in Eq. 1. An under-
standing of these effects remains, however,
an open problem. The dynamics also dis-
plays sensitive dependence on initial con-
ditions, in the sense that nearly identical
starting configurations (circles perturbed
slightly by different sets of modes Q can
lead to vastly different final states. These
initial conditions can arise experimentally
as a consequence of thermal fluctuations or
material inhomogeneities. The precise con-
nection between these initial perturbations
and the final branched structures is not
completely understood. In accord with ex-
periment we find that fourfold vertices are
unstable toward vertex fission, creating two
threefold vertices. This process bears a re-
semblance to topology transitions in soap
froths (25). In numerical simulations, it is
often extremely difficult to distinguish be-
tween true local minima and very shallow
slopes of the energy functional in the con-
figuration space. Thus, we cannot rule out
the possibility that the experimentally ob-

o
Fig. 5. The theoretical shape evolutions ob-
tained from conformal mapping solution to Dar-
cy's law dynamics for magnetic fluids. Both
sequences are for R1/h = 10.0 and NBO = 1.20.
The top resulted from a ramp in NBO., while the
bottom followed an instantaneous jump of the
Bond number.

served patterns are not true local minima,
but are made locally stable by stick-slip
friction against the plates in the Hele-Shaw
cell or other effects not accounted for with-
in Darcy's law.

In conclusion, the branched patterns
seen in experiment can be understood with-
in perhaps the simplest dynamical models
incorporating the competition between sur-
face and dipolar energies. Taken together,
the experimental and theoretical results
indicate that an enormously complex ener-
gy landscape in the space of shapes can arise
from a competition between short-range
forces and long-range dipolar interactions
in systems subject to a geometric con-
straint. A static theory of labyrinths would
find only the minimum energy configura-
tions, whereas the dynamic theories reflect
the complexity of the landscape in the
complexity of the labyrinths.
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