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In various cases of importance for animal physiology and development, a specific distribution
of cellular components is achieved through the active transport of these components along
cytoskeletal fibres by molecular motors. The pattern-generating transport is stochastic; it is
commonly referred to as the saltatory movement which means frequent, random change of
direction of movement of individual transported particles. Inference of the distribution of the
cellular components and kinetics of transitions between different patterns from parameters of
the saltatory movement is the goal of the proposed theory. The theory is presented by
developing a sample model for the redistribution of lipid droplets at early stages of
Drosophila development, a process well studied at the quantitative level. The saltatory
movement is modelled at the fundamental level as a stochastic velocity jump process. A
diffusion (in the mathematical sense) model is derived from the fundamental velocity jump
description as its simple and accurate approximation. This approximation reduces the
number of parameters, simplifies the methods of their measurement and clarifies the
relationship between the kinetics and the resulting pattern.

r 2002 Elsevier Science Ltd. All rights reserved.
Introduction

A remarkable feature of cell structure that has
been fully recognized only recently as a result
of developments in experimental techniques is
that what appears as a steady arrangement of
components is in many cases brought about
by a continuous active transport of these
components. Examples include such phenomena
of importance as the polarization of mRNA
distribution that determines anterio-posterior
and dorso-ventral axes in early embryos
(Wilhelm & Vale, 1993; St. Johnston, 1995;
King, 1996; Karlin-McGinness et al., 1996), and
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the redistribution of pigment granules in skin
cells of fish and frogs, which adaptively changes
the colour of the animal (Bagnara & Hadley,
1973; Haimo & Thaler, 1994; Rogers et al., 1997;
Rodionov et al., 1998). The active intracellular
transport in its turn displays another counter-
intuitive property. The direction of movement of
an individual transported particle frequently and
randomly changes or reverses. Such particles are
said to undergo the ‘‘saltatory movement’’
(Rebhun, 1967; Freed & Lebowitz, 1970; Rogers
et al., 1997; Wacker et al., 1997; Welte et al.,
1998; Suomalainen et al., 1999; Gross et al.,
2000). The theoretical approach to the problem
of pattern generation by the active intracellular
transport should thus consist of developing a
r 2002 Elsevier Science Ltd. All rights reserved.
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stochastic model of the transport, and then
testing whether the model predicts patterns and
their dynamics in agreement with experimental
data when the parameters take on their mea-
sured values.

In the present paper I propose a deductive
theory which proceeds from kinetics of the
transport at the molecular level to quantitatively
infer the distribution of the transported sub-
stances in the cell. Deriving a general formalism
would be overly theoretical now that there is
little quantitative knowledge of the intracellular
transport. Instead, I illustrate the possible
general approach to the problem on a specific
example of a well-studied phenomenon. The
kinetics of the transport of lipid droplets in early
embryos of Drosophila has been exceptionally
well studied, owing to the development of
sophisticated techniques for the quantitative
microscopic observation of this object that take
advantage of its favourable geometry and optical
properties (Welte et al., 1998; Gross et al., 2000).
Despite the apparent insignificance of the lipid
transport for the development of the embryo
(Welte et al., 1998), the amenability to precise
observation and measurement has made this
phenomenon a unique experimental model for
studying the intracellular transport, which is
likely to yield results of general importance
(J.ackle & Jahn, 1998). At the early stages of
Drosophila development, numerous lipid dro-
plets, approximately 0.5mm in diameter, are in
continuous motion along microtubules that
stretch in the baso-apical direction in the
blastoderm (Fullilove & Jacobson, 1971; Foe &
Alberts, 1983; Welte et al., 1998; Gross et al.,
2000). At the stage of syncytial blastoderm, the
motile droplets concentrate near the surface of
the embryo. From cycle 14 till the end of
cellularization the distribution of droplets is
reversed so that they occupy the basal parts of
cells forming in the blastoderm. At the onset
of gastrulation, the droplets move again to the
periphery of the embryo. The movement of
the droplets is saltatory and continues while their
stationary distribution is maintained. The drop-
lets are transported apically (toward the surface
of the embryo) by dynein; the most likely
candidate motor for their basal transport (away
from the surface) is kinesin (Welte et al., 1998;
Gross et al., 2000). Experiments have suggested
the existence of a specific molecular switch that
coordinately regulates the motors of opposite
polarity and is responsible for the random
alternation of the direction of movement of
individual droplets (Gross et al., 2000). A
number of parameters were measured for a
kinetic description of the transport as alternating
basal and apical runs (Welte et al., 1998; Gross
et al., 2000). The model proposed here infers the
stationary patterns at two developmental stages
and the kinetics of the transition between these
patterns from the parameters of the saltatory
movement.

