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Turbulence is ubiquitous, from oceanic currents to small-scale
biological and quantum systems. Self-sustained turbulent motion
in microbial suspensions presents an intriguing example of collec-
tive dynamical behavior among the simplest forms of life and is
important for fluid mixing and molecular transport on the micro-
scale. Themathematical characterization of turbulence phenomena
in active nonequilibrium fluids proves even more difficult than for
conventional liquids or gases. It is not known which features of
turbulent phases in living matter are universal or system-specific
or which generalizations of the Navier–Stokes equations are able
to describe them adequately. Here, we combine experiments, par-
ticle simulations, and continuum theory to identify the statistical
properties of self-sustained meso-scale turbulence in active sys-
tems. To study how dimensionality and boundary conditions affect
collective bacterial dynamics, we measured energy spectra and
structure functions in dense Bacillus subtilis suspensions in qua-
si-2D and 3D geometries. Our experimental results for the bacterial
flow statistics agree well with predictions from a minimal model
for self-propelled rods, suggesting that at high concentrations the
collective motion of the bacteria is dominated by short-range inter-
actions. To provide a basis for future theoretical studies, we pro-
pose a minimal continuummodel for incompressible bacterial flow.
A detailed numerical analysis of the 2D case shows that this theory
can reproduce many of the experimentally observed features of
self-sustained active turbulence.
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Simple forms of life, like amoebae or bacteria, self-organize
into remarkable macroscopic patterns (1, 2), ranging from ex-

tended networks (3, 4) to complex vortices (5–10) and swarms
(11). These structures often bear a striking resemblance to assem-
blies of higher organisms [e.g., flocks of birds (12) or schools of
fish (13, 14)] and present important biological model systems to
study nonequilibrium phases and their transitions (15–17). A par-
ticularly interesting manifestation of collective behavior in micro-
bial suspensions is the emergence of meso-scale turbulent motion
(7, 8, 18, 19). Driven by the microorganisms’ self-propulsion and
their mutual interactions, such self-sustained “active turbulence”
can have profound effects on nutrient mixing and molecular
transport in microbiological systems (2, 20–22). However, in spite
of recent progress (19, 23–25), the phenomenology of turbulent
bacterial dynamics is scarcely understood and a commonly ac-
cepted theoretical description is lacking (2, 16, 26). The latter fact
may not be surprising given that a comprehensive mathematical
characterization of turbulence in conventional fluids has re-
mained elusive after more than a century of intense research (27).

In view of the various physical and chemical pathways through
which bacteria may communicate (1, 11, 28), a basic yet unsolved
problem is to identify those interactions that are responsible
for the emergence of collective behavior in dense suspensions
(2, 29, 30). Answering this question is essential for understanding
whether physical mechanisms such as flagellar bundling or hydro-
dynamic long-range interactions are relevant to collective bacter-
ial motion; it is also crucial for constraining the vast number of

theoretical models that have been proposed during the past two
decades (2, 16, 19, 31, 32) but have yet to be tested against
experiments. An equally important, unresolved issue pertains
to the “universality” of turbulent phenomena in active systems
and their relation to turbulence in passive fluids (27). In ordinary
liquids and gases, such as water or air, turbulent vortices form
due to external forcing if the Reynolds number (Re), the ratio
of inertial to viscous forces, is very large (Re ≫ 1). By contrast,
bacteria provide an internal microscopic forcing and operate at
Re ∼ 10−5 (33). It is therefore unclear how, or to what extent, the
characteristics of self-sustained turbulent states in microbial sus-
pensions differ from those of classical turbulence in passive fluids.

Here, we combine numerical simulations, high-speed micro-
scopic imaging and continuum theory to identify generic statisti-
cal properties of active turbulent motion in dense bacterial
systems, using Bacillus subtilis as a model organism. Unlike pre-
vious investigations of collective bacterial swimming in 2D
free-standing films (8) and 3D bulk suspensions with liquid–gas
interfaces (7, 24, 25), we conducted experiments in closed quasi-
2D and 3D microfluidic chambers to minimize external influ-
ences and to compare the effects of boundary conditions and
dimensionality. Our analysis focuses on traditional turbulence
measures, such as energy spectra and velocity structure functions
(27, 34, 35). These quantities have been widely studied for turbu-
lent high-Re Navier-Stokes flow (27, 36–41), but their character-
istics are largely unknown for active fluids. We compare our
experimental results with large-scale simulations of a 2D minimal
model for self-propelled rods. In the past, similar models (42)
have proven useful for identifying generic aspects of flocking and
swarming in active systems (43, 44). We find that, although the
SPR model neglects details of bacterial cell–cell interactions, it is
able to reproduce many features of our experimental data, sug-
gesting that collective bacterial dynamics in dense suspensions is
dominated by short-range interactions (30). We complement our
experiments and particle-based simulation studies by identifying
a minimal continuum model for incompressible active flow that
combines elements from the Toner–Tu (15–17) and Swift–Hohen-
berg (45) theories.

