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I n his long and astonishingly productive
life, Dutch scientist Antoni van
Leeuwenhoek not only made funda-
mental and far -reaching technical 
improvements to the microscope, he

also discovered a remarkable variety of 
microorganisms that are now central to much
of biology. In a 1676 letter to the Royal Society
of London, he described his initial glimpses of
tiny creatures he termed animalcules, which
we now know as bacteria:

I now saw very distinctly that these
were little eels or worms . . . lying hud-
dled together and wriggling, just as if
you saw with your naked eye a whole
tubful of very little eels and water, the
eels moving about in swarms; and the
whole water seemed to be alive with
the multitudinous animalcules. For me
this was among all the marvels that I
have discovered in nature the most
marvelous of all, and I must say that,
for my part, no more pleasant sight has
yet met my eye than this of so many
thousands of living creatures in one
small drop of water, all huddling and
moving, but each creature having its
own motion.

Here, van Leeuwenhoek points to two inter -
related aspects of microbial locomotion—the individ-
ual dynamics of single, swimming cells and the col-
lective motions that arise when many of those cells
interact. Over the past decade, exciting theoretical 
and experimental discoveries have converged to 
elevate those two topics into the forefront of 
biophysics research. The fascination of the fast-
growing field derives in part from the way it couples
hydrodynamics to areas ranging from nonlinear and
statistical physics to cell biology, biotechnology, 

and applied mathematics. But much of the appeal
remains just as it was for van Leeuwenhoek: the
mesmerizing dance of the microswimmers.

Doing the locomotion
Life as we know it can be divided into two groups:
eukaryotes, which have cellular nuclei, and
prokaryotes—bacteria and archaea—which don’t.
In turn, swimming prokaryotic and eukaryotic mi-
crobes can be distinguished by the nature of their
flagella, the hair-like cellular appendages that en-
able locomotion. Prokaryotic flagella, including
those found on the bacterium Escherichia coli, are
rigid, helical, and passive. A rotary motor embed-
ded in the cell wall rotates the flagellum at its point
of attachment, and that rotation propels the cell for-
ward. (See the article by Howard Berg, PHYSICS
TODAY, January 2000, page 24.) The effect is not un-
like a corkscrew pulling itself through the cork of a
wine bottle, except that the flagellum advances less
than a full wavelength per turn.

In contrast, eukaryotic flagella, such as those
deployed by spermatozoa and green algae, are flex-
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ible and actively deforming. Molecular motors dis-
tributed along the flagellum’s length produce bend-
ing moments, and the coordinated action of those
motors generates a wave-like undulatory motion.
The wave’s frequency can range from a few to a hun-
dred hertz, and its shape can take one of two forms.
The so-called flagellar waveform resembles a sinu-
soidal traveling wave; it pushes fluid in the direc-
tion of the wave propagation and the microorgan-
ism in the other. 

When several eukaryotic flagella are closely
spaced on a surface to form a carpet, they are often
referred to as cilia. An individual cilium’s waveform
is an asymmetric cycle, with an extended power
stroke in one direction followed by a compact recov-
ery stroke; the result is a net transport of fluid along
the cell surface.1

Flagella and cilia are among the most highly
conserved structures in biology: the eukaryotic fla-
gella that first appeared on Earth in single-cell or-
ganisms some billion years ago are essentially iden-
tical to the cilia within humans, the most highly
developed eukaryotes. The ability to manipulate
fluid and to maneuver within it is important to
nearly every form of life. Cilia, in particular, are es-
sential to human development and physiology:
They help to clear mucus from our respiratory sys-
tem, waft ova along the female reproductive tract,
and establish the left–right asymmetry of the devel-
oping vertebrate embryo. Defective cilia underlie a
number of human diseases; many of them can be
studied in the lab using flagellated single-cell organ-
isms as proxies.

Getting in step
Flagella don’t all beat to the same drum. Each has a
frequency that depends on the number and detailed
properties of its molecular motors and on the bio-
chemical signals it receives from within the cell and
the nearby environment. And those signals are sub-
ject to noise, the inevitable fluctuation of local chem-
ical concentrations. Nevertheless, when flagella
happen to come within a few microns of each other,
they tend to do something that on its face seems im-
probable: They move in synchrony. Examples of
that complex, nonlinear behavior are illustrated in
figure 1. 