I model the active intracellular transport as a
stochastic velocity jump process. Velocity jump
processes are a class of dispersal processes in
biological systems (Othmer et al., 1988). Follow-
ing Rebhun (1967) and Freed & Lebowitz
(1970), one can define the saltatory movement
as such a movement that consists of periods,
during which the velocity of the transported
particle is constant and which are interspersed by
abrupt and unpredictable changes in the velo-
city. Then, in principle, all the features of this
type of movement can be incorporated in the
stochastic velocity jump description. However,
the complexity of the saltatory movement urges
the modeller to reduce the dimensionality of the
parameter space by looking for an adequate
approximation; otherwise, the model can be
intractable even if all the multiple parameters
have been measured. Reduction of the number
of parameters also facilitates quantitative ex-
perimentation. In this paper, I demonstrate that
the complex stochastic process of the saltatory
movement has a simple diffusion (in the
mathematical sense) approximation.

Model

In the saltatory movement of lipid droplets in
Drosophila embryos, six states of a droplet
alternate stochastically (Gross et al., 2000). The
states are the short-slow displacement in the
basal direction (state 1), the long-fast displace-
ment in the basal direction (state 2), the short-
slow displacement in the apical direction (state
3), the long-fast displacement in the apical
direction (state 4), the pause after a basal
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displacement (state 5), and the pause after an
apical displacement [state 6, Fig. 1(a)]. The
distribution of the duration of each state is
exponential, which implies first-order kinetics of
transitions between the states (Gross et al.,
2000). A kinetic diagram showing the possible
transitions between the states is presented in
Fig. 1(b). The measurements (Welte et al., 1998;
Gross et al., 2000) do not indicate the depen-
dence of the kinetics of transport upon the
position of the droplet, which is consistent with
the uniform baso-apical arrangement of micro-
tubules in the blastoderm (Fullilove & Jacobson,
1971). Since the distribution of the droplets
themselves is not uniform, the constancy of the
kinetics also justifies the assumptions that, first,
the kinetics are independent of the droplet
density, and, second, that the movements of
individual droplets are statistically independent.

Let us introduce x; the distance from the
embryo surface, and the density functions
piðt; xÞ; such that piðt; xÞ dx is the probability
that a given droplet is in the state i at
the position x at the time moment t: In general,
the pattern of the droplet distribution can be
described by nðt; xÞ; the number density of
droplets at ðt; xÞ: Under the assumption of the
independent motion, nðt; xÞ ¼ Npðt; xÞ; where N
is the total number of droplets and pðt; xÞ ¼
k
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Fig. 1. Diagram of the velocity jump model of the saltator
cartoon showing the orientation of a microtubule in the bla
droplet (*) attached to a microtubule through molecular moto
of the droplet in the six kinematical states. State 1 is short-slow
is short-slow apical movement, state 4 is long-fast apical move
after apical movement. (b) Kinetic diagram of transitions betw
(i ¼ 1; 2;y; 6) is vi; the rate constant of the transition to state
rate constants are shown. The kinetic scheme is postulated here
Si piðt; xÞ: The practical goal of the theory is
therefore the deduction of the density functions
piðt; xÞ from the kinetics of the saltatory move-
ment. To formalize the above kinematics, one
can write

@piðt; xÞ
@t

¼ � vi
@piðt; xÞ

@x
�

X
j

kjipiðt; xÞ

þ
X
j

kijpjðt; xÞ;
ð1Þ

where vi is the velocity of the droplet in the state
i, and kij is the rate constant of the transition to
the state i from the state j: Velocities are equal to
zero in the states of pause (states 5 and 6), and
the rate constants are non-zero only for the
transitions shown in Fig. 1(b). According to the
measurements, the motile droplets are distribu-
ted between x ¼ 0 and x ¼ a ¼ 50 mm below the
surface of the embryo (Welte et al., 1998), hence
the normalization

X
i

Z a

0

piðt; xÞ dx ¼ 1: ð2Þ

A simple assumption is that of immediate
reversal of the direction of the movement of a
droplet upon the droplet reaching a boundary. If
v5
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y movement of lipid droplets in Drosophila blastoderm. (a) A
stoderm (+, plus end of the microtubule, –, minus end), a
rs, and the directions and the relative velocities of movement
basal movement, state 2 is long-fast basal movement, state 3
ment, state 5 is pause after basal movement, state 6 is pause
een the kinematical states of a droplet. The velocity in state i
i from another state (j) is kij: Only transitions with non-zero
on the basis of the observations made by Gross et al. (2000).
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in such a reversal the long-fast, rather
than short-slow, mode of the movement is
chosen with the probability pþ

l for a basal run,
and with the probability p�

l for a apical
run, then

v1p1ðt; 0Þ ¼ ð1� pþ
l Þ½jv3jp3ðt; 0Þ þ jv4jp4ðt; 0Þ�;

v2p2ðt; 0Þ ¼ pþ
l ½jv3jp3ðt; 0Þ þ jv4jp4ðt; 0Þ�;

jv3jp3ðt; aÞ ¼ ð1� p�
l Þ½v1p1ðt; aÞ þ v2p2ðt; aÞ�;

jv4jp4ðt; aÞ ¼ p�
l ½v1p1ðt; aÞ þ v2p2ðt; aÞ�:

ð3Þ

Since the processive runs of droplets are much
shorter than a; the dependence of the density
functions upon the laws of behaviour of the
droplets at the boundaries should be weak,
justifying the assumptions made. Equations
(1)–(3) constitute the velocity jump model of
the droplet motion and can be solved by the
finite difference method (Mitchell & Griffiths,
1980). In the steady state,

@piðt; xÞ
@t

¼ 0; ð4Þ

the dynamically maintained distribution of the
droplets is given by the stationary variants of
eqns (1)–(3),

vi
dpiðxÞ
dx

¼ �
X
j

kjipiðxÞ þ
X
j

kijpjðxÞ;

v1p1ð0Þ ¼ ð1� pþ
l Þ½jv3jp3ð0Þ þ jv4jp4ð0Þ�;

v2p2ð0Þ ¼ pþ
l ½jv3jp3ð0Þ þ jv4jp4ð0Þ�;

jv3jp3ðaÞ ¼ ð1� p�
l Þ½v1p1ðaÞ þ v2p2ðaÞ�;

jv4jp4ðaÞ ¼ p�
l ½v1p1ðaÞ þ v2p2ðaÞ�;

ð5Þ

X
i

Z a

0

piðxÞ dx ¼ 1:

In practice, eqns (5) are more convenient to solve
numerically.

Approximation

As suggested by the observations (Welte et al.,
1998; Gross et al., 2000), the above model
describes the droplet motion as a process in
which the velocity of a droplet changes abruptly
at unpredictable time moments. This type of a
stochastic process is widespread in biological
systems; it has been called velocity jump process
(Othmer et al., 1988), and diffusion approxima-
tions of this process have been proposed to
simplify the treatment of such phenomena as cell
locomotion and chemotaxis (Alt, 1980; Othmer
et al., 1988; Gr .unbaum, 2000). In the present
case of the droplet motion, one can predict,
in accordance with the central limit theorem
(Feller, 1968) and neglecting the boundary
constraints, that the stochastic displacement of
a droplet during the time much longer than the
characteristic time of transitions between the
states will make the distribution of the position
of the droplet Gaussian with the mean uNt and
variance 2 sNt: Then by analogy with the theory
of diffusion (Keizer, 1987) the parameters uN
and sN can be called, respectively, the asympto-
tic drift coefficient and the asymptotic diffusivity
of the droplets. These parameters will be
functions of the fundamental parameters of the
droplet motion, which are velocities and fre-
quencies of the transitions between the states
(the derivation is given in Appendix A). Whether
this approximation is valid for the physiological
times and for the constrained movement of the
droplets should be tested. If it is valid, then by
analogy with the diffusion proper (Keizer, 1987),
the density function of position of the droplet
will comply with the diffusion equation

@pðt; xÞ
@t

¼ sN
@2pðt; xÞ

@x2
� uN

@pðt; xÞ
@x

: ð7Þ

The normalization and the boundary conditions
for the diffusion approximation that are analo-
gous to eqns (2) and (3) are

Z a

0

pðt; xÞ dx ¼ 1 ð8Þ

and

sN
@pðt; xÞ

@x

���
x¼o

¼ uNpðt; 0Þ;

sN
@pðt; xÞ

@x

���
x¼a

¼ uNpðt; aÞ:
ð9Þ
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Equations (7)–(9) constitute the diffusion ap-
proximation model for the droplet motion. They
can be solved by the finite difference method
(Mitchell & Griffiths, 1980). The stationary
solution to eqns (7)–(9) is

pðxÞ ¼
x

exa � 1
exx; ð10Þ

where x ¼ uN=sN:

Estimation of Parameters

The measured parameters of the movement of
droplets at two stages of development of wild-
type Drosophila embryos (Welte et al., 1998;
Gross et al., 2000) are collected in Table 1. The
phases in the droplet distribution are enumer-
ated following Welte et al. (1998). Phase II spans
from cycle 14 till the end of cellularization, and
phase III corresponds to gastrulation. The
parameters in Table 1 are only a selected subset
of all the parameters measured by Welte, Gross,
and co-authors, namely, those that are necessary
for the estimation of the parameters of the
present model. Yet they are numerous (14), and
not all of their values have been reported for
phase III. To complete the description of the
phase III droplet motion, I assume that three
Tabl

Measured parameters

Parameter S

Mean duration of a plus-pause t
Mean duration of a minus-pause t
Probability that a plus-pause ends in a reversal p
Probability that a minus-pause ends in a reversal p
Fraction of plus–minus reversals involving a pause f
Fraction of minus-plus reversals involving a pause f
Mean displacement in short-slow plus end travel d
Mean displacement in long-fast plus end travel d
Mean displacement in short-slow minus end travel d
Mean displacement in long-fast minus end travel d
Number ratio of short runs and long runs, plus end travel r
Number ratio of short runs and long runs, minus end

travel
r

Average velocity of plus end travel v
Average velocity of minus end travel v

Note: Average velocities are from Welte et al., 1998; other p
that the relative frequency of an outcome gives its probability.
in the coordinate system of the present model.