Results
Motivation for the SPR Model. Self-motile bacteria may form meso-
scale vortex patterns if their concentration is sufficiently large
(7, 8, 18, 19). At very high volume fractions (ϕ≳ 40%), steric
repulsion and other short-range interactions (e.g., lubrication
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forces, flagellar bundling of neighboring cells) can be expected to
govern physical reorientation and alignment, whereas intrinsic
Brownian motion effects (30) become less important in this colli-
sion-dominated high-density regime (46). Chemotaxis (7, 18) can
strongly affect bacterial dynamics in droplets or near liquid–gas
interfaces but is less relevant in closed chambers as considered in
our experiments. Recent direct measurements of individual
Escherichia coli flow fields (30) suggest that hydrodynamic far-
field interactions are negligible for bacterial reorientation, espe-
cially when bacteria swim close to a no-slip surface. Earlier
experiments (8, 24, 25) on 2D films and 3D bulk suspensions
also show that the average swimming speeds of individual bacter-
ia [typically of the order of 10 μm∕s in isolation (8, 30)] can be
enhanced up to five times through collective hydrodynamic
near-field effects. In the simplest approximation, however, a suf-
ficiently dense bacterial suspension can be viewed as a system of
deterministic, self-propelled, rod-like particles with an effective
swimming speed V (for B. subtilis at ϕ ∼ 40% we find V ∼ 30 to
100 μm∕s depending on oxygen concentration and boundary con-
ditions). One of our objectives is to test such a minimal model
against experiments in the limit of highly concentrated suspen-
sions and to provide systematic guidance for more accurate future
models.

Non-Equilibrium Phase Diagram of the SPRModel.To identify generic
requirements for the formation of turbulent phases in active sys-
tems, we performed simulations of a minimal 2D SPR model
with periodic boundary conditions (see SI Appendix for details).
In its simplest form, the model assumes that a rod-shaped self-
propelled particle moves deterministically in the overdamped
low-Re regime with an effective swimming speed V , while inter-
acting with the other particles by steric forces. Mutual repulsion is
implemented by discretizing each rod into spherical segments and
imposing a repulsive Yukawa force potential ∼ expð−r∕λÞ∕r,
where r is the distance, between the segments of any two rods
(i.e., the decay length λ > 0 defines the effective diameter of a
rod of length ℓ). If two sufficiently long rods perform a pair colli-
sion, this short-range interaction results in an effective nematic
(apolar) alignment, before the rods become pushed apart by the
repulsive force.

Depending on the effective volume filling fraction ϕ and the
rod aspect ratio a, both defined in terms of the scale parameter λ
and rod length ℓ, the SPR model exhibits a range of qualitatively
different dynamical phases (Fig. 1). The numerically estimated
nonequilibrium phase diagram (Fig. 1A) illustrates the impor-
tance of the effective particle “shape” in 2D: Upon increasing
ϕ, short rods undergo a transition from a dilute state (D), with
little or no cooperative motion, to a jammed state (J); this transi-
tion can be identified by the mean square displacement per par-
ticle, which drops off nearly two orders in magnitude along the
transition curve. By contrast, very long rods (a > 13) do not jam
at moderate filling fractions but exhibit swarming (S) behavior
and large spatiotemporal density fluctuations. Generally, the
transitions from the dilute phase (D) to cooperative motion (re-
gions S, B and T) can be characterized by the Onsager overlap
density (47). Upon increasing ϕ further, very long rods tend to
assemble in homogeneous lanes (L), corresponding to quasi-
smectic regions of local polar order; the swarming-to-laning tran-
sition is signaled by a discontinuous increase in the correlation
length of the two-particle velocity correlation function. The
swarming (S) and laning (L) phases adjoin a so-called active bio-
nematic (18) phase (B), where vortices and extended jet-like
structures coexist (28, 45); this phase is characterized by large
fluctuations of the local vortex density. Most importantly for the
present study, however, the SPR model predicts homogeneous
turbulent states (T) at high filling fractions and intermediate as-
pect ratios 3≲ a≲ 13, a range that covers typical bacterial values
(e.g., 2≲ a≲ 4 for E. coli and 2≲ a≲ 10 for B. subtilis (SI

