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The results of various simulations are shown here for chains of rotors above a no-slip wall, with
inhomogeneities in their driving forces. We explore the effects of introducing a frequency bias of
the same functional form as the measured frequency distribution in Volvox (see Fig. 2(g)), and also
additional polydispersity in the rotor driving forces. This frequency profile in Fig. 2(g) was fitted
and for a chain of 30 rotors, the appropriate driving force is given by fdrivei /f0 = 1+C[tanh(0.1684×
i−1.6813)−0.3604] with CV = 0.0724 and 1 ≤ i ≤ 30 is the rotor index. The parameter f0 is chosen
to centre the distribution of resulting effective spring constants Λi = λd/fdrivei around Λ = 0.1.
Figure 2(g) also shows that the frequency profiles for individual Volvox colonies are distributed
around the mean curve. The standard deviation of this spread was measured to be σV = 0.0279 for
Volvox. In the following sections, various driving forces and degrees of polydispersity are considered.
Multiple realisations of each parameter set are shown, highlighting the general behaviour of each
configuration.
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Increasing frequency bias (0.001 ≤ C ≤ 0.1)
No polydispersity (σ = 0)

For small values of C, the shape of the MW is perturbed, yet remains phase-locked and symplectic
in nature. For C > 0.007 phase defects begin to emerge among the interior rotors. These defects
are periodic for 0.007 < C < 0.02, but for larger values of C, defects emerge at various points in
the chain and interact to produce more complex phase dynamics. In every simulation, there exists a
region of oscillators at each end which are locally phase-locked.

Figure S1: Chains of rotors with an intrinsic frequency bias. The driving force along each chain is
given by fdrivei /f0 = 1 + C[tanh(0.1684× i− 1.6813)− 0.3604] for various values of C ∈ [0.001, 0.1].
The value for Volvox is given by CV = 0.0724. Other parameters are given by Λ = 0.1, a/d = 0.01,
r0/d = 0.5, l/d = 2. The phase profile and phase difference from each simulation are shown, as
well as the intrinsic rotor frequency profile (red curves) and average measured frequency profile from
the simulations (blue curves). As the frequency bias is increased, defects in the middle of the chain
emerge, becoming more abundant for larger values of C.
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Fixed frequency bias (C = 0.02)
Polydispersity (σ = 0.0279)

Figure S2: Various realisations of polydispersity. The driving force along each chain is given by
fdrivei /f0 = 1 + 0.02[tanh(0.1684 × i − 1.6813) − 0.3604] + εi where εi = εi(σ) is a random number
chosen from a normal distribution with mean of zero and standard deviation σ = σV = 0.0279. Other
parameters are given by Λ = 0.1, a/d = 0.01, r0/d = 0.5, l/d = 2. The phase profile and phase
difference in each simulation are shown. The colour scale includes −1 (blue) through to +1 (red).
The results corresponding to 10 of the 60 simulations are shown here, and are representative of the
general behaviour observed.
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Fixed frequency bias (C = 0.0724)
Polydispersity (σ = 0.0279)

Figure S3: Various realisations of polydispersity. The driving force along each chain is given by
fdrivei /f0 = 1 + C[tanh(0.1684 × i − 1.6813) − 0.3604] + εi where C = CV = 0.0724 and εi = εi(σ)
is a random number chosen from a normal distribution with mean of zero and standard deviation
σ = σV = 0.0279. Other parameters are given by Λ = 0.1, a/d = 0.01, r0/d = 0.5, l/d = 2. The
phase profile and phase difference in each simulation are shown. The colour scale includes −1 (blue)
through to +1 (red). The results corresponding to 10 of the 60 simulations are shown here, and are
representative of the general behaviour observed.
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No frequency bias (C = 0)
Polydispersity (σ = 0.0279)

Figure S4: Various realisations of polydispersity. The driving force along each chain is given by
fdrivei /f0 = 1 + εi where εi = εi(σ) is a random number chosen from a normal distribution with mean
of zero and standard deviation σ = σV = 0.0279. Other parameters are given by Λ = 0.1, a/d = 0.01,
r0/d = 0.5, l/d = 2. The phase profile and phase difference in each simulation are shown. The colour
scale includes −1 (blue) through to +1 (red). The results corresponding to 10 of the 30 simulations
are shown here, and are representative of the general behaviour observed. Symplectic MWs persist
on average, even in the presence of polydispersity.
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Correlation parameters

In this section, the correlation parameters are extracted for chains of rotors with varying degrees of
polydispersity. The driving force for the ith rotor is taken to be fdrivei /f0 = (1 + εi) where εi = εi(σ),
as in Fig. S4, but for various values of σ. The parameter f0 is chosen to centre the distribution
of resulting effective spring constants Λi = λd/fdrivei around Λ = 0.1. With these parameters, the
threshold detuning for an isolated pair is |Ω|max ' 6%. Here we want to investigate the extent to
which this applies to MWs, and extract the correlation parameters for the emergent metachronal
waves.