In figure 1a, two mammalian spermatozoa,
each propelled by a single eukaryotic flagellum, ap-
proach one another, and their flagella lock phases.
The cells can swim together in phase for many beat-
ing cycles—up to a few tens of periods for human
spermatozoa—shadowing each other so closely as
to appear indistinguishable. Similar phase-locking
behavior has been seen for as many as four cells at
a time.2 On occasion, spermatozoa have been seen
to synchronize in antiphase, with the cells and their
flagella moving as mirror images.

Figure 1b shows a single eukaryotic cell—
Chlamydomonas reinhardtii, a freshwater alga—that
propels itself by doing a breaststroke: Its two fla-
gella alternately draw away from and toward each
other, moving in synchrony for up to thousands 
of periods at a time. From time to time, however,
biochemical noise causes the cell to temporarily 
desynchronize.3

Figure 1. Synchronized swimming.
(a) The flagellum of a free -swimming
spermatozoon deforms in a traveling,
transverse wave, as illustrated in the
sketch at left. (For each sketch, the
inset red arrows show the motion of
the flagellum at the point indicated 
by the dot.) When two spermatozoa
approach each other, their flagella 
attract and move in synchrony.
(Adapted from ref. 2.) (b) An alga cell
pulls itself along by doing a sort of
breaststroke: Its two flagella draw away
from each other with a power stroke
and then draw toward each other with
a recovery stroke. (Adapted from ref. 3.)
(c) A bacterium’s rigid, helical flagella
rotate like corkscrews to propel the cell
forward. The images at right show the
flagella of an Escherichia coli bacterium
attracting and synchronizing in a 
coherent bundle. (Adapted from ref. 4.)
(d) Cilia, flagella that line a cell surface to
form a carpet, move with a power stroke
in one direction followed by a recovery
stroke in the other. At right, they are
shown in various stages of a coordinated
motion known as a metachronal wave.
(Adapted from ref. 15.) 
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The ancestors to the eukaryotes, the prokary-
otes, also synchronize their flagella, as is the case for
E. coli (see figure 1c). A typical E. coli cell is randomly
appended with up to 10 or so helical flagella, each
independently driven by its own rotary motor. Even
so, they tend to attract and phase lock, forming a co-
herently rotating bundle. Every now and then, the
bundle briefly splays open and reforms, allowing
the bacterium to change direction and explore its
environment.4

Eukaryotic cilia are unique in that they typi-
cally synchronize with a phase gradient in one di-
rection along the cell or tissue surface from which
they protrude (see figure 1d). The result is a coher-
ent collective deformation known as a metachronal
wave, which resembles the wave performed by fans
in sports stadiums.

The above examples demonstrate the breadth
of geometries and the wide variety of flagella types
for which synchronization can occur. Researchers
have known about most of those synchronization
phenomena for decades and have been measuring
the dynamics of undulatory swimming since James
Gray’s pioneering work on locomotion in the 1930s.
But only recently have we developed the capability
to quantify phase dynamics in experiments. It is
now possible, for instance, to track an entire flagel-
lar waveform throughout its full beating cycle or,
more simply, to track the orbit of a single point along

the flagellum. The latter suffices to generate a meas-
ure of the time-dependent phase angle θ(t). The
group of one of us (Goldstein) used that strategy to
study phase locking between the paired flagella of
a Chlamydomonas cell.3 The dynamic state of the fla-
gella can be represented as a relative phase differ-
ence, Δ = (θ1 – θ2)/2π, where θ1 and θ2 are the phases
of the individual flagella (see figure 2). Although Δ
always fluctuates due to noise, a Δ that hovers
closely to an integer value is an indication that the
two flagella are in phase.

In the experiment, the two flagella were ob-
served to lock phases for many beating periods be-
fore exhibiting what’s known as a phase slip: In an
instant spanning about 10 periods, the flagella
would fall out of sync and then resynchronize in a
new phase-locked state, with Δ having shifted by an
integer. Similar phase slips occur in all kinds of non-
linear oscillators, including a variety of classical and
quantum condensed-matter systems, and in biolog-
ical contexts as diverse as circadian rhythms and
biochemical oscillators.

Deciphering the dance
Why does phase locking—and sometimes phase
slip—occur? Do cells instinctively “decide,” via bio-
chemical signaling, when and how to coordinate
their own movements, or is a simpler physical
mechanism at play? There are no definitive answers
yet to those questions, but an emerging consensus
is that hydrodynamic interactions, not biochemical
signaling, provide the fundamental coupling that
leads to stable phase locking.

