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Tubular growth by chemical precipitation at the interface between two fluids, a jet and its surroundings,
underlies the development of such important structures as chimneys at hydrothermal vents. This growth
is associated with strong thermal and/or solute gradients localized at those interfaces, and these gradients,
in turn, often produce radial compositional stratification of the resulting tube wall. A fundamental question
underlying these processes is how the interplay between diffusion, advection, and precipitation determines
the elongation rate of the tubes. Here we report experimental and theoretical results that reveal a regime
in which there exists a new scaling law for tube growth. The model system studied consists of a jet of
aqueous ammonia injected into a ferrous sulfate solution, precipitating iron hydroxides with varying
oxidation states at the jet boundary. Despite the complex chemistry and dynamics underlying the
precipitation, the tube growth exhibits a strikingly simple scaling form, with characteristic lengths and
times increasing linearly with the mean velocity of the jet. These observations follow from a kinetic model
of advection-dominated flows.

Natural and artificial1 mechanisms by which tubular
structures form often rely upon preexisting, static tem-
plates that direct precipitation or mineralization. Less
commonly known are growth processes occurring on
dynamic templates, which define an area of emerging
importance within the fields of fluid dynamics and pattern
formation: free-boundary problems in precipitative growth.
Examples include chemical gardens2-4 grown in silicate
solutions, tubular growth templated by bubbles5,6 or
evaporation-driven growth,7 and speleothem growth dy-
namics in limestone caves8,9 with connections to the growth
dynamics of icicles.10,11 Here we address the question, How
does a tubular structure grow when precipitation occurs
at the boundary between an injected jet of fluid and its
surrounding fluid? At hydrothermal vents,12 the injected
fluid and its surroundings differ by two diffusible quanti-
ties: thermal energy and solute concentration.13,14 The

injected fluid flow is often highly turbulent,15 but slow,
laminar flows are also known. In light of the difficulty in
studying such processes in situ, we propose here that a
quantitative understanding of this class of phenomena
will best be achieved through the development of highly
controlled model systems. A few such examples have been
introduced,16 but they have not been explored systemati-
cally. An important exception is the study of so-called “ice
stalactites”,17,18 which form around descending saline
plumes under sea ice. Laboratory investigations have
shown that a simple diffusive growth law emerges from
the combination of double diffusion (heat and salinity)
and solidification.

Our system (Figure 1a) consists of a jet of aqueous
ammonia that is injected via a syringe pump (New Era
Pump Systems N1000) through a 21-gauge needle (radius
a ) 0.025 cm) affixed at the base of a glass chamber (5 ×
5 × 30 cm) in which resides a 0.08 M FeSO4 solution
adjusted with H2SO4 to pH 2.3. The volumetric flux Q of
ammonia solution in our experiments is typically in the
range of several milliliters/hour. Once the fluid exits the
nozzle, its velocity profile is nearly constant over its cross
section, which is in contrast to ordinary pipe flow with
rigid sidewalls. This follows from the fact that the porous
tube walls cannot support appreciable shear stress. It is
useful to speak of the average fluid velocity, u ) Q/πa2,
which here corresponds to velocities in the range of several
millimeters/second. On the scale of the jet radius, the
Reynolds number, Re ) ua/ν (in which ν ) 0.01 cm2/s is
the kinematic viscosity of water), is variable from some-
what less than unity to somewhat greater but is well within
the laminar range for the studies reported here. Images
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of growing tubes were captured with a 12 bit ccd camera
(Hamamatsu C848405-G, 1280×1024 pixels) and a digital
SLR (Nikon D100) with macro lenses, under fiber-optic
illumination, and with Schlieren imaging.19

The growth of the tube results from a complex combi-
nation of diffusion, convection, precipitation, and oxida-
tion. It begins when the outward diffusion of OH- and
NH3 from the columnar jet raises the pH in the sur-
rounding acidic ferrous sulfate solution. No tubes form if
the pH of the jet is below ∼10.5, which is surprising,
because dissolved Fe(II) typically precipitates at a pH of
∼6. Equally noteworthy is the fact that we do not see
tubular growth using NaOH at similar and even higher
pH. These observations suggest that the NH3/NH4

+ ratio
is critical. It is a function of pH and rises logarithmically
above 1 in our system at ∼ pH 9.3. At a similar value, blue
ferrous hexaammine complexes are known to form,20

implying that a minimum concentration of NH3 as a ligand
for complexation is also necessary for tube formation.

