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Molecules at the air—water interface often form inhomogeneous layers in which domains of
different densities are separated by sharp interfaces. Complex interfacial pattern formation may
occur through the competition of short- and long-range forces acting within the monolayer. The
overdamped hydrodynamics of such interfacial motion is treated here in a general manner that
accounts for dissipation both within the monolayer and in the subfluid. Previous results on the linear
stability of interfaces are recovered and extended, and a formulation applicable to the nonlinear
regime is