When a flagellum moves, it pushes and pulls its
surrounding fluid, which, in turn, exerts a stress on
other flagella. If the fluid appears very viscous on the
scale of the microswimmers—that is, if the Reynolds
number Re is small—those hydrodynamic forces can
extend over long distances. By definition, Re is UL/ν,
the product of the swimmer’s velocity and character-
istic length scale divided by the fluid’s kinematic vis-
cosity. So at the tiny length scales and speeds relevant
to micro swimmers, Re is almost always nearly zero.
As a result, hydrodynamic interactions between mi-
croswimmers are long ranged, decaying as 1/r near
flagella, 1/r2 far from cells, and 1/r3 near solid sur-
faces. The implication is that any two flagella, near or
far, exert a nontrivial hydrodynamic stress on each
other. Flagellar synchronization therefore sits
squarely within a broad class of problems involving
noisy nonlinear oscillators with long-range coupling,
a subject with a long history in the mathematical sci-
ences and with applications ranging from pendulum
clocks to pacemaker cells in the heart.5

From the hydrodynamic perspective emerges a
tidy physical picture of flagellar dynamics: At any
instant, the forces driving the beating of a flagellum
must balance with the viscous drag of the surround-
ing fluid, the long-range hydrodynamics stresses
exerted by neighboring flagella, and the flagellum’s
own internal resistance to bending and twisting.
Perhaps the simplest implementation of that model,
proposed in 1951 by G. I. Taylor,6 treats a pair of fla-
gella as two infinitely wide, waving sheets, each of
which deforms according to a traveling sinusoidal
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Figure 2. Phase slip. The two flagella that emerge from the alga
Chlamydomonas reinhardtii usually mirror each other with near-
perfect synchrony. But in an occurrence known as a phase slip, the 
flagella transition from a phase-locked state (a–c) to an asynchronous
state (d–i) and into a new phase-locked state (j–l). Time plots of 
experimental data (m,n) show that the phase slip, which occurs in
just a fraction of a second, manifests as an integer jump in the 
flagella’s relative phase Δ = (θ1 − θ2)/2π, where θ1 and θ2 are the
phases of the points indicated by the blue and red boxes in panel b.
(Adapted from ref. 3.)
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wave (see figure 3a). Taylor’s calculations for the
Re = 0 case show that the most energetically favor-
able scenario is the one in which the waves travel in
phase. That result provides a rationale for why
phase locking might occur, but technically, it doesn’t
address the question of whether flagella should
transition from any arbitrary state to a phase-locked
one. Recent work has shown that if Taylor’s model
is modified to allow compliance—that is, if each
waving sheet is allowed to deviate elastically from
its prescribed waveform as if connected to it by a
spring—then the sheets lock phases regardless of
their initial conditions. 

Another approach—a near-literal take on what
has come to be known as a spherical-cow model—is
to represent flagella and cilia not as sheets but as hy-
drodynamically interacting spheres.7 Each sphere is
elastically constrained to an elliptical trajectory, in
similar fashion to the waving-sheet model (see figure
3b). Just like more realistic descriptions of flagella
waveforms, the model yields a nonlinear dynamical
equation for the phase difference Δ that, in the sim-
plest case, takes the form Δ̇ = δν – ε sin (2πΔ) + ξ(t).
Here, δν is the difference between the intrinsic fre-
quencies of the spheres’ orbits; ε is a coupling con-
stant that depends on the fluid viscosity and the elas-
ticity and dimensions of the spheres’ elliptical orbits;
and ξ is a stochastic noise term that represents bio-
chemical noise. 