As shown in Figure 1, the jet and its enveloping
precipitate display three distinct regions. As the jet first
rises through the chamber, it is immediately encased by
a diaphanous porous white film that can confidently be
identified as ferrous hydroxide or “white rust” [Fe(II)-
(OH)2].21,22 Much of the film is advected away by the flowing
jet, but a flame-shaped plume composed of a cohesive
flocculant grows slowly (over tens of minutes) beneath it,
which is typically white at first but then gradually turns
bluish. The jet flows nearly unimpeded upward through
this highly porous precipitate, and even viscously entrains
fluid outside the tube, so that its streamlines closely follow
the outline of the tube,23 producing a shear flow.24 This
shear is sufficiently strong that the advancing front of
dendritic precipitate may occasionally break off from the
jet, only to form again later (Figure 2). Further behind,

the flocculant oxidizes in a sequence that is common at
other sites where redox gradients are found. First, ‘green
rust’ [Fe(II)4Fe(III)2(OH)12SO4 nH2O] quickly appears,
then orange lepidocrocite [γ-Fe(III)OOH] slowly takes
over. Black blotches and streaks indicate magnetite [Fe-
(II)Fe(III)2O4], a species of intermediate oxidation. The
oxidation causes the tube wall to become denser and more
rigid, contributing to its structural stability. Over time,
the precipitated wall thickens as ammonia diffuses
outward and the acidic bulk solution diffuses inward.
Eventually, lateral growth ceases. The common feature
between this process and the growth of silicate gardens
is transport through the tube wall. In the latter case,
however, an inward flux of water and hydroxide ions is
driven by an osmotic stress across the semipermeable wall.

Growth of the tube slows down dramatically at late
times, eventually ceasing at a maximum height and after
an induction time, which both increase with the jet velocity
(Figure 3a). We found that the data can be collapsed to
a common curve (Figure 3b) by seeking a maximum height
h* and a time τ (chosen here as the time when h ) 0.6 h*)
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Figure 1. Precipitation templated by a fluid jet. (a) Schematic representation of the stages of growth around a jet of aqueous
ammonia injected into an iron sulfate solution, and the subsequent oxidation of the precipitate. (b) 1 min after start, (c) 5 min,
(d) 45 min, and (e) 125 min. Scale bar is 5 mm.

Figure 2. Close-up of a growing tube. The sequence of images
spans 5 min, with panels d-g taken 15 s apart. Tube growth
begins in (a) as crystallites attach to nozzle, followed by transient
elongation (b-d), detachment of a section (e,f), and finally,
regrowth (g,h). Scale bar is 2 mm.
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to rescale the data as H ) h/h* versus s ) t/τ. Both h*
and τ exhibit simple linear variations with the jet velocity
u (Figure 3c). The fundamental mechanism behind the
asymptotic saturation of the tube height is the gradual
diffusive reduction in the pH of the jet as it rises, coupled
with the existence of a critical pH below which precipita-
tion ceases. Ammonia diffuses outward from the flowing
jet into the surrounding fluid (Figure 1) through the
advancing porous tube wall. The outer ferrous sulfate
solution acts as an infinite acidic reservoir, providing a
constant source of reactants for the neutralization of the
influent stream of ammonia and precipitation. If we follow
a parcel of fluid in the rising jet, we will see its pH
progressively decrease through this lateral diffusion. A
simple model of these processes focuses solely on the
hydroxyl concentration C in the ascending fluid jet, taking
the rate of precipitative addition to the tube length as
being proportional to the concentration C in excess of the
critical value C*. If we assume that C is the same order
of magnitude as C*, then the concentration of hydroxyl
ions in the fluid parcel will diminish to C* on the diffusive
time scale a2/D. Because precipitation ceases once C falls
below C*, h* should be ∼ua2/D, which is the distance the
fluid parcel rises during the interval a2/D. This propor-
tionality between h* and u is seen in the data (Figure 3c).

