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Molecules at the air–water interface often form inhomogeneous layers in which domains of
different densities are separated by sharp interfaces. Complex interfacial pattern formation may
occur through the competition of short- and long-range forces acting within the monolayer. The
overdamped hydrodynamics of such interfacial motion is treated here in a general manner that
accounts for dissipation both within the monolayer and in the subfluid. Previous results on the linear
stability of interfaces are recovered and extended, and a formulation applicable to the nonlinear
regime is developed. A simplified dynamical law valid when dissipation in the monolayer itself is
negligible is also proposed. Throughout the analysis, special attention is paid to the dependence of
the dynamical behavior on a characteristic length scale set by the ratio of the viscosities in the
monolayer and in the subphase.@S1070-6631~96!01804-8# © 1996 American Institute of Physics.

I. INTRODUCTION AND EXPERIMENTAL
BACKGROUND

Molecular layers of surfactants or polymers at the air–
water interface are often found in inhomogeneous states
within which appear domains of nearly uniform density.1,2 In
many ways, these states resemble conventional two-phase
coexistence regions with sharp interfaces between different
homogeneous phases; because of long-range electrostatic in-
teractions within the monolayer, however, domains of a
given phase can be stable rather than coarsening in time.3

Experimentally observed domains typically have sizes of
10–100mm.

A considerable body of experimental4–12 and
theoretical13–15 work has focused on the motion of the do-
main boundaries. These investigations have had two comple-
mentary motivations. On the one hand, the boundary dynam-
ics provide a means of probing physical parameters, such as
the line tension between phases, that are otherwise difficult
to measure.7,12,15On the other, the electrostatic interactions
are caused by the molecules’ permanent dipoles that are ori-
ented with respect to the surface of the water; their mutual
repulsion can result in intricate fingering instabilities that
have parallels in a variety of other pattern-forming systems.3

The laws of motion of the interfaces between monolayer
phases have been probed directly in experiments monitoring
the relaxation of domains to a circular ground state, starting
either from an elongated ‘‘bola’’ shape7,12 or from smaller
elliptical deformations.9,12 The fastest-growing mode at the
onset of a fingering instability has also been examined.4,5,11

The complete interpretation of such experiments requires
an understanding of the hydrodynamics of thin layers
coupled to a subfluid. Some progress has been made in the
analysis of particular cases. Building on earlier work on the
diffusion of a cylinder embedded in a membrane,16 Stone
and McConnell have solved the linearized boundary dynam-
ics about a circle.13,14 Schwartz, Knobler, and Bruinsma17

and Stone18 have examined the flow of monolayers through
channels. The related problem of fingering in quasi-two-
dimensional domains of ferrofluids has also recently been
considered,19–23as has the behavior of capillary waves in the
presence of coexisting monolayer phases.24 The more gen-
eral treatment of boundary motion applicable to a domain of
any shape has, however, remained an open problem of con-
siderable interest.

In this paper, we adapt boundary integral techniques
from fluid mechanics25 to the study of thin layers resting on
a subfluid. Our approach is applicable to arbitrary geom-
etries, and hence offers several advantages over techniques
based on eigenfunction expansions that are useful only in
particular situations with a high degree of symmetry. It al-
lows the comparatively straightforward calculation of linear-
ized growth rates about any number of stable shapes; it is
also a starting point for the detailed investigation of the
boundary dynamics in the nonlinear regime. Further, by
separating those aspects of the problem that depend on ener-
getics from those determined by the hydrodynamic equa-
tions, we gain several physical insights. Finally, our formu-
lation provides a new example of a dynamical law governing
curve motion in the plane. It is thus of interest to the broader
study of pattern formation.

In Sec. II, we present a formulation of the boundary
dynamics valid for arbitrary viscosities and subfluid depths,
and note some global properties of the resulting dynamical
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law. In Sec. III we consider in greater detail the more ana-
lytically tractable limiting cases of an infinitely deep or very
thin subfluid. In Sec. IV, we examine the linear stability of
straight and circular boundaries. Drawing on these results, in
Sec. V we propose a simplified dynamics appropriate when
dissipation occurs mostly in the subfluid. This limiting form
has the intriguing feature that it contains a local drag term at
the interface not unlike that introduced in the Rouse model
of polymer dynamics.26 In Sec. VI we give a brief, illustra-
tive calculation in the nonlinear regime, and in Sec. VII we
discuss some limitations and possible extensions of our
work.

II. GENERAL FORMULATION

A. The model and a boundary integral formulation

We begin by ignoring the presence of domains and
studying a homogeneous two-dimensional layer coupled to a
water subphase. The geometry of the system is shown in Fig.
1. Both fluids are taken to have an infinite horizontal extent,
while the subphase may have a finite depthd. The mono-
layer is assumed to be an incompressible, Newtonian fluid
with surface viscosityh ~dimensions mass/time! filling the
planez50.27 It rests on a three-dimensional incompressible
fluid of viscosityh8 @dimensions mass/~length3time!# that
occupies the region2d,z,0. All variables referring to the
subfluid are primed. Since the Reynolds numbers involved in
the slow relaxation of micron-scale domains seldom exceed
1024, we are justified in working in the overdamped limit.
Neglecting all inertial terms in the Navier–Stokes equation,
we then find that the system is governed by the two coupled
Stokes equations,

h¹2u2¹p1FS50 ~1!

and

h8¹2u82¹p850, ~2!

along with the incompressibility conditions¹–u50 and
¹–u850. The termFS gives the body force that the subfluid
exerts on the monolayer. Note that the monolayer is treated
as a truly two-dimensional fluid, sop is a surface pressure
with dimensions of force/length. The two fluids are also
linked by no-slip boundary conditions; these simply require
that, atz50, u'8 5u andu8–ẑ50, where the' indicates the
in-plane component of a three-dimensional vector. In addi-

tion, we demand that all velocities vanish at infinity, and we
impose no-slip boundary conditions on the bottom of the
subfluid trough. Our model is thus essentially the same as
that first introduced by Saffman to model flow in fluid
membranes;28 its predictions have been shown to agree well
with experiment for monolayers flowing through a channel.17

The form of the forceFS is determined by the subfluid’s
Newtonian stress tensor evaluated atz50. The no-slip
boundary conditions on the velocity fieldu8 imply that all
terms containingu8–ẑ or its derivatives vanish, leaving the
simple expression

FS52h8
]u'8

]z
U
z50

. ~3!