Absent the noise term, the model is known as
the Adler equation, a rather universal model for
coupled phase oscillators. With noise, Δ evolves
identically to the position of a diffusive, Brownian
particle on a tilted washboard potential: Just as the
Brownian particle fluctuates for extended time pe-
riods near the bottom of a potential energy well and
occasionally jumps from one well to the next, the
spherical oscillators synchronize for extended peri-
ods at a particular integer value of Δ before under-

going the occasional phase slip, in which Δ shifts by
one. The phase -slip behavior closely matches that of
real flagella. In fact, even the noiseless Adler equa-
tion quantitatively reproduces the mean dynamics
observed for Chlamydomonas. The spherical -
oscillator approach can be extended, by coupling
numerous spheres in a single system, to model cilia
and to predict the conditions that give rise to
metachronal waves.7

In experiments, a pair of rigid macroscopic pad-
dles rotating in a viscous fluid can serve as a stand-
in for prokaryotic flagella (see figure 3c). Studies
show that if each paddle is rigidly connected to its
driving motor, the paddles won’t lock phases—even
if they are driven by identical or near-identical driv-
ing torques. If, however, the paddles are connected
to their motors via compliant shafts, they synchro-
nize within a few tens of periods. Theoretical models
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Figure 3. Idealized approximations to real-life flagella include (a) waving sheets 
immersed in a viscous liquid, (b) hydrodynamically coupled spheres tracing elliptical
orbits, and (c) paddles rotated in silicone oil by an external motor. Each of the model
systems a–c synchronizes much like real flagella, provided the fluid is viscous and the
model flagella are sufficiently compliant or flexible. The blue curves in panel b show
the evolution of the phase difference Δ between two flagella during occurrences
known as phase slips (see figure 2), and the red curve shows the mean of those curves.
The Adler equation, which describes the evolution of hydrodynamically coupled
spheres and is plotted in black, quantitatively reproduces the phase-slip dynamics.
(Panels a, b, and c are adapted from refs. 6, 3, and 16, respectively.) 
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Figure 4. Suspensions of swimming bacteria exhibit transient, 
recurring states of collective motion known as bacterial turbulence.
(a) In the turbulent state, densely suspended Bacillus subtilis microbes
adopt local, but not long-range, orientational order. (b) A snapshot of
their instantaneous velocities shows a pattern of vortices and jets. 
(c) For a suspension of Escherichia coli, a map of swimmers’ trajectories
over an eight-second period reflects the chaos and disorder that 
prevails at longer time scales. (Panels a and b are adapted from 
ref. 10; panel c is adapted from ref. 17.) 
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suggest that compliance plays a similar role in the
synchronization of rotating helical filaments.8

The simple, low-dimensional models described
above paint a consistent picture in which the essential
ingredients for synchronization are twofold: Flagella
must interact via long-range hydrodynamic forces,
and they must be either flexible or flexibly coupled
to their driving mechanism. Yet a number of impor-
tant issues are still unresolved.9 Other mechanisms,
including biochemical coupling, could potentially
also lead to synchronization, and their importance re-
mains to be quantified. Also, the factors that deter-
mine whether flagella synchronize in antiphase, as is
the case for Chlamydomonas, or in phase, as is the case
for cilia and most spermatozoa, aren’t well known.
Those distinct behaviors could be signatures of more
fundamental biological differences. 

Although simple models elucidate the qualita-
tive, physical picture of synchronization, a predictive
and quantitative approach for the complex three-
dimensional beating of flagella is still lacking. And
despite extensive study of the collective dynamics of
cilia, the specific conditions that give rise to coherent
metachronal waves remain unknown. Our hope is
that modern microscopy and imaging techniques

will produce novel insights into phase dynamics and
inspire a new class of models that allow quantitative
comparisons between theory and experiments. 

A crowded ballroom
Just as multiple flagella often move in concert, groups
of swimming cells also display striking collective ef-
fects. Indeed, experiments and theory demonstrate
qualitative differences between the way a cell swims
in isolation and the way it swims as part of a densely
populated suspension. For one, dense suspensions of
microswimmers have been seen to show transient,
recurring formation of swirling vortices and jets
whose length scales are large compared with the
cell10 (see figure 4). That state, first described by John
Kessler and coworkers, is often referred to as bacter-
ial turbulence. Purists may object to the use of the
word turbulence to describe flows at such low Re, but
it is worth noting that the word’s Latin root, turba,
refers to the disorderly motion of a crowd. 

Quantitative measurements show that in a sus-
pension, cells’ orientations and velocities tend to cor-
relate on length scales much larger than the cell, typ-
ically tens to hundreds of microns. Furthermore, the
cells attain much higher velocities than they could in
isolation, and the cells may be inhomogeneously dis-
tributed in space. The result is an enhancement in the
diffusivity of both the cells and the surrounding
fluid.11 Those distinct traits have important implica-
tions for understanding bacterial infections, repro-
ductive medicine, and tissue rheology.