The time scale τ, during which h approaches h*, depends
on lateral diffusion processes and on the precipitation and
attachment kinetics. Subsuming all details of the latter
into a rate constant k, we write

This simple supersaturation dynamics is common to
precipitation kinetics in geophysics and chemistry.25 We
take the centerline value of the concentration within the
jet as the measure of the reacting concentration relevant
to precipitation. The jets and tubes have large aspect
ratios, so the fluid flow is nearly parallel. This also reflects
the very large Peclet number Pe ) ua/D ≈ 103, in which
D ) 10-5 cm2/s is typical of a solute diffusion constant. We
thus approximate the diffusion as having cylindrical
symmetry. In elapsed time t, the centerline concentration
corresponding to an initial condition in which C had the
uniform value C0 within a disk of radius a is

In writing eq 2, we neglect the loss of hydroxyls due to

precipitation and assume that the porous walls offer
negligible resistance to lateral diffusion. As the jet rises
from the nozzle at a steady, uniform velocity u, the time
t during which the outward diffusion has occurred is simply
t ) h/u. Thus,

where R ) C0/C* > 1 describes the initial excess concen-
tration in the nozzle. Setting dh/dt ) 0, we find the
asymptotic height

As in the experiments (and previous scaling arguments),
h* is linear in the injected fluid velocity. Defining the
rescaled length H ) h/h* as in Figure 3b, the characteristic
time

and the dimensionless time s ) t/τ, the rescaled equation
of motion for the height H(s) can be written in the
remarkably compact form

Having been rescaled by a single characteristic time and
the maximum height, this growth equation depends on
no other dynamical variables and indeed depends only on
the constant R fixed by the initial fluid concentrations. In
this sense, this scaled equation of motion is formally
consistent with the experimentally observed data collapse.
In detail, one verifies for H , 1 the growth H = (R - 1)s,
or h = k(C0 - C*)t + ‚‚‚, the linear elongation expected
from the initial jet concentration. Conversely, the approach
to the asymptotic height is exponential. The only param-
eter remaining to distinguish one experiment from another
is R. Direct numerical integration was used to obtain the
fit shown in Figure 3b, with R ) 1.7. A fit to the data in
Figure 3c for the maximum height as a function of mean
fluid velocity yields a slope of 13.2 s. Using the jet radius
and the fitted value of R we deduce the effective diffusion
constant D ) 1.3 × 10-5 cm2/s, which is quite consistent
with the typical value for a small molecule in aqueous
solution and provides a confirmation that the porous walls
offer little resistance to diffusion. From the ratio of the

(25) Keller, J. B.; Rubinow, S. I. J. Chem. Phys. 1991, 74, 5000-
5007.

Figure 3. Growth dynamics of tubes. (a) Height vs time at various flow rates: 1 mL/hr (blue) to 5 mL/hr (orange). Each of the
growth curves represents the average of three individual runs. (b) Rescaled height H as a function of rescaled time s. Function
shown in black is from model described in text. (c) Characteristic time (circles) and maximum height (squares) as functions of
average fluid velocity of the jet. Linear fits also shown.

dh
dt

) k[C(h) - C*] (1)

C ) C0[1 - exp(-a2/4Dt)] (2)

dh
dt

) kC*[R{1 - exp(-a2u/4Dh)} - 1] (3)

h* ) a2u

4D ln( R
R - 1)

(4)

τ ) a2u

4DkC* ln( R
R - 1)

(5)

dH
ds

) R[1 - (R - 1
R )1/H] - 1 (6)
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two fitted slopes in Figure 3c we obtain the intrinsic growth
rate kC* ) 4.6 mm/s. One discrepancy between the model
and the data is the existence of a finite intercept of the
relaxation time as the jet velocity vanishes. This is the
limit in which the assumptions of the model break down,
as the Peclet number is no longer large. A more elaborate
theory is required in that regime, particularly in light of
the complex attachment kinetics shown in Figure 2.

The good agreement between these experiments and
the theory suggests a number of avenues for further
experimental and theoretical investigation. The diffusive
broadening of the tube wall to equilibrium over time and
a microscopic explanation for the observed kinetic pa-
rameters are both important open problems that require

consideration of the detailed concentration profiles near
and within the tube walls. The mechanism discussed here
by which a precipitate forms a self-organized porous
boundary between flowing fluids may find applications in
a variety of contexts, possibly even at the microfluidic
scales.26
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