Appendix, Fig. S7). The transition between bionematic and turbu-
lent phase is also signaled by the velocity distribution, correlation
functions and density fluctuations (SI Appendix, Figs. S3 and S4).

Homogeneous Turbulent Phase in the SPR Model.A typical turbulent
flow state as found in the simulations, and the associated
(pseudo-scalar) 2D vorticity field ω ¼ ∂xvy − ∂yvx, are shown in
Fig. 2. The mean local flow field vðt; rÞ at time t and position
r was constructed by binning and averaging individual particle
velocities, using a spatial resolution similar to that in our
experiments (SI Appendix). To characterize the emergence of
homogeneous turbulence in the SPR model in terms of particle
geometry a and effective volume fraction ϕ, we quantify the
vortical energy through the enstrophy (27, 34, 35) per unit area,
Ω ¼ 1

2
hjωðt; rÞj2i, where brackets h·i indicate spatial averages and

overbars denote time averages. For slender rods (a ≥ 3) the mean
enstrophy Ω exhibits a maximum when plotted versus the volume
fraction ϕ (Fig. 1B). This maximum coincides approximately with
the transition from the bionematic to the turbulent phase; in a
bacterial suspension, it corresponds to the optimal concentration
for fluid mixing. Typical aspect ratios of bacterial cell bodies in
our experiments lie in the range 2≲ a≲ 10 (mean 6.3� 1.2;
see SI Appendix, Fig. S7). Hence, homogeneous bacterial turbu-
lence should be observable in 2D for a broad range of filling
fractions.

Experiments.We test the T-phase of the SPRmodel against experi-
mental observations of B. subtilis at high filling fractions
(ϕ≳ 50%, see Materials and Methods). In contrast to recent in-
vestigations of bacterial dynamics in 2D free-standing films (8),
on 2D surfaces (44, 48, 49) , and open 3D bulk suspensions (7, 18,
24, 25), bacteria were confined in closed microfluidic chambers to

Fig. 1. (A) Schematic non-equilibrium phase diagram of the 2D SPR model
and snapshots of six distinct phases from simulations: D-dilute state, J-jam-
ming, S-swarming, B-bionematic phase, T-turbulence, L-laning (see also SI
Appendix, Fig. S2 and Movies S1–S6). Our analysis focuses on the turbulent
regime T. (B) Enstrophy per unit area Ω in units ðV∕λÞ2 for different aspect
ratios a ¼ ℓ∕λ, obtained from SPR simulations with N ∼ 104 to 105 particles.
The maxima of the enstrophy indicate the optimal filling fraction for active
turbulence and mixing at a given value of the aspect ratio a. Note that values
ϕ > 1 are possible due to the softness of the repulsive force (see SI Appendix
for simulation parameters).
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minimize oxygen gradients that may cause anisotropic streaming
of the oxytactic B. subtilis bacteria (2). To study the effects of
dimensionality and boundary conditions, experiments were per-
formed with two different setups: quasi-2D microfluidic chambers
with a vertical heightH less or equal to the individual body length
of B. subtilis (approximately 5 μm) and 3D chambers with
H ≈ 80 μm (SI Appendix, Figs. S6 and S8 and Movies S7–S10).
To focus on the collective dynamics of the microorganisms rather
than the solvent flow (24, 50), we determined the mean local
motion of B. subtilis directly using particle imaging velocimetry
(PIV; see also SI Appendix). A typical snapshot from a quasi-2D
experiment is shown in Fig. 2A. As evident from the inset, local
density fluctuations that are important in the swarming/flocking
regime (48, 49, 51) become suppressed at very high filling fractions
(SI Appendix, Fig. S5). The corresponding flow fields (Fig. 2B and
SI Appendix, Fig. S8) were used for the statistical analysis pre-
sented below.