The presence of a domain boundary will modify the
equations for flow in a homogenous layer. We describe the
interface as a closed curveC in the x2y plane~Fig. 1! and
ask that the fluid velocity be continuous across this boundary.
In order to make the problem more tractable, we also assume
that the two monolayer phases separated by the interface
possess the same viscosity; this assumption will be discussed
further later in this section. With the curve is associated a
parametrizationr (a) and an energyE@r # that is a functional
of r (a). In the simplest case in which there exists only a line
tensiong, for example,E@r #5g*ds, whereds5Agda, and
Ag[udr /dau is the metric factor.

To understand the effect of an interfacial force, we next
introduce the Green’s functionGi j that gives the response of
a monolayercoupled to a subfluidto a point force exerted on
the monolayer. A forceg acting at the origin will induce a
velocity field ug in the monolayer that is related to the
Green’s function by

ui
g~r !5

1

4ph
Gi j ~r !gj , ~4!

where summation over repeated indices is implied. One can
similarly introduce Green’s functions for the pressure and the
body force exerted by the subfluid, defined by the relations

pg~r !5
1

4p
Pj~r !gj and Fi

S,g~r !5
1

4p
f i j
S~r !gj . ~5!

Together, the three will satisfy the equations

¹2Gi j2] iPj1 f i j
S524pd i jd~r !, ~6a!

] iGi j50. ~6b!

The first of these equations is the analog for the Green’s
functions of equation~1! governing flow in the monolayer,
while the second reproduces an incompressibility constraint.
One could of course also write down the equations corre-
sponding to the subfluid Stokes equation~2! and to the ex-
pression~3! for FS, but they are not necessary for the further
development of the present paper.

For our purposes, the essential feature of an interface is
that it exerts a force on the surrounding fluid. To find the
velocity field in the presence of an interface, one must thus
sum the contributions from the forces it exerts at each point.
In other words,

FIG. 1. Schematic of the system studied, in which an interfaceC exists
within a monolayer of viscosityh resting on top of a subphase with viscos-
ity h8 and depthd.
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uj~r !52
1

4phECdsGi j „r2r ~s!…D f i„r ~s!…, ~7!

where we have chosen the sign convention thatDf is the net
force per unit length that the fluid exerts on the interface.
With equation~7!, we have effectively reduced the problem
of solving the two coupled partial differential equations~1!
and ~2! to that of finding the correct Green’s function; al-
though equation~7! makes no explicit reference to the sub-
fluid, it is included implicitly because its presence deter-
mines the form ofGi j . Virtual work arguments give an
expression forDf in terms ofE@r #; when a small element of
the surface is moved slightly, the stresses in the surrounding
molecular layer must do work to changeE. The balance is
expressed by the relation

Df5
1

Ag
dE

dr
, ~8!

which is simply a generalization of the well-known Young–
Laplace formula for the force exerted by a tense interface.
The preceding two equations are the basis for all of our sub-
sequent treatment of boundary motion. With them, we can
calculateu anywhere in the plane; in particular, the values of
u on C give the interfacial velocity. Observe that the bound-
ary velocity is always determinednonlocally, and so depends
on the shape of the entire domain.

Equation~7! for the fluid velocity can also be derived by
a more formal route25: In the spirit of textbook solutions of
Laplace’s equation,29 one begins by proving a reciprocal
identity relating two arbitrary flowsu andv. Choosingv to
be proportional toGi j , one finds that the limiting value of
u as it approaches the boundaryC of an arbitrary region is

uj~r !52
1

2phECdsGi j „r2r ~s!…f i„r ~s!…

2
1

2pECdsui„r ~s!…Ti jk„r2r ~s!…nk„r ~s!…, ~9!

wheref i is the force that the fluid insideC exerts onC, nk is
a component of the unit normal vector, and
Ti jk[2d ikPj1]kGi j1] iGk j is the Green’s function for the
stress tensor. In the case in which the viscosities inside and
outsideC are equal, one can readily combine the expressions
for the limits from the inside and the outside to recover equa-
tion ~7!. When the two viscosities are different, this approach
does not generally work:Gi j andTi jk can depend onh, so
terms containing the Green’s functions for the inside and
outside regions cannot necessarily be combined and can-
celled. Hence, except in certain limits, our theory cannot
immediately be extended to include viscosity contrast. Be-
cause of the difficulty of measuring the viscosities of indi-
vidual phases in the region of coexistence, the importance of
such contrast is usually not known. In most systems of inter-
est, dissipation in the monolayer is negligible compared to
dissipation in the bulk,12,30 suggesting that viscosity differ-
ences may not introduce too strong an effect. Likewise, in
the opposite limit in which the subfluid is completely ig-
nored,Gi j does not depend onh. The viscosity then enters

the problem only through the factors of 1/h in front of the
integral in equation~9!, and a little algebra makes it possible
to deal with variations inh. It has been our experience that,
in this case, the correction term due to viscosity contrast
usually vanishes to linear order. Nonetheless, a more com-
plete theory would allow for the possibility of viscosity dif-
ferences between phases.

Before turning to the calculation ofGi j , we remark
lastly that our curve evolution dynamics produces a gradient
flow in configuration space. That is, the energyE associated
with an interface will always decrease monotonically in time,
with dE/dt precisely given by the sum of the rates of
viscous dissipation in the monolayer and in the subfluid.
To prove this, we begin by observing thatDf5Ds–n̂,
where Ds is the difference in stress tensors across the
interface. The time derivative of the energy is then
dE/dt5*ds(dE/dr )•u5*dsn̂–Ds–u. The divergence theo-
rem allows one to transform this integral into an integral
over the plane; by using the dynamical equation~1!, one can
then make terms inFS appear that can by similar arguments
be written in terms of integrals over the subfluid volume.
Ultimately, one finds that

dE

dt
522hE d2r ~ei j !