Altogether, we performed 150 simulations of arrays of 30 rotors, each run for approximately
3000 cycles starting with random initial conditions. For each simulation, the limit cycle of individual
rotors was independently determined, and used to define their phases and beating periods {Φi, Ti}30i=1.
The normalised standard deviation of the set of periods ψ = std({Ti}30i=1)/Tav characterises the
variation in the set of beating periods for each simulation. Here Tav is the average of {Ti}. As ψ
is increased, the MW that would develop in a system of identical rotors is perturbed initially only
slightly (ψ = 0.009; rotors globally phase locked), then more heavily (ψ = 0.028; rotors locally phase
locked), until eventually the MW is realised only on average and any locking is only local (ψ = 0.052).
Kymographs were used to estimate the average MW properties (T, τ, L, k) for each simulation, as
described previously for the experiments.

Figures S5(a-b) show that, generally, both the autocorrelation length and time, L and τ , decrease
significantly as ψ is increased. In these plots, the systems with τ larger than the duration of the
simulation are coloured green, while the remaining points are shown in blue. The autocorrelation time
plot reveals that these two groups cluster around markedly distinct values of τ . Simulations in the
first group have τ/T ∼ 106−107 and seemingly independent to the value of ψ. They develop a steady
MW despite the finite dispersity, but only up to ψ ∼ 3%. This value corresponds to the threshold
detuning we encountered for two rotors, because for a pair ψ = Ω/2. In the second group, τ decreases
with ψ. Figure S5(c) displays the spread of wavenumbers k. The mean wavenumber (k = 2.1, dashed
line) compares well with the value for identical rotors. With a finite dispersity in the driving forces,
the wavenumbers spread in a manner similar to the distribution observed experimentally for Volvox
(Fig. S5(d)). A few systems at large values of ψ displayed negative wavenumbers (∼ 6% of the
simulations), but overall the simulations show that the present model robustly exhibits symplectic
MWs, even with variations in rotor properties.

Figure S5: (a) Correlation decay length L and (b) time τ/T scaled by period are shown as functions
of the spread in beating periods ψ. (c) Histogram of extracted wavenumbers. Values of ψ are the
same as the preceding two plots. Results correspond to 150 simulations of N = 30 spheres with
a/d = 0.01, r0/d = 0.5, l/d = 2 and Λi centred at Λ = 0.1. (d) Histogram of wavenumbers in Volvox
colonies.
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Linear frequency bias
No polydispersity (σ = 0)

To this point, the Volvox-inspired intrinsic frequency profile has been used, with the parameter C
controlling the extent of this bias along the chain. Chains of rotors with a linear bias in their
intrinsic frequencies are studied here. The rotors are actuated with a driving force of the form
fdrivei /f0 = 1 +D

[
i− (N + 1)/2

]
for various values of D ∈ [−0.0003,+0.0005], so that their intrinsic

beat frequency varies monotonically along the chain. Figure S6 shows the steady state phase profiles
exhibited for a number of values of D. This frequency bias can either enhance (D < 0) or reduce
(D > 0) the slope of the metachronal wave, while still permitting convergence to a steady state.
The direction of the metachronal wave is robust, even when the constituent rotors possess a mild
opposing frequency bias (∼ 1% difference between the end rotors).

There are significant qualitative differences between this system, and the one presented in Fig. S1.
For the linear profile here, a very small overall frequency difference between the end rotors (D =
+0.0005) results in suppression of the symplectic metachronal wave. Effective hydrodynamic coupling
for each rotor does not extend to more than a few neighbours away, and so the mild linear frequency
profile does not provide “weak points” in the coupling. Conversely, the intrinsic frequency profiles
in Fig. S1 vary nonlinearly. Defects emerge in the middle of the rotor chain where the neighbouring
frequency difference is largest, allowing relaxation to the symplectic metachronal wave.

Figure S6: Steady state metachronal wave for chains of rotors with an intrinsic frequency bias. Inset
shows the intrinsic frequency of rotors along each chain. The functional form of the driving force is
linear, and given by fdrivei /f0 = 1 +D

[
i− (N + 1)/2

]
for various values of D ∈ [−0.0003,+0.0005].

Other parameters are given by Λ = 0.1, a/d = 0.01, r0/d = 0.5, l/d = 2.
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