Continuum Theory. The analytical understanding of turbulence
phenomena hinges on the availability of simple yet sufficiently
accurate continuum models (27). Considerable efforts have been
made to construct effective field theories for active systems (15–
17, 19, 31, 32, 52–54), but most of them have yet to be tested
quantitatively against experiments. Many continuum models dis-
tinguish solvent velocity, bacterial velocity and/or orientational
order parameter fields, resulting in a prohibitively large number
of phenomenological parameters and making comparison with
experiments very difficult. Aiming to identify a minimal hydro-
dynamic model of self-sustained meso-scale turbulence, we study
a simplified continuum theory for incompressible active fluids,
by focusing solely on the experimentally accessible velocity field
vðt; rÞ. By construction, the theory will not be applicable to re-
gimes where density fluctuations are large (e.g., swarming or
flocking), but it can provide a useful basis for quantitative
comparisons with particle simulations and experiments at high
concentrations.

We next summarize the model equations; a detailed motiva-
tion is given in SI Appendix. Because our experiments suggest that
density fluctuations are negligible (Fig. 2A) we postulate incom-
pressibility, ∇ · v ¼ 0. The dynamics of v is governed by an incom-
pressible Toner–Tu equation (15–17), supplemented with a Swift–
Hohenberg-type fourth-order term (45),

ð∂t þ λ0v · ∇Þv ¼ −∇pþ λ1∇v2 − ðαþ βjvj2Þvþ Γ0∇2v

− Γ2ð∇2Þ2v; [1]

where p denotes pressure, and general hydrodynamic considera-
tions (52) suggest that λ0 > 1; λ1 > 0 for pusher-swimmers like B.
subtilis (see SI Appendix). The ðα; βÞ-terms in Eq. 1 correspond to
a quartic Landau-type velocity potential (15–17). For α > 0 and
β > 0, the fluid is damped to a globally disordered state with
v ¼ 0, whereas for α < 0 a global polar ordering is induced. How-
ever, such global polar ordering is not observed in suspensions of
swimming bacteria, suggesting that other instability mechanisms
prevail (53). A detailed stability analysis (SI Appendix) of Eq. 1
implies that the Swift–Hohenberg-type ðΓ0; Γ2Þ-terms provide the
simplest generic description of self-sustained meso-scale turbu-
lence in incompressible active flow: For Γ0 < 0 and Γ2 > 0,
the model exhibits a range of unstable modes, resulting in turbu-
lent states as shown in Fig. 2D. Intuitively, the ðΓ0; Γ2Þ-terms de-
scribe intermediate-range interactions, and their role in Fourier
space is similar to that of the Landau potential in velocity space
(SI Appendix). We therefore expect that Eq. 1 describes a wide
class of quasi-incompressible active fluids. To compare the con-
tinuum model with experiments and SPR simulations, we next
study traditional turbulence measures.

Velocity Structure Functions. Building on Kolmogorov’s seminal
work (55), a large part of the classical turbulence literature (27,
34, 36–38, 40, 41) focuses on identifying the distribution of the
flow velocity increments δvðt; r; RÞ ¼ vðt; rþ RÞ − vðt; rÞ. Their
statistics is commonly characterized in terms of the longitudinal
and transverse projections, δv‖ ¼ R̂ · δv and δv⊥ ¼ T̂ · δv, where
T̂ ¼ ðϵijR̂jÞ denotes a unit vector perpendicular to the unit shift
vector R̂ ¼ R∕jRj. The separation-dependent statistical moments
of δv‖ and δv⊥ define the longitudinal and transverse velocity
structure functions

Sn
‖;⊥ðRÞ ≔ hðδv‖;⊥Þni; n ¼ 1; 2;…: [2]

These functions have been intensely studied in turbulent high-Re
fluids (27, 34, 35, 41) but are unknown for active flow. For
isotropic steady-state turbulence, spatial averages h·i as in Eq. 2
become time-independent, and the moments Sn

‖;⊥ reduce to func-
tions of the distance R ¼ jRj.