222h8E d3r 8~ei j8 !2, ~10!

whereei j5(] iuj1] jui)/2 is proportional to the viscous part
of the stress tensor in the monolayer, and a similar definition
holds forei j8 in the subfluid. Summation over repeated indi-
ces is implied. The two integrals give, respectively, the rates
of viscous dissipation in the monolayer and in the subfluid.
The result is hardly surprising, but it has potentially impor-
tant conseqences for the pattern forming properties of the
model: The system is constrained always to move ‘‘down-
hill’’ in the space of shapes, so it will tend to get caught in
metastable minima, and many shapes will be inaccessible to
it.

B. Calculation of the Green’s function

To findGi j , we begin by finding the velocity field in the
subfluid induced by an arbitrary flow in the monolayer; we
will then proceed to calculateFS for this velocity field and
finally to solve for the Green’s function. The first task is
greatly simplified by an observation of Stone and
McConnell,13 who showed that when the monolayer velocity
field is incompressible the subfluid pressurep8 is constant.
Though their proof only holds for an infinite subfluid, it can
readily be extended to the case where the depth is finite; the
result can also be verified independently starting from the
expression for the subfluid velocity as an integral over the
plane z50.25 With a constant pressure,¹p850, and each
component ofu8 becomes harmonic. Solving foru8 is thus
reduced to an exercise in electrostatics. Because the system
is invariant with respect to translations in the monolayer
plane, the drag force must take the form

FS~r0!5
h8

4pE d2rK~r02r !u~r !, ~11!
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whereK is the derivative with respect toz of the appropriate
Green’s function for Laplace’s equation. BothK and u are
functions defined on the plane. When the depthd→`, K is
readily obtained by the method of images; the extension to
the case of a finite depth is treated in Appendix A. It turns
out to be convenient to proceed in Fourier space. Denoting
the Fourier transform~in two dimensions! of a function by a
hat and adopting the convention thatf (r )5*d2q f̂ (q)
3exp(iq–r ), we find that

K̂~q!52
q

p
coth~qd!, ~12!

whence by the convolution theorem

F̂S~q!52h8q coth~qd!û~q!. ~13!

The obvious next step is to take the Fourier transform of the
Green’s function equation~6a!. Making use of the fact that
¹–u50, one can obtain an expression forP̂j and thus show
that

Ĝi j ~q!5
q2d i j2qiqj

pq2@q21aq coth~qd!#
. ~14!

The parametera is the ratio of the viscosities of the subphase
and the monolayer,

a[
h8

h
, ~15!

and has dimensions of inverse length. This parameter plays a
fundamental role in all subsequent analyses. When multi-
plied by an appropriate length scale, it will be the governing
dimensionless parameter of the problem.

The form of the expression forĜi j suggests that we de-
fine the differential operator,

Di j[2
1

p
~d i j¹

22] i] j ! ~16!

so that we can writeGi j in terms of a single scalar function
as

Gi j5Di jH~r !, ~17!

with

Ĥ~q!5
1

q2@q21aq coth~qd!#
. ~18!

In principle, we could now invert this transform and calcu-
lateGi j . In practice, the result would be so cumbersome as
to be useless. Instead, in the next section we will study the
behavior ofĤ in several different limits.

III. LIMITING CASES

In this section, we will consider the behavior of the
model in the limits of large and smalla andd. Since both of
these variables have dimensions, we must compare them
with some other quantity to have a meaningful notion of
‘‘large’’ and ‘‘small.’’ The only candidate that presents itself
in the present formulation is the wavevectorq. If the system
under consideration has a single length scaleL, then the
most important contributions in Fourier space are likely to

come atq;1/L, and the relevant dimensionless parameters
ared/L andaL. This would be the case, for example, for a
circular domain of radiusR whose boundary was smooth on
all smaller scales; we would then haveL;R. We caution,
however, thatq;1/L is at best a rough estimate and thatq
must actually be allowed to range from zero to infinity.
Hence, great care must be exercised in taking limits when
there is more than one candidate forL. This is particularly
true when an approximation is valid only for large enough
L, for there is always the danger that the domain boundary
will finger or develop roughness at smaller length scales. For
example, the important length scale in the case of a circle
subject ton-fold harmonic perturbations is not its radiusR
but the wavelength 2pR/n; whether or not a given approxi-
mation is valid thus depends on the mode one is considering.

A. Infinite subfluid

We begin by considering the case of a very deep sub-
fluid, qd→`. This is usually the experimentally relevant
limit, for typical troughs have depths on the order of milli-
meters, while the monolayer domains observed tend to be on
the scale of tens, or at most hundreds of microns.31 In this
limit, coth(qd)→1, andĤ takes the simplified form

Ĥ~q!5
1

q3~q1a!
. ~19!

Note that in the limit of largeq/a, Ĥ behaves asq24, while
in the limit of small q/a it behaves asq23; these should
determine the behavior ofGi j at small and larger , respec-
tively. If one letsq/a→`, or equivalently setsa50, one
recovers the case of a purely two-dimensional layer without
any coupling to a bulk fluid. Although the integrals required
to take the inverse transform ofq24 diverge in the usual
sense, they can be dealt with by the theory of generalized
functions.32,33Essentially, all that is required is the introduc-
tion of a convergence factor like that commonly used to treat
quantum-mechanical scattering from a Coulomb potential.
One then finds that

H~r !5
p

2
r 2ln~r ! ~20!

and

Gi j ~r !52d i j ln~r !1
r i r j
r 2

, ~21!

where r i is a component ofr . This is precisely the two-
dimensional ‘‘Stokeslet’’ of fluid mechanics.25,34 Although
one should generally not take the logarithm of a quantity
with dimensions, in the above equations this transgression
turns out to be without consequences. Witha50, the system
has no intrinsic length scale, and we can choose to divider
by whatever length we please; the only change will be in an
unimportant additive constant corresponding to a Galilean
transformation.