Theoretical approaches to understanding col-
lective swimming have followed two paths. The
first, microscopic modeling, rests on the fundamen-
tal hypothesis that long-range hydrodynamic inter-
actions are responsible for the collective swimming
effects we see. That feature distinguishes the collec-
tive swimming of microswimmers from high-Re
phenomena such as the flocking of birds or the
schooling of fish. 

The microscopic models start with the dynam-
ics of a single organism and then model a large pop-
ulation of those organisms as a dynamical system—
the basic physics rests in understanding the
fundamental swimmer–swimmer interactions. Each
swimmer’s properties are typically taken as the av-
erage over all of its phases, so a time -averaged inter-
action between two swimmers is approximated as an
interaction between two time -averaged swimmers.

In microscopic models, each swimmer produces
a flow field that depends on the nature of its swim-
ming motion. Pushers, including most spermatozoa
and bacteria, swim body first, propelled by trailing
flagella. They generate a dipolar flow field like the
one illustrated in figure 5a, wherein fluid is repelled
at the head and tail and drawn in at the sides. In con-
trast, pullers such as Chlamydomonas swim flagella
first and generate the opposite flow field. 

In parallel with the microscopic modeling, a sec-
ond approach, coarse-grained modeling, has been
used to derive continuum equations for the spatial
distribution, velocity, and orientation of microswim-
mers in suspensions. Some of those models bypass
the derivation of specific coefficients and instead use
symmetry arguments à la Landau to arrive at very
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Figure 5. Modeling instability. (a) Pushers, which swim body first,
repel fluid in the swimming direction and draw in fluid in the lateral
direction. Pullers swim flagella first and create the opposite flow field.
(Both of the swimmers sketched here move from left to right.) 
(b) Theory predicts that if a quiescent suspension is perturbed by 
a sinusoidal flow field, indicated here by the gray arrows, microbes 
will tend to orient along the principal axis of strain. For pushers, the
reorientation causes the swimmer-induced flow field (blue arrows) to
amplify the perturbation. For pullers, the swimmer-induced flow field
counteracts the perturbation. (c) A simulation of rod-shaped pushers
shows that an isotropic suspension tends to develop inhomogeneity
and local order. (d) Simulations also confirm that a suspension of
coaligned pushers is unstable. (Adapted from ref. 13.)
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general equations; other models explicitly derive
terms to account for nonlocal swimmer–swimmer
interactions, but they apply only in the dilute limit.12

Whence the choreography?
What can the models tell us about collective locomo-
tion? So far, they have mostly been used to derive
stability criteria. In particular, continuum dilute
models predict that a suspension of aligned mi-
croswimmers in a quiescent fluid should be unstable
to small perturbations, regardless of the organisms’
swimming motion. Alternatively, a suspension of
isotropically oriented swimmers in a quiescent fluid
is unstable if the swimmers are pushers but stable if
they are pullers. 

A physical explanation for the behavior was
first proposed by Sriram Ramaswamy, and the es-
sential mechanism is a coupling between the veloc-
ity perturbations in the underlying flow and the ori-
entations of the swimming cells12 (see figure 5b).
Consider an isotropic suspension whose micro -
swimmers are at rest. If the fluid gets disturbed by
a sinusoidal velocity perturbation, then theory says
the elongated swimmers should tend to align in the
direction in which the fluid is being stretched, the
principal axis of strain. 

But each swimmer also induces a flow due to
its own motion: Pushers create a flow field that am-
plifies the initial flow perturbation and results in
flow and orientational instabilities; pullers create a
flow that counteracts the perturbation. Note that the
physical picture does not rely on explicit hydro -
dynamic interactions between the cells; it is an intrin-
sically dilute mechanism. The model’s predictions
are borne out by computer simulations of dilute sus-
pensions13 (see figure 5c). 

Simulations show that hydrodynamic coupling
between swimmers can explain several features of col-
lective swimmers, not just instabilities. But can it ex-
plain everything? Recent experiments with swimming
bacteria hint that long-range hydrodynamic coupling
might not be as strong as previously thought.14 A new
physical picture might emerge in which collective 
effects simply arise due to competition between 
excluded-volume effects and noise. Future work—
especially detailed experimental investigations—will
be needed to fully unravel the physics underlying the
collective dance of the microswimmers.
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