Velocity distributions, increment distributions, and structure
functions for our numerical and experimental data are summar-
ized in Fig. 3. For the SPR model, the velocity statistics can be
calculated either from the raw particle data or from pre-binned
flow field data. The two methods produce similar results,
and Fig. 3 shows averages based on individual particle velocities.
Generally, we find that both the 2D SPR model and the 2D con-
tinuum simulations are capable of reproducing the experimen-
tally measured quasi-2D flow histograms (Fig. 3 A and B) and
structure functions (Fig. 3C). The maxima of the even transverse
structure S2n

⊥ signal a typical vortex size Rv, which is substantially
larger in 3D bulk flow than in quasi-2D bacterial flow. Unlike
their counterparts in high-Re Navier–Stokes flow (27, 34), the
structure functions of active turbulence exhibit only a small re-
gion of power law growth for ℓ ≲ R ≪ Rv and flatten at larger
distances (Fig. 3C).

Fig. 2. Experimental snapshot (A) of a highly concentrated, homogeneous
quasi-2D bacterial suspension (see also Movie S7 and SI Appendix, Fig. S8).
Flow streamlines vðt; rÞ and vorticity fields ωðt; rÞ in the turbulent regime,
as obtained from (B) quasi-2D bacteria experiments, (C) simulations of the
deterministic SPR model (a ¼ 5, ϕ ¼ 0.84), and (D) continuum theory. The
range of the simulation data in D was adapted to the experimental field
of view (217 μm × 217 μm) by matching the typical vortex size. (Scale bars,
50 μm.) Simulation parameters are summarized in SI Appendix.
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Velocity Correlations and Flow Spectra. The energy spectrum EðkÞ,
formally defined by hv2i ¼ 2∫ ∞

0 EðkÞdk, reflects the accumulation
of kinetic energy over different length scales. By virtue of the
Wiener–Khinchine theorem (27), EðkÞ can be estimated by Four-
ier transformation of the equal-time two-point velocity correla-
tion function, yielding in d dimensions

EdðkÞ ¼
kd−1

Cd

Z
ddR e−ik:Rhvðt; rÞ · vðt; rþ RÞi; [3]

where C2 ¼ 2π and C3 ¼ 4π. Normalized velocity correlation
functions hvðt; rÞ · vðt; rþ RÞi and spectra EdðkÞ for our data
are summarized in Fig. 4. The crossover from positive to negative
correlations indicates again the typical vortex size Rv, in agree-
ment with Fig. 3C and previous findings for open 3D bulk systems
(7, 18).

In bacterial suspensions, the microorganisms inject kinetic en-
ergy on small scales R ∼ ℓ, setting the upper bound kℓ ¼ 2π∕ℓ
for the spectral range of the bacterial fluid. For both experiments
and simulations, we observe turbulent vortices on scales R > ℓ,
which formally correspond to the energy-inertial range k < kℓ in
classical 2D turbulence (34, 35). Our experimental and numerical
data suggest asymptotic power law scaling regimes for small and
large k-values (see Fig. 4B), but the power-law exponents differ
from the characteristic k−5∕3-decay of 2D Kolmogorov–Kraich-
nan turbulence (39); see discussion below. The spectra for the
2D continuum model and the quasi-2D bacteria experiments
are in good agreement, both showing large-k scaling with approxi-
mately EðkÞ ∼ k−8∕3 and small-k scaling with roughly EðkÞ∼
kþ5∕3. The asymptotic spectra for the 2D SPR model and the
3D experimental data look qualitatively similar but do also exhi-
bit an intermediate plateau region, which indicates that kinetic
energy is more evenly distributed over a range of scales.

Conclusions
SPRModel vs. Experiment.The deterministic SPRmodel provides a
simplified description of the bacterial dynamics, because it ne-
glects not only elastic properties of flagella and cell body but also

hydrodynamic interactions and orientational fluctuations due
to intrinsic swimming variability and thermal effects (30, 46).
Notwithstanding, at high concentrations, such a minimal model
reproduces remarkably well the flow velocity distributions and
the structure functions from our quasi-2D B. subtilis experiments
and the 2D continuum simulations (Fig. 3). This implies that hy-
drodynamic interactions per se are not required for the formation
of self-sustained turbulence in dense suspensions—self-propul-
sion, a rod-like shape and volume exclusion interactions are
sufficient (this raises the question whether the optimization of
collective behavior may have been a factor in the evolution of
bacterial shapes). However, to achieve a better quantitative
agreement, particle-based future studies should focus on more
realistic models that account for hydrodynamic near-field inter-
actions and intrinsic randomness in bacterial swimming (30). The