It is tempting to try to treat the limit in which dissipation
in the subfluid dominates in the same manner just used for
the case in which it is negligible. Unfortunately, if one
blithely takes the inverse transform of 1/(aq3), obtaining
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22pr /a, and proceeds to calculate a Green’s function,
clearly unphysical results emerge. In the simplest terms, one
can argue that this occurs because the limit of largeq/a will
break down at large distances, a feature that is acceptable for
finite size domains, while the limit of smallq/a becomes
invalid precisely at the small distances that one must always
consider. More specifically, the limita→` corresponds to
neglecting the termh¹2u in the dynamical equation~1!. One
is then left with a lower order equation for which one is
allowed to impose fewer boundary conditions, so the integral
formulation of equation~7! can no longer hold. We will ar-
gue in Section V that these difficulties can be circumvented
with the judicious use of cut-offs.

To proceed further within the present framework, how-
ever, one must deal with the form forĤ valid for arbitrary
a. A fairly involved expression for the inverse transform is
obtained in Appendix B; it can be expanded aboutar50 to
give

H~r !5
p

a2 F4C2314 ln~ar/2!

8
~ar !22

2

9
~ar !3

1
12C2 ln~ar/2!

32
~ar !41••• G , ~22!

whereC.0.577 is Euler’s constant. SinceDi j r
252d i j , the

term proportional tor 2 will add a constant velocity toGi j .
Unlike in the casea50, such a constant now has a physical
meaning; the presence of the subfluid destroys Galilean in-
variance.

B. Thin subfluid

We next turn to the case of a very thin subfluid layer,
qd→0 or d/L→0. Although no experiments have yet been
conducted in this regime, it seems plausible that it might be
experimentally accessible. In numerical studies of monolayer
flow in canals, for example, Stone has observed that the ef-
fects of finite depth become important whend;L.18 For the
largest experimentally accessible monolayer domains, a
trough with a depthd;100mm would then be required; this
seems mechanically conceivable, although reflection from
the bottom of the trough might make visualization with some
microscopy techniques difficult.12 Beyond the fact that its
theoretical treatment is less involved, this limit has the po-
tential advantage that it would give the experimenter, in the
depth d, an additional parameter that could be controlled
with a fair degree of precision. For example, Klinger and
McConnell have reported the ability to setd to within
1m m.31

To lowest order inqd, Ĥ takes the form

Ĥ5
1

q2~q21l2!
, l2[

a

d
5

h8

hd
. ~23!

The parameterl plays the same role asa in the infinite
subfluid problem. The inverse transform ofĤ can be taken
without great difficulty and a Green’s function obtained. It
turns out to be more instructive, however, to back up several
steps and to consider the functionK introduced in the previ-

ous section. Expanding the Fourier transform ofK, invert-
ing, and taking the convolution withu, we obtain

K̂~q!52
1

pd F11
1

3
~qd!21••• G , ~24a!

K~r !52
4p

d Fd~r !1
1

3
d2¹2d~r !1••• G , ~24b!

FS52
h8

d Fu1
1

3
d2¹2u1••• G . ~24c!

The first term in the expansion ofFS has been derived by
Stone via more heuristic arguments14,18; it is also the expres-
sion for FS that one obtains by treating the subfluid in the
lubrication approximation. In qualitative terms, the series
tells us that asd increases the force exerted by the subfluid
develops an increasingly nonlocal character. For very small
d, the no-slip boundary conditions on the bottom of the
trough completely dominate the behavior and prevent the
effects of motion in the monolayer from propagating through
the subfluid. Asd increases, however, different parts of the
adsorbed layer become more and more able to communicate
with each other through the subfluid. In the opposite limit of
infinite depth, we thus expect thatFS will depend on the
velocity field throughout the monolayer.

We confine ourselves for the moment to considering
only the leading term in the above expansions. It is of course
also possible to look at higher order approximations, but they
lack the internal consistency of the lowest order dynamics. In
particular, they will not always yield a law of motion that is
a gradient flow. In the first approximation, a comparatively
simple equation holds:

h¹2u2¹p2
h8

d
u50. ~25!

This equation has the same form as the Laplace transform
with respect to time of the linearized Navier–Stokes equa-
tion r]u/]t5h¹2u2¹p and has been studied in this
context25; it has also been used to model flow in porous
media.35 If we ignore dissipation in the monolayer entirely
compared with dissipation in the subfluid, the equation re-
duces to Darcy’s lawu}2¹p, which describes quasi-two-
dimensional flow in Hele–Shaw cells.22,23The Green’s func-
tion for Eq. ~25! has previously been calculated25 and can
readily be obtained by taking the inverse transform of equa-
tion ~23!. One finds that

H~r !52
2p

l2 @ ln~lr !1K0~lr !# ~26!

and

Gi j ~r !522d i j F 1

~lr !2
2K0~lr !2

K1~lr !

lr G
12

r i r j
r 2 F 2

~lr !2
2K0~lr !2

2K1~lr !

lr G , ~27!

whereKi is a modified Bessel function. Note that in the limit
lr→0, H approaches the expression obtained in the com-
plete absence of a subfluid. Close enough to a singularity, the
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presence of the subfluid will always be negligible because
the higher order derivative¹2u will always dominateFS.

IV. LINEAR STABILITY

While the present formulation of the monolayer hydro-
dynamics permits the investigation of boundary motion far
from any regular geometric shape, where a fully nonlinear
analysis is necessary, we focus here on the calculation of
linearized growth rates about several simple geometries. To
develop physical understanding, we will begin with an inter-
face in the shape of a straight line; we will then turn to the
more experimentally relevant case of a circular boundary.

A. Stability about a line

Consider an unperturbed interface that rests on the line
y50 and subject it to a sinusoidal perturbation
r (x)5 ŷ(k)eikxey , where ey is a unit vector in the
y-direction; we use the wavevectork to distinguish a one-
dimensional Fourier transform from a two-dimensional
transform with wavevectorq. This gives rise to a force
Df5 f̂ (k)eikxey which in turn causes a velocity at the inter-
face û(k)eikxey , with û5] ŷ/]t. For a boundary without in-
ternal structure,Df must always be normally directed, so
there is no possibility that it will have anex component. The
relationship off̂ to ŷ will depend onE@r #, and its particular
form is not of immediate interest in the present discussion.
Quite generally, though, we expect thatû } f̂ } ŷ. Sincef̂ is
already first order small, once it has been calculated we may
consider that the boundary takes its unperturbed shape. In
those cases in which an analytic expression forGi j is known,
we may then simply calculate the velocity component as

û~k!52
f̂ ~k!