*These parameters are assumed to retain in phase III the v
unknown parameters of the plus end movement
retain in phase III the values they had in phase II
(Table 1). In this paper I use the terminology of
Gross et al. (2000), who called pauses of a
droplet after its travel in the direction of the
microtubule minus end (apically, Fig. 1(a))
‘‘minus-pauses’’, and, similarly, pauses after plus
end (basal) travel, ‘‘plus-pauses’’.

To fully characterize the kinetics of transitions
between the states of a droplet we have to know
the probabilities that govern the choice of the
next state in the stochastic sequence of the states.
The probabilities that a plus- or minus-pause
ends in a reversal of the direction of movement
have been estimated experimentally (Table 1).
Let us compute from the measured parameters
other probabilities that characterize the transi-
tions between the states. First, I estimate the
probability pþ

p that a plus end run of a droplet is
succeeded by a pause, rather than by an
immediate reversal of the direction of travel.
Suppose there were N plus end runs of a droplet.
Then the expected number of those which were
followed by an immediate reversal is N ð1� pþ

p Þ:
In Npþ

p p
þ
r : cases, where pþ

r is the directly
estimated probability that a plus-pause ends in
a reversal (Table 1), the reversals were preceded
by a pause. The fraction fþ

p of plus–minus
e 1
of the droplet motion

ymbol Value

Phase II Phase III

5 0.55 s 0.55 s*

6 0.62 s 0.60 s
þ
r 0.270 0.270*
�
r 0.346 0.432
þ
p 0.117 0.117*

�
p 0.138 0.139

1 0.067mm 0.096 mm
2 1.144mm 0.780 mm
3 –0.098mm �0.083 mm
4 �1.068mm �1.048 mm
þ
sl 1.05 2.22
1
sl 2.15 2.15

þ 0.407mms�1 0.285 mms�1

� �0.475mms�1 �0.378 mms�1

arameter values are taken from Gross et al., 2000, assuming
Displacements and velocities of minus end travel are negative

alues that they had during phase II.



Table 2
Additional probabilistic parameters of the droplet motion

Parameter Symbol Expression Value

Phase II Phase III

Probability that a plus end run is succeeded by a pause pþ
p fþ

p =ðpþ
r � fþ

p pþ
r þ fþ

p Þ 0.329 0.329

Probability that a minus end run is succeeded by a pause p�
p f�

p =ðP�
r � f�

p p�
r þ f�

p Þ 0.316 0.272

Probability that a plus end run is long-fast pþ
l 1=ð1þ rþslÞ 0.488 0.311

Probability that a minus end run is long-fast p�
l 1=ð1þ r�slÞ 0.317 0.317
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reversals involving a pause among all plus–
minus reversals is known from measurements
(Table 1). Hence, we obtain an equation
Npþ

p pþ
r =½Np

þ
p p

þ
r þ N ð1� pþ

p Þ� ¼ fþ
p that can

be solved for the unknown pþ
p (Table 2).

The probability p�
p that a minus end run is

succeeded by a pause is calculated analogously
(Table 2). Whether the reversal occurs or not
specifies only the direction of the movement in
the next state, providing no information on
whether the movement will be long-fast or short-
slow. For the purposes of the present model, I
assume that the observed number ratio of short
runs and long runs (Table 1) results from a
probabilistic choice of the short-slow vs. long-
fast mode of movement that is made each time
the movement begins. Under this assumption, if
there are rsl times more short runs than long runs
in a particular direction, then the probability pl

that a run in that direction will be long-fast
satisfies the equation ð1� plÞ=pl ¼ rsl: The
solutions of this equation, in the cases of the
plus and minus end movement at the two stages
of the Drosophila development, are collected in
Table 2 and are used in the estimation of the
model parameters as explained below.

The parameters of the velocity jump model of
the saltatory movement are velocities and rate
constants of transitions between the states with
the different velocities, eqn (1). With the use of
the probabilities derived above, I estimate the
velocities first. The measured average velocity of
plus end travel ðvþÞ is a weighted sum of the
velocities of the short-slow (v1) and long-fast (v2)
runs with the weights equal to the probabilities
that a plus end run is long-fast ðpþ

l Þ or short-
slow ð12pþ

l Þ: We know, in addition, that a
‘‘fast’’ run is approximately twice as fast as
a ‘‘slow’’ run (Gross et al., 2000). This con-
sideration yields two simultaneous equations,
vþ ¼ v1ð1� pþ