Fig. 3. Velocity statistics of self-sustained turbulent phases in active suspensions. (A) The marginal distributions of the normalized Cartesian velocity com-
ponents ½vi − hvii�∕½hv 2

i i − hvii2�1∕2i¼x;y are approximately Gaussian (thin gray line) for experiments, SPR model, and continuum theory. (B) The distributions of the
longitudinal and transverse velocity increments δv‖;⊥, normalized by their first and second moments S1;2

‖;⊥ are shown for three different separations R. (C)
Longitudinal and transverse velocity structure functions Sn

‖;⊥ normalized by hv 2in∕2. The maxima of the even transverse structure functions S2k
⊥ reflect the

typical vortex size Rv , which is significantly larger in the 3D experiments. Experimental and theoretical data points are spatio-temporal averages over
two orthogonal directions in A and B and all directions in C, yielding a typical sample size >106 per plotted data point in C. Histograms and structure functions
for quasi-2D (3D) curves were obtained by combining PIV data from two (15) movies, respectively, representing an average over 2 × 1;000 (15 × 300) frames.
Simulation parameters are identical to those in Fig. 2 and summarized in SI Appendix. Error bars are smaller than symbols.

Fig. 4. Equal-time velocity correlation functions (VCFs), normalized to unity
at R ¼ ℓ, and flow spectra for the 2D SPR model (a ¼ 5; ϕ ¼ 0.84), B. subtilis
experiments, and 2D continuum theory based on the same data as in Fig. 3.
(A) The minima of the VCFs reflect the characteristic vortex size Rv (48). Data
points present averages over all directions and time steps tomaximize sample
size. (B) For bulk turbulence (red squares) the 3D spectrum E3ðkÞ is plotted
(kℓ ¼ 2π∕ℓ), the other curves show 2D spectra E2ðkÞ. Spectra for the 2D con-
tinuum theory and quasi-2D experimental data are in good agreement;
those of the 2D SPR model and the 3D bacterial data show similar asymptotic
scaling but exhibit an intermediate plateau region (spectra multiplied by con-
stants for better visibility and comparison).
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experimental results presented above provide a benchmark for
evaluating such microscopic models (56).

Continuum Model and “Universality”. The good agreement of the
structure functions, spatial and temporal flow correlations (see
also SI Appendix, Fig. S9), and spectra from the 2D continuum
theory with those from the quasi-2D experiments suggests that
this theory could be a viable model for dense suspensions. Be-
cause the instability mechanism in the continuum theory arises
from a generic small-wave number expansion in Fourier space
(see SI Appendix) that is analogous to the Landau expansion in
order-parameter space for second-order phase transitions, we ex-
pect that the model applies to a wide range of quasi-incompres-
sible active fluids. This would imply that meso-scale turbulent
structures in these systems share “universal” long-wave length
characteristics. We note that the theory as formulated in Eq. 1
only accounts for leading terms up to fourth-order and, therefore,
becomes inaccurate for large velocities and wave numbers (see
tails in Figs. 3 A and B and 4B). Nevertheless, this continuum
model appears to capture the main statistical and dynamical
features of the experimental data. Important future challenges
include the analytical prediction of active flow spectra from Eq. 1,
detailed numerical studies of 3D bacterial bulk flows and compar-
isons of our experimental and numerical data with Q-tensor mod-
els and other multi-order parameter theories (2, 16, 19, 31, 32).

Dimensionality, Boundaries, and Hydrodynamic Interactions.The qua-
si-2D experiments allow us to compare with 2D simulations that
come close to experimental system sizes. Freestanding thin films
(8) and bacterial mono-layers on open surfaces (44, 49), which
may be more prone to intrinsic instabilities and external fluctua-
tions, provide an alternative but nonequivalent realization of a
2D bacterial fluid. The crucial difference between freestanding
2D films and our closed quasi-2D setup is that the presence of
no-slip boundaries in our experiments suppresses hydrodynamic
long-range interactions between bacteria due to cancellation
effects from the hydrodynamic images: An isolated dipole-like
swimmer [as E. coli (30) and, most likely, B. subtilis] creates a
stroke-averaged far-field flow that decays as approximately 1∕r2
with distance r in a 3D fluid. When the same swimmer moves
parallel to a nearby solid surface in an otherwise semi-infinite
fluid, the flow components parallel to the boundary decay faster
approximately 1∕r4 (30). If, however, the swimmer is closely
confined between two parallel no-slip walls, as in our quasi-2D
experiments with H ∼ 4 μm, then the flow field becomes expo-
nentially damped at distances jrj ≫ H (57). By contrast, in free-
standing 2D films the flow field generated by an isolated
microorganism has a much longer range approximately 1∕r
(22, 58), suggesting that hydrodynamic interactions could play
a more important role for collective behavior in these systems
(8). The fact that the typical vortex size in 3D is larger than in
quasi-2D could indicate stronger short-to-intermediate-distance
hydrodynamic coupling in 3D bulk flow; it would therefore be
interesting to perform a similar analysis for thin-film data (8).
Generally, however, we expect hydrodynamic far-field interac-
tions to be less important for the dynamics in very dense suspen-
sions due to mutual hydrodynamic screening (59) and the small
magnitude of bacterial flows fields (30), but they could act as a
destabilizing noise (54, 60).

Low-Re vs. High-Re Turbulence. Conventional high-Re turbulence
arises from energy input on large scales (e.g., stirring or shearing).
In 3D flow the injected energy is redistributed to smaller scales
via an energy-inertial downward cascade with E3 ∼ k−5∕3 (27). In
2D films, due to the suppression of vortex stretching (34, 35),
there can be both an energy-inertial upward cascade with
E2 ∼ k−5∕3 and an enstrophy-transfer downward cascade with
E2 ∼ k−3 (39). Remarkably, viscoelastic polymer solutions can
exhibit turbulent features (e.g., spectral power law scaling) at
Reynolds numbers as low as 10−3, facilitated by a slow nonlinear
response to external shear due to long intrinsic relaxation times of
the polymers (61, 62). Our simulations and experiments suggest
asymptotic spectral power law decays toward the bacterial energy
injection scale kℓ ¼ 2π∕ℓ that resemble the energy-inertial re-
gime of classical turbulence but, due to viscous damping by the
low-Re solvent, extend over a smaller range of length scales
(roughly up to 10ℓ). The latter fact is reminiscent of viscoelastic
turbulence (61), although the underlying physical mechanisms
are very different.

In conclusion, bacterial or, more generally, self-sustained ac-
tive “turbulence,” shares some qualitative characteristics with
classical turbulence on small scales while differing on larger
scales. Our detailed statistical analysis shows that, as with inertial
turbulence, a complete quantitative understanding of turbulent
behavior in active systems poses a challenging task. The com-
bined experimental, theoretical, and numerical results presented
here may provide both qualitative and quantitative guidance for
future studies that aim at identifying the basic principles of
dynamical self-organization in living fluids.

Materials and Methods
B. subtilis cells (wild type strain 168) were streaked from a −80 °C stock onto
an LBmedium plate containing 1.5% agar. The plates were incubated at 37 °C
for 12 h. A single colony from the plates was used to inoculate an overnight
culture in Terrific Broth (Sigma), which was then back-diluted 1∶200 into
50 mL of fresh tryptone broth, and grown at 37 °C on a shaker to mid-log
phase. The culture was then concentrated 400 × by centrifugation at 4;000 ×
g for 3 min, and the pellet was resuspended by gentle vortexing, to not shear
off the flagella. The concentrated culture was loaded into a polydimethylsi-
loxane (PDMS) microfluidic device, which was then sealed to reduce back-
ground fluid motion. Themicrofluidic device consisted of cylindrical measure-
ment chambers (radius 100 μm, height 4 μm for quasi-2D measurements, and
radius 750 μm, height 80 μm for 3D measurements). The samples were im-
aged in bright field with a 40 × ∕NA 1.4 oil immersion objective on a Nikon
TI-E microscope. Images were acquired at 40 fps in 2D (camera: Pike, Allied
Vision Technologies), and 100 fps and 200 fps in 3D (camera: Phantom v9.1,
Vision Research). Compared with measurements in quasi-2D chambers at the
same frame rate, the vertical superposition of bacteria leads to a reduced
image quality in 3D samples; we therefore recorded the flow in 3D suspen-
sions at a higher frame rate. For the 3D measurements, we imaged at the
bottom and in the middle of the chamber, while for the quasi-2D measure-
ments, we imaged in the middle of the chamber. A detailed description of
the theoretical models and numerical methods is given in SI Appendix.
Raw data and additional experimental movies can be downloaded from
http://damtp.cam.ac.uk/user/gold/datarequests.html.
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