4phE2`

`

dxG22~xex!e
ikx. ~28!

We find that in the limit of negligible subfluid dissipation
(a→0),

û~k!52
f̂ ~k!

4huku
, ~29!

while in the case of a thin subfluid,

û~k!52
f̂ ~k!

2hl2 F uku2
k2

Ak21l2G , ~30!

Once again the effects of the subfluid are unimportant at
small enough length scales: Asuku/l→`, the expression ap-
proaches that valid in the absence of a subfluid. Similarly, as
uku/l→0, we recover the form that has previously been cal-
culated starting from Darcy’s law.22,23

When a compact direct space form forGi j is not known,
one may still find the growth rates by remaining in Fourier
space. The method is presented in Appendix C for stability
about a circle; the results of a similar calculation for a line
are plotted in Figure 2 in terms of a reduced growth rate
s(k)[û(k)h8/ f̂ (k). At present, we simply state that, for an
infinite subfluid in the limituku/a!1,

û~k!52
f̂ ~k!

ph8
. ~31!

This is the samek dependence one would expect if dissipa-
tion occurred only at the boundary of the domain, instead of
in the bulk fluid.

The k dependence of these growth rates can be under-
stood on the basis of relatively simple arguments. Suppose
that Ĥ(q);qn; n is determined by the number of derivatives
of u and of p in the dynamical equation. Then, we expect
that Ĝi j;qn12. To find the linearized growth rate about a
line, one must first take the inverse transform ofĜi j in two
dimensions, then, in a rough sense, take a one-dimensional
Fourier transform of the resulting function. On purely dimen-
sional grounds, this will introduce an additional factor of
q. Indentifyingq with the wavevectork of the perturbation,
we then expect thatû(k);kn13. This is indeed the case:
Whena50, Ĥ;q24 and û(k);k21, and similarly for the
other limits.

B. Stability about a circle

As in the previous section, we begin by considering a
slightly perturbed domain parametrized as
r (u)5R(11ene

inu)er , whereer is a radially-directed unit
vector. We expect a forcef ne

inuer and a normal velocity
componentune

inuer ; un5Rden /dt. The force must again be
normally-directed for a structureless interface. Incompress-
ibility requires that the fluid velocity have a tangential com-
ponent at the interface, unlike in the case of a line; this
component does not, however, affect the evolution of the
boundary’s shape, so we will ignore it. To lowest order, we
may still consider that the force acts at the unperturbed
circle: Although there can now exist a zeroth order force, it
must be independent ofu and so will not cause any fluid
motion, even when acting at the perturbed interface.

FIG. 2. Comparison of the reduced growth ratess(k)[û(k)h8/ f̂ (k) about
a line in the limits of a very thin subfluid and of an infinite subfluid. Both
curves are for a system witha510mm21. The dotted line was calculated
using equation~30! with d510mm; the solid curve was obtained by the
methods of Appendix B in the limitd→`. The two curves approach each
other and drop off like 1/k ask→`, but have markedly different behavior
for values of 1/k on the order of typical domain length scales.
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Whereas for stability about a line we used a variety of
direct space forms forGi j , here we shall instead derive one
expression valid for arbitrarya andd. We begin by observ-
ing that, using polar coordinates and integrating over the
polar angle, we may formally write

H~r !52pE
0

`

dq
J0~qr !

q2@q1a coth~qd!#
. ~32!

Starting from this representation ofH, straightforward but
lengthy manipulations~described in Appendix C! lead to an
expression for the growth rateun :

un52
n2Rfn

h E
0

`

dw
Jn
2~w!

w2@w1aR coth~wd/R!#
. ~33!

This is the central result of this section and the analog of the
growth rates given by equations~29!, ~30!, and~31! for per-
turbations about a line. If we let the subfluid be infinite and
set coth(wd/R)51, we recover the expression previously ob-
tained by Stone and McConnell.13 When a50 or aR→`,
the integral can be evaluated in closed form. One finds that

un52
R

4h

unu
n221

f n ~ unu>2!, ~34!

when dissipation occurs only in the monolayer, and

un52
4

ph8

n2

4n221
f n ~ unu>2!, ~35!

when the subfluid dominates. The leading corrections to
these expressions for finiteaR can also easily be computed.
In both cases, the first correction tends to decrease the mag-
nitude of the growth rate. This is not surprising: To zeroth
order, we entirely ignored dissipation in the subfluid, in the
one case, and in the monolayer, in the other. The next term,
by accounting for these additional sources of energy loss,
increases the total amount of damping and so slows down the
dynamics.

One may verify that in the limitn→`, R→`, with
k5n/R fixed, the results~34! and~35! for a circle tend to the
growth rates about a straight line~29! and ~31!. For n large
enough, the curvature of the circular boundary is unimpor-
tant on the scales over which the forces and velocities vary,
and the boundary acts essentially like a line. Hence, the
length scale with which one must comparea is not the cir-
cle’s radiusR but the wavelength of the perturbation, which
is proportional to 1/k5R/n. The expression~34! is the ap-
propriate approximation for smallaR/n, while ~35! is more
accurate for largeaR/n. This dependence onn of the domi-
nant source of dissipation can be seen in Fig. 3, where the
exact reduced growth ratesn[unh8/ f n is compared with the
two limiting forms. For fixedaR@1, the growth rate is
roughly independent ofn for smalln but decays like 1/n for
large n. The crossover occurs where the curves given by
equations~34! and ~35! intersect, ataR/n;1. Except for a
multiplicative factor, the growth rate about a line is a func-
tion only of a/k. This is not precisely the case for a circle,
but, even forn small, many important quantities depend es-
sentially only onaR/n. For example, Fig. 4 plots versus
aR/n the fractional difference between the exact growth rate

given by equation~33! and the approximation of equation
~35! for a number of different values ofaR andn. To a good
approximation, all of the points fall on the same curve. Ac-
tually, this collapse occurs over a much wider range of
aR/n than shown in the figure, even when the fractional
error is greater thanO (1). Figure 4 also gives an idea of the
error involved in using the approximate expression for the
growth rate. We see that foraR as high as 100, the approxi-

FIG. 3. Reduced growth ratesn[unh8/ f n versus the mode numbern for a
circular domain withaR525 resting on an infinitely deep subfluid. The
solid line gives the exact value, calculated from equation~33!. The down-
ward sloping dotted line gives the expression valid when dissipation in the
subfluid is negligible@equation~34!#, while the other dotted line plots the
expression valid in the opposite limit@equation~35!#. The exact growth rate
is always less than either of the approximations, but approaches the limiting
expressions asn→2 andn→`.

FIG. 4. Fractional error@sn(a→`)2sn#/sn vsaR/n for a circular domain
resting on an infinite subfluid. Heresn[unh8/ f n is the reduced growth rate
calculated from the exact expression~33!, whilesn(a→`) is obtained from
the approximation~35! valid when dissipation in the monolayer can be
neglected. The solid line gives the best-fit power law,
@sn(a→`)2sn#/sn.1.4/(aR/n).
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mation is accurate to within 5% for the first few modes, with
error increasing linearly asn/aR for largern. This asymp-
totic dependence of the error may also be derived directly by
expanding the integrand of equation~33!.36

C. Example: Dipolar forces

In previous sections, we made no assumptions about the
nature of the energy functionalE@r # associated with the
boundary. Here we undertake a sample calculation for the
functional of greatest experimental interest, that of a dipolar
domain. In this case, we associate with the boundary not
only a line tensiong, but also the electrostatic energy stored
in the electric field created by the dipoles. In reality, this
electric field exerts a force not at the boundary but on the
bulk dipolar fluid. Under the assumption that the domain has
a constant dipole density, however, the electrostatic body
force per unit volume can be written as2¹f, wheref is an
appropriate potential energy. After the introduction of a
modified pressurepm5p1f,25 the equations describing the
bulk flow are thus unchanged, and the electrostatic interac-
tions only enter through their effect on the boundary condi-
tions. One can show that this effect is correctly incorporated
into our formalism if one simply views the electrostatic en-
ergy of the dipolar domain as a functional of its boundary’s
parametrization. Several equivalent forms exist for the en-
ergy Ed of an arbitrarily shaped domain with~constant! di-
pole densitym per unit area.15,21–23,37–40Of these, the most
useful to us takes the form of the energy of interaction of two
current loops:

Ed@r #52
m2

h E
C
ds1E

C
ds2t̂~s1!• t̂~s2!

3FS ur ~s1!2r ~s2!u
h D . ~36!

HereC is the curve parametrized byr , t̂ is the unit tangent to
C, h is the thickness of the monolayer, and
F(j)5sinh21(1/j)1j2A11j2. Adding to the electrostatic
term the usual line tension energygL, whereL is the length
of the curve, we arrive at an expression forE@r #. A fair
amount of algebra then yields the force componentf n . In the
case of monolayers, the thickness is of molecular size,
h;10Å, and the typical domain radius isR;10mm, so we
are justified in taking the limit in which the aspect ratio
p[2R/h@1. It has then been shown that15

f n5
g

R F H 12
1

2
NB lnS 8RehD J ~n221!

1
1

4
NB~124n2!(

j52

n
1

2 j21G . ~37!

Here the dipolar Bond numberNB[2m2/g gives the relative
importance of the electrostatic and line tension forces. Sub-
stituting this expression forf n into any of the growth rates
calculated in the last section, one obtains a prediction for
un that can be compared directly with experiment. With val-
ues of the line tension on the order of 131028 erg/cm,15 a
domain radiusR;50mm, and subfluid viscosityh851cp,

we obtain interface velocities on the order of 1mm/s for
smallNB , and considerably less near the branching instabil-
ity.

V. DYNAMICAL LAW FOR MOTION DOMINATED BY
THE SUBFLUID

Two important features of the limit in whichaL→`
have already been emphasized: First, the monolayer viscos-
ity represents a singular perturbation that must always be
taken into account near enough to a boundary or to a singu-
larity. Second, linear stability results suggest that this limit
can be partially understood in terms of an effectivelocal
dissipative force that opposes the boundary velocity at a
given point on the interface. It is the purpose of this section
to use these two observations to find a simplified boundary
integral expression valid asaL→`. The physical ideas that
will motivate the discussion are relatively straightforward:
The Green’s functionGi j deviates appreciably from its as-
ymptotic large a form only when r&1/a. For a large
enough, this describes a very small region around the point
where we wish to know the boundary velocity, and it seems
plausible that one might be able to neglect the variation of
physical quantities across this region. Then, the contribution
transmitted through the monolayer itself to the velocity at a
point r will be proportional toDf(r ). In this picture, the
effective force at the interface is thus a consequence of the
extremely small length scales over which dissipation in the
monolayer is important. These allow us to take this dissipa-
tion to be essentially local compared with the dissipation in
the subfluid, which retains its very nonlocal character.

To put these ideas into mathematical form, we begin by
finding the limiting forms ofGi j for small and largear.
These can be obtained by straightforward differentiation of
the corresponding limits ofH(r ), derived in previous sec-
tions and in Appendix II. One finds that forar small,Gi j

behaves as

Gi j
S~r !5F341C1 lnS ar2 D Gd i j1 r i r j

r 2
, ~38!

while for ar large the appropriate expression is

Gi j
L ~r !5

2r i r j
ar3

. ~39!