l Þ þ v2pþ
l and v2 ¼ 2v1; that can

be solved for the unknown velocities in states 1
and 2 of a droplet (Table 3). The velocities in the
states of the minus end movement, 3 and 4, are
estimated analogously (Table 3). The so far
derived parameters allow us to calculate the rate
constants of transitions between the states of the
droplet, and so to complete the estimation of
the parameters of the velocity jump model of the
droplet motion. The exponential distribution of
the lifetime of state i with the mean ti is
consistent with a first-order kinetics of a process
that leads to exiting this state if the rate constant
of such a process is equal to 1=ti: The lifetime
of every state of the droplet in our model is
distributed exponentially according to the mea-
surements made by Gross et al. (2000). The rate
constant of the transition to state i from state j
will be equal to pij=tj; where pij is the probability
that after exiting state j the droplet will enter
state i: Let us compute, for example, the rate
constant of the transition from state 3 to state 1.
The mean lifetime t3 can be computed as
the quotient of the measured mean distance d3
covered by a droplet in state 3 (Table 1) and the
estimated velocity v3 of the droplet in this state
(Table 3). The probability p13 that state 3 is
succeeded by state 1 [rather than by state 2 or 6,
Fig. 1(b)] can be computed as follows. State 3 is
the state of the short-slow minus end movement,
and state 1 is the state of the short-slow plus end
movement. We have already estimated the
probability p�

p that a minus end run is succeeded
by a pause and the probability pþ

l that a plus end
run is long-fast (Table 2). In the transition
from state 3 to state 1 the droplet reverses the



Table 3
Parameters of the velocity jump model of the droplet motion

Parameter Expression Value

Phase II Phase III

v1 vþ=ð1þ pþ
l Þ 0.274mms–1 0.217 mms–1

v2 2v1 0.547mms–1 0.435 mms–1

v3 v�=ð1þ p�
l Þ –0.361mms–1 –0.287 mms–1

v4 2v3 –0.721mms–1 –0.574 mms–1

k13
v3
d3

ð1� p�
p Þð1� pþ

l Þ 1.288 s–1 1.735 s–1

k14
v4
d4

ð1� p�
p Þð1� pþ

l Þ 0.236 s–1 0.275 s–1

k15
1

t5
ð1� pþ

r Þð1� pþ
l Þ 0.680 s�1 0.915 s–1

k16
1

t6
p�
r ð1� pþ

l Þ 0.286 s–1 0.496 s–1

k23
v3
d3

ð1� p�
p Þp

þ
l 1.227 s–1 0.781 s–1

k24
v4
d4

ð1� p�
p Þp

þ
l 0.225 s–1 0.124 s–1

k25
1

t5
ð1� pþ

r Þp
þ
l 0.647 s–1 0.412 s–1

k26
1

t6
p�
r p

þ
l 0.272 s–1 0.224 s–1

k31
v1
d1

ð1� pþ
p Þð1� p�

l Þ 1.905 s–1 1.126 s–1

k32
v2
d2

ð1� pþ
p Þð1� p�

l Þ 0.223 s–1 0.277 s–1

k35
1

t5
pþ
r ð1� p�

l Þ 0.335 s–1 0.335 s–1

k36
1

t6
ð1� p�

r Þð1� p�
l Þ 0.720 s–1 0.646 s–1

k41
v1
d1

ð1� pþ
p Þp

�
l 0.869 s–1 0.482 s–1

k42
v2
d2

ð1� pþ
p Þp

�
l 0.102 s–1 0.119 s–1

k45
1

t5
pþ
r p

�
l 0.156 s–1 0.156 s–1

k46
1

t6
ð1� p�

r Þp
�
l 0.335 s–1 0.301 s–1

k51
v1
d1

pþ
p 1.344 s–1 0.746 s–1

k52
v2
d2

pþ
p 0.157 s–1 0.184 s–1

k63
v3
d3

p�
p 1.164 s–1 0.940 s–1

k64
v4
d4

p�
p 0.214 s–1 0.149 s–1

Note: vi is the velocity in state i of the droplet, kij is the rate constant of transition to state
i from state j: Velocities in states 5 and 6 equal zero. Rate constants other than listed in this
table equal zero, because the corresponding transitions do not take place in the model.
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direction of its movement without going through
a pause. The probability of this is ð12p�

p Þ: Then
the movement in the plus-end direction becomes
short-slow rather than long-fast, which outcome
has the probability ð12pþ

l Þ: If the two choices
are made independently, the probability p13 will



I. V. MALY66
be ð12p�
p Þð12pþ

l Þ: The rate constant k13 is then
obtained by dividing this probability p13 by the
lifetime of state 3 (Table 3). The expressions of
the other rate constants are derived similarly and
are listed in Table 3 along with the estimated
values of these constants at the two stages of the
Drosophila development, which completes the
estimation of the parameters of the velocity jump
model of the droplet motion. The parameters of
the diffusion approximations are functions of
the parameters of the velocity jump model. Their
Table 4
Parameters of the diffusion approximation of the

droplet motion

Parameter Symbol Value
Phase II Phase III

Drift coefficient uN 0.094 mms–1 –0.025mms–1

Diffusion
coefficient

sN 0.341 mm2 s–1 0.219mm2 s–1

Distribution
constant

x ¼ uN=sN 0.274 mm–1 –0.114mm–1

Fig. 2. Density function pðxÞ of the distribution of droplet
surface. Predictions of the velocity jump model are shown by
shown by ( - - - ) curves. (a) In the steady state in phase II of dev
In 10min after the transition from phase II to phase III (gastru
the steady state of phase III.
analytical expressions would be too complex to
derive, instead, the diffusion parameters are
computed numerically as explained in Appendix
A, and their values are listed in Table 4.

Computation and Comparison with Experiment

Figure 2 shows the density functions of the
baso-apical distribution of droplets in the
blastoderm that have been calculated for two
stages of the Drosophila development and for the
transition between these stages. During cellular-
ization (phase II), the stationary density function
increases with the distance from the embryo
surface [Fig. 1(a)]. This is consistent with the
‘‘clearing’’ of the periphery of the embryo of the
light-scattering droplets that was observed at
this stage (Welte et al., 1998; Gross et al., 2000).
When the parameter values are changed from
those of phase II to those of phase III (gastrula-
tion), a net flux of the droplets toward the
periphery is predicted in agreement with the
observation (Welte et al., 1998; Gross et al.,
s in Drosophila blastoderm. x; the distance from the embryo
(F) curves; predictions of the diffusion approximation are
elopment (cell cycle 14 through the end of cellularization). (b)
lation). (c) In 20min after the transition to phase III. (d) In
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2000). In this transition, the density function
gradually adopts the form of the decreasing
stationary density function [Fig. 1(b–d)]. This
corresponds to the ‘‘clouding’’ of the periphery
of the embryos because of the accumulation of
the light-scattering droplets that was observed in
phase III (Welte et al., 1998; Gross et al., 2000).
In agreement with the observation (Welte et al.,
1998), the major increase in the density at the
periphery of the embryo occurs in the model
within 10min [Fig. 2(b)], and the transition is
close to completion in 20min [Fig. 2(c)].

The density functions predicted in the diffu-
sion approximation are essentially same as the
functions predicted by the velocity jump model.
The discrepancy between the predictions as
seen in Fig. 2 is most likely smaller than the
discrepancy between any of them and the reality.
For example, the histograms obtained by analys-
ing electron micrographs all show modal dis-
tributions of the droplets (Welte et al., 1998),
whereas both the velocity jump model and its
diffusion approximation predict that the modal
distributions are only transient [Fig. 2(b)]. Not-
withstanding, the gross features of the droplet
distribution, such as the direction of the
accumulation of the droplets (basal or apical)
and the rate of their redistribution at the onset of
gastrulation, are adequately reproduced in the
diffusion approximation as well as in the velocity
jump model. The model therefore provides the
quantitative framework, into which additional
experimental data can be incorporated to reach a
better agreement of the prediction with the more
precise observation, and employing the diffusion
approximation will greatly simplify such a study.

Discussion

The theory of patterning of the cytoplasm by
saltatory movement is presented here as a sample
model for a specific phenomenon, the redistribu-
tion of lipid droplets in an early Drosophila
embryo. In the experimental work by Welte et al.
(1998), the measured parameters of the saltatory
movement of the droplets were used to calculate
the quantity called ‘‘bulk displacement rate’’,
whose meaning is close to that of the asymptotic
drift coefficient uN of the present diffusion
approximation model. The directions of the bulk
displacement were found to be in agreement with
the directions of macroscopic fluxes of droplets
during transitions between the phases of devel-
opment. In the present work, the asymptotic
drift coefficient is computed from the parameters
of a more detailed description of the droplet
motion (Gross et al., 2000). The present model
is designed to predict not only the direction of
the fluxes, but also the entire kinetics of the
transitions and the steady-state distributions of
the droplets. Although the analysis can be
carried out at the ‘‘fundamental’’ level of the
saltatory movement as a velocity jump process, it
becomes much simpler in the diffusion approx-
imation. In this approximation, the asymptotic
diffusivity sN reflects the dispersion of displace-
ments of individual droplets around the bulk
displacement, whose rate is given by uN:
Together, these two parameters suffice to predict
the entire dynamics of the distribution of
droplets during the transition. The steady-state
distribution is predicted as an exponential
function of the distance from the embryo surface
with the increment equal to the ratio of the two
parameters x ¼ uN=sN: So, the stationary
density of the droplets is predicted to increase
or decrease away from the embryo surface
depending on the sign of uN: Unlike uN alone,
the ratio x determines the entire shape of the
steady-state distribution, not only whether the
density increases or decreases. It is important to
note that in spite of the fact that the interpreta-
tion of the quantity uN as the ‘‘bulk displace-
ment rate’’ is not useful in the steady state,
the ratio x ¼ uN=sN is the parameter that
explains the stationary distribution of droplets
in terms of the kinetics of their continuing
motion.

Regarding the proposed diffusion approxima-
tion of the saltatory movement it is necessary to
note that the word ‘‘diffusion’’ is used here in its
mathematical sense (e.g. Bharucha-Reid, 1960)
and only to reflect the theoretical result that
the density function of the droplet distribution
complies with the diffusion equation. Applica-
tions of the stochastic diffusion processes are
various even within biology; e.g. in population
genetics (Crow & Kimura, 1970) or bacterial
locomotion (Berg, 1993). It should be especially
emphasized that in such applications neither the
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usage of the word ‘‘diffusion’’ nor the descrip-
tion by the diffusion equation stipulates
the thermal motion as the mechanism of the
phenomenon in hand. In the present case of
the saltatory movement, the active fundamental
mechanism makes the phenomenological asymp-
totic diffusivity of the droplets several orders
of magnitude higher than possible for the
thermal motion. For the thermal diffusion, the
diffusivity of a particle whose diameter is d can
be calculated as D ¼ kT=3pZd; where kT ¼
4:1	 10221 Nm is the thermal energy, and Z is
the viscosity of the medium (Berg, 1993). The
diameter of a droplet is dE0:5mm (Welte et al.,
1998). Due to the complex structure of the
cytoplasm, its apparent viscosity depends strongly
on the size of the probe used in the experiment,
varying between about 0.004kgm–1 s–1 for
macromolecules and B105 kgm–1 s–1 for particles
B102mm in size (Luby-Phelps et al., 1986; Sato
et al., 1984). Using probes with dE0:5mm yields
the apparent viscosity of the cytoplasm of lung
macrophages in the range 254–2745kgm–1 s–1

(Valberg & Feldman, 1987). Assuming
Z ¼ 250 kgm–1 s–1, we can estimate the thermal
diffusivity of the droplets as D ¼ 3:5	
1026 mm2 s–1. The computed asymptotic diffusiv-
ity of the droplets at the two stages of Drosophila
development is 0.219 and 0.341mm2 s–1, which
reflects the active mechanism of the transport.

The proposed model reproduces the essential
features of the reversible redistribution of
droplets in the early development of Drosophila
in agreement with the experimental data (Welte
et al., 1998; Gross et al., 2000). At present,
one cannot formulate any substantial discre-
pancy between the theory and experiment in
quantitative terms. Undoubtedly, this should
be attributed to the relative insufficiency of the
quantitative data even on this exceptionally well-
studied object rather than to the perfection of
the model. On the experimental part, the exact
distributions of droplets under the (quasi)
steady-state conditions as well as the exact
kinetics of the transitions between the steady
states remain to be quantified. Some parameters
of the plus-end movement during phase III,
although likely to retain their values in phase II
as assumed here (Table 1), remain to be
measured, as well as the parameters during
phase I (syncytial blastoderm). Knowledge
of these parameters and distributions would
allow us to compare the predictions and the
experimental data more precisely and in more
diverse situations. On the theoretical part,
microtubules spanning the entire region where
the droplets move and the absence of inter-
ference between the movement of individual
droplets are the two major idealizations behind
the proposed model that are likely to be
abandoned when the model does not explain a
more precise observation. Certainly, such a
refinement of the theory would by itself require
more measurements of the cytoskeleton struc-
ture and the droplet kinematics.

Generalization

The main purpose of the development of the
model of the droplet motion in this work was to
present the general concepts of modelling the
patterning of the cytoplasm by the saltatory
movement on a well-studied and simple example.
This way of presenting the theory was chosen
in the belief that the derivation of a general
formalism, when the quantitative empirical
knowledge is sparse, would be overly theoretical,
whereas generalization of a specific model would
be obvious. A more complex transport than
described in the present model can be accounted
for by the introduction of more states and by the
corresponding increase in the number of equa-
tions of type (1). In general, every possible
velocity of a transported particle should be
represented in the velocity jump model by a
separate state. This means that in the model
there should be a state to represent every
possible combination of a motor (motors) that
is ferrying the particle and a filament along
which the particle is being ferried. The position
of the particle and its velocity have to be given
by vectors. The kinetics of transitions between
the states are, in the mechanistically simplest
case, the kinetics of the motor–filament associa-
tion and dissociation reactions. So the rates of
such transitions will be functions of position of
the particle when the cytoskeleton is inhomoge-
neous and the availability of filaments differs at
different locations in the cytoplasm. It can be
seen that the complete description of the
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saltatory movement at the fundamental level
requires specifying velocities for every state and
rates of transitions for every pair of states.
Keeping such a fundamental model tractable
and the set of its parameters measurable will
therefore involve neglecting some of the possible
states and transitions.

The proposed velocity jump model of the
saltatory movement of lipid droplets is very
simple, yet it contains 24 parameters. The
proposed diffusion approximation of the salta-
tory movement has only two parameters regard-
less of the complexity of the velocity jump model
for the same phenomenon. As the number of
parameters in the detailed description of a more
complex motility explodes, the advantage of the
simple approximation will increase. It should be
emphasized that the approximation relies upon
additional assumptions. It is based on equilibra-
tion of probabilities of the states of the
transported particle. Therefore, if the region
within which the particles move is not signifi-
cantly larger than the distance a particle travels
continuously in a certain state, the diffusion
approximation will be inaccurate. Similarly, in
the inhomogeneous case definite diffusion para-
meters can be assigned to a given position in
space only if the fundamental kinetics does not
differ substantially within a certain neighbour-
hood of that position. Such a neighbourhood
has to be larger than the characteristic contin-
uous displacement of the particle in any state for
the diffusion parameters to converge to determi-
nate asymptotic values. At the same time,
the accuracy of the diffusion approximation
of the real saltatory movement is expected to be
higher than the accuracy of the diffusion
approximation of the velocity jump model of
that movement because many unaccounted
irregularities in the real process additionally
randomize it. Provided that the diffusion
approximation is valid, two- or three-dimen-
sional movement can be described as a diffusion
process as well. In these cases, the asymptotic
drift will be given by a vector, and the
asymptotic diffusivity will be given by a tensor,
whose components can be derived from the
velocity jump parameters of the saltatory move-
ment like the one-dimensional diffusion para-
meters in the present model.
Implications for Experimentation

Measurement of the velocity jump parameters
of the saltatory movement requires tracking the
transported particles with a high time resolution
and parsing the trajectories into segments of
continuous movement (Welte et al., 1998; Gross
et al., 2000). This is a time-consuming and
technically demanding experimental procedure,
and the multiple parameters can be especially
difficult to measure when the movement is more
complex than in the case of the lipid droplets and
when the particles are harder to monitor.
Measurement of the asymptotic diffusion para-
meters is much less demanding, and the methods
of the measurement themselves allow one to
evaluate the validity of the diffusion approxima-
tion in the case under study. According to the
definition, the drift coefficient can be measured as
the slope of the plot of the mean displacement of
particles vs. time. Analogously, the diffusivity is
given by one-half of the slope of the plot of
variance in the displacement of particles vs. time.
In the two- or three-dimensional case, such linear
regression has to be applied to the mean
components of the displacement along the
coordinate axes to obtain the components of the
drift vector. Analogously, the rates of increase of
elements of the covariance matrix of components
of displacement will determine the corresponding
elements of the matrix representing the diffusivity
tensor. If the plots are substantially nonlinear, the
diffusion approximation is evidently inaccurate.
This method of measurement does not involve
determining the beginning and the end of each
segment of a continuous movement. Conse-
quently, it does not require the fine time
resolution in tracing the particles. Recently, we
have performed such measurements of the
asymptotic diffusion parameters of the saltatory
movement and made use of them in our experi-
mental research (Maly & Vorobjev, unpublished
results). Although the diffusion parameters do
not provide information on the detailed mechan-
ism of the motion, the present analysis demon-
strates that they can be sufficient to explain
kinetically the patterns, which the transported
particles form in the cytoplasm.

In conclusion, the proposed model for pat-
terning of the cytoplasm treats the saltatory
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movement of the cytoplasmic components as a
stochastic velocity jump process. It infers the
stationary distribution of the components and
kinetics of the transitions between the steady
patterns from the detailed kinetic characteristics
of the saltatory movement. The diffusion
approximation simplifies this kinetics–pattern
relationship, reduces the number of parameters
and makes their measurements easier.

I thank Drs I. A. Vorobjev, G. G. Borisy, G.
Albrecht-Buehler, E. W. Taylor and V. I. Maly for
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critical reading of the manuscript.
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Appendix A

Computation of the Diffusion Parameters

Following the principles of the diffusion
approximation of a velocity jump process (Alt,
1980; Othmer et al., 1988; Gr .unbaum, 2000), our
recent approach (Maly, 2002) can be generalized
to compute the asymptotic diffusion parameters
from the parameters of the velocity jump model
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of the droplet motion. Consider the alternation
of the states of the droplet regardless of its
position (this implies neglecting the forced
change of state that occurs at the boundaries).
Let us arrange the probabilities of the states in a
vector p and the rate constants of the transitions
between the states in a matrix K. Then the
evolution of the probabilities is given by

’p ¼ Kp: ðA:1Þ

The asymptotic drift is the weighted sum of
the velocities in the states, with the steady-state
probabilities of the states as the weights. Let pðNÞ

be the steady-state solution to eqn (A.1) and v be
the vector of velocities in the states. Then the
asymptotic drift of the droplets will be

uN ¼ v 
 pðNÞ: ðA:2Þ

The diffusivity is the integral of the velocity
autocovariance function (Maly, 2002). Let pðjÞ

be the solution to eqn (A.1) with the initial
condition pi ¼ dij; where d is the Kronecker
delta. Then the asymptotic diffusivity of the
droplet will be

sN ¼
X
i

pðNÞ
i ðvi � uNÞ

Z
N

0

ðv 
 pðiÞ � uNÞ dt:
ðA:3Þ
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