Note the important feature ofGi j
L that, unlike most of the

Green’s functions we have examined, it does not contain a
term proportional tod i j . As a first approximation, we will
suppose that there is a sharp transition between small and
large ar behavior. That is, we will approximate the full
Green’s function as

Gi j ~r !5HGi j
S~r !, r,y/a,

Gi j
L ~r !, r.y/a,

~40!

wherey is a constant of order unity that will be determined
later. The expression for the velocity at a pointr then be-
comes
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uj~r !52
1

4phEur2r ~s!u.y/a
dsGi j

L
„r2r ~s!…D f i„r ~s!…

2
1

4phEur2r ~s!u,y/a
dsGi j

S
„r2r ~s!…D f i„r ~s!….

~41!

This expression can be written in an alternative form in the
usual case in which there are no tangential forces and one is
only interested in the normal velocity. Then, the product
Gi j
LD f i is not singular asr (s) approachesr because the only

nonvanishing term in the sum contains a factor of
@(r (s)2r )•n̂#2 in the numerator. Choosing the coordinate
s50 whenr (s)5r and expanding for smalls, one finds that
r (s)2r.t̂s2(1/2)kn̂s21•••. Hence,@(r (s)2r )•n̂#2 } s4,
cancelling the singularity in the denominator ofGi j

L and mak-
ing it possible to extend the integral ofGi j

L to zero. For
notational convenience, we pick axes such thatn̂ and t̂ cor-
respond toex and ey , respectively, whens50. Then, the
normal component ofu at r is justu1 , and we can write

u1~r !52
1

4phEC dsGi1L „r2r ~s!…D f i„r ~s!…

2
1

4phEur2r ~s!u,y/a
ds†Gi1

S
„r2r ~s!…

2Gi1
L
„r2r ~s!…‡D f i„r ~s!…. ~42!

BecauseGi j
L contains a factor of 1/a, the first integral in the

above expression will be proportional to 1/a. Thus, to lead-
ing order in largea, only terms of order 1/a in the second
integral are of interest. At this level of approximation, only
constant and logarithmic terms in the integrand need be
retained—that is, forces and velocities are taken to vary very
slowly across the region of integration. Then, the second
integral becomes

2
1

4phE2y/a

y/a

dsD f 1~r !F lnS ausu
2 D1C1

3

4G
5

D f 1~r !y

2ph8 F lnS y

2D1C2
1

4G , ~43!

where it should be emphasized thatD f 1(r )5Df(r )•ex is the
force component at the point where we wish to calculate the
velocity, and so does not depend ons. Hence, to leading
order in largea, the second integral yields a local force. We
must still, however, specify the numerical value of the pro-
portionality constanty@ ln(y/2)1C21/4# in equation ~43!,
or, equivalently, ofy itself. This can be done by demanding
that the approximations of this section lead to the same linear
stability results as the limits asa→` of the expressions
valid for arbitrarya already obtained. Thus we ask thaty be
such thatû(k)52 f̂ (k)/ph8 @Eq. ~31!# for stability about a
line, and similarly for other geometries. This requirement
determines the unique valuey'2.88. Likewise, with this
choice ofy, one can show that the proposed dynamical law
preserves the area of domains and that the interfacial velocity
of an arbitrarily shaped domain will vanish when the force is

constant and normally-directed, both very desirable features.
Substituting fory, we find the approximation to equation~7!
that is the central result of this section:

u1~r !52
D f 1~r !

ph8
2

1

4phECdsGi1L „r2r ~s!…D f i„r ~s!….

~44!

The first term can be associated with dissipation in the
monolayer and is entirely local, while the second corre-
sponds to dissipation in the subfluid. Note that the factor of
1/a in Gi j

L , when multiplied by the 1/h in front of the inte-
gral, yields 1/h8, so the velocity does not depend at all on
the monolayer viscosity.

It remains to clarify when the results of this section are
expected to hold—that is, what it means fora to be large. By
considering the corrections of order 1/a2 to the expression
~43!, one can convince oneself that these are negligible only
when

a@k and a@
D f 18~r !

D f 1~r !
, ~45!

wherek is the curvature,D f 18[d(Df„r (s)…•ex)/ds, and both
quantities are evaluated atr . These expressions are not sur-
prising: For smooth interfaces, the curvature will be of the
order of 1/L, whereL is the size of the domain;D f 18/D f 1
gives the length scale over which the force varies. As we
have already pointed out, both are important length scales in
the system.

Unlike the Green’s function valid for arbitrarya, Gi j
L has

a compact analytic expression in direct space. The formula
~44! thus presents considerable advantages for analytic and
especially for numerical calculations. Such a simplification is
all the more welcome because almost all experiments to date
have been performed on systems where the subfluid viscosity
dominates. Admittedly, these improvements come at the ex-
pense of an approximation that is not perfectly controlled,
but that nonetheless appears physically reasonable.

VI. EVOLUTION OF THE PERIMETER

Finally, we provide a simple illustration of the use of the
present formulation for calculations in the nonlinear regime.
We consider a domain with only line tension energy,
E5gL, and calculate the time derivative of its perimeterL.
This quantity is of particular interest becauseL can be ob-
served directly in experiments.

Parametrizing the curveC in the standard way asr (a),
and recalling thatdL/dr (a)52dt̂/da, we can write

dL

dt
52gE

C
da

dt̂

da
•u~a!52

g

4phECds1ECds2k~s1!

3ni~s1!Gi j ~r12!k~s2!nj~s2!, ~46!

where r125r (s1)2r (s2), k is the curvature, ands is the
arclength parameter. SinceE } L, it will always be true that
dL/dt,0; the proof is identical to that already given for an
arbitrary energy functional. The Green’s functionGi j can be
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any of the several forms we have already presented. One
could equally use the approximate form~44! of the previous
section for the velocities, finding that

dL

dt
52

g

ph8
E
C

dsk22
g

4phEC ds1EC ds2k~s1!

3ni~s1!Gi j
L ~r12!k~s2!nj~s2!, ~47!

when the monolayer viscosity is small. These expressions for
dL/dt are the analogs of the area-conserving ‘‘curve-
shortening equation’’ previously derived, under the assump-
tion that dissipation occurs only at the domain boundary.21

This simpler equation has already been fruitfully compared
with experiment,9,15 and we hope that our extensions will
likewise prove useful in analyzing data.

VII. DISCUSSION

Equation~7! encapsulates the focus of this paper: It pro-
vides a general prescription for finding the velocity of the
boundary of an arbitrarily shaped monolayer domain. We
have discussed the form this equation takes in several limit-
ing cases and have shown that it can be used to make quan-
titative predictions that can be compared with experiment. In
particular, section V suggests an approach to the limit in
which dissipation in the monolayer itself is small; since most
experiments have been conducted in this regime,12,30 its dy-
namics are of particular interest. Our approximation to equa-
tion ~7! has the interesting feature that it contains a local
term whose effect is equivalent to that of a drag force acting
directly on the interface. From a theoretical perspective, it is
clear that our somewhatad hoctreatment of this limit leaves
a number of open questions. For example, the issue of
whether the dynamical law~44! gives precisely a gradient
flow demands further elucidation, as does the application of
our arguments to the case of a thin subfluid, which seems to
reduce to Darcy’s law when the subfluid viscosity dominates.
In general, a more mathematically rigorous treatment is de-
sirable. These problems are currently under active study.41

The logical next step would be to undertake a detailed nu-
merical investigation of relaxation and pattern formation in
the strongly nonlinear regime; techniques that have been de-
veloped for similar problems25 should make such studies
possible. To provide a complete test of the theory, it likewise
seems useful to conduct experiments on systems in which the
monolayer viscosity is sufficiently large that it can be mea-
sured independently.42,43 Experiments carried out on a shal-
low trough might also be of interest. Finally, there are several
physical effects that our theory does not pretend to include.
Foremost among these are, first, the possibility that one of
the monolayer phases might have a significant compressibil-
ity, and, second, the presence of thermal fluctuations in do-
main shape. The inclusion of thermal fluctuations, in particu-
lar, might have a significant qualitative effect on the pattern-
forming properties of the model. We also have made no
attempt to treat the dynamics of the various liquid condensed
phases that show hexatic or other long-range order. Clearly,
such order greatly increases the complexity of the problem.
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APPENDIX A: DETAILS OF THE DERIVATION OF THE
GREEN’S FUNCTION

This appendix gives a few of the steps that were omitted
in the main text in the derivations of equations~11! and~12!.
Since the components ofu8 are harmonic, they can be rep-
resented in the usual manner as

ui8~r0!52
1

4pE d2rui~r !
]G ~r ,r0!

]z
, ~A1!

whereG is a Green’s function for Laplace’s equation that
vanishes on the planez50, and the integral is taken over this
plane.29 The boundary conditions are thatu'8 5u at z50, so
the two-dimensional velocity componentsui appear in the
integrand. The Green’s functionG is obtained by an eigen-
function expansion in Cartesian coordinates. With the hat
denoting a Fourier transform with respect to the variables
x2x0 andy2y0 , one finds that

Ĝ ~q,z,z0!52
1

pq

sinh~qz.!sinh@q~z,1d!#

sinh~qd!
, ~A2!

wherez. andz, are, respectively, the larger and smaller of
z andz0 . SinceF

S52h8]u'8 /]z, comparison of equations

~11! and~A1! indicates thatK̂5]2Ĝ /]z]z0 , with the deriva-
tives evaluated atz5z050. The expression~12! for K̂ fol-
lows immediately.

APPENDIX B: INVERSION OF Ĥ

In this appendix, we obtain an analytic expression for the
inverse transform ofĤ51/@q3(q1a)#. Begin by expanding
in partial fractions:

Ĥ~q!5
1

aq3
2

1

a2q2
1

1

a3q
2

1

a3~q1a!
. ~B1!

The inverse transforms of the first three terms are known.33

To invert the fourth, we use the general result that
F 21@g(q)#52(1/r 2)F 21@¹q

2g(q)#, whereF 21 denotes
an inverse Fourier transform and the derivatives in the La-
placian are taken with respect toq. We can then write

H~r !5
2p

a2 F2j1 lnj1
1

j
1

1

j2E0
`

dxJ0~jx!
x21

~x11!3G .
~B2!

Here, we have expressed the result in a dimensionless form
by settingj5ar and have performed the integral over the
polar angle in the inverse transform of¹q

2@1/(q1a)#. The
integral in the fourth term converges in the usual sense and
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so can be evaluated numerically. It can also be expressed
analytically in terms of a rather lengthy expression involving
generalized hypergeometric functionspFs . These have
known Taylor expansions that converge everywhere in the
complex plane.44 The expansions lead directly to the series
~22!. It can also be shown that to leading order for largej,
H(r )522pj/a2, as one would expect from the limiting
form of the Fourier transform for smallq.

APPENDIX C: LINEAR STABILITY CALCULATION FOR
A CIRCLE

We take as our starting point the integral expression~32!
for H(r ). Differentiating under the integral sign, we find that

Gi j ~r !52pE
0

`

dq
Di j J0~qr !

q2@q1a coth~qd!#

522E
0

` dq

q2@q1a coth~qd!#

3F S d i j2
r i r j
r 2 Dq2J09~qr !1

r i r j
r 3

qJ08~qr !G . ~C1!

In order to findun , we calculate the velocity atu50. Pa-
rametrizing the curve asr (u)5R(cosu ex1sinu ey), we may
write the velocity in the usual manner as the integral around
the curve of the Green’s function multiplied by the force

un52
Rfn
4phE0

2p

duG1 j„R@~12cosu!ex

2sinuey#…e
inuer , j , ~C2!

where er , j is a component ofer . Substituting the integral
expression~C1! for Gi j , settingw[qR, and performing
some algebraic manipulations, one finds that

un5
f n

phRE0
` dq

q2@q1a coth~qd!#
E
0

p

df cos~2nf!

3FwJ1~2wsin f!

2 sinf
2w2 cos2 fJ0~2wsin f!G . ~C3!

The identitypJn(z)
25*0

pdfJ0(2zsinf)cos(2nf)44 and two
integrations by parts enable one to evaluate the integral with
respect tof. The growth rate given in Sec. IV is then ob-
tained by changing variables of integration fromq to w. The
same approach can also be applied to other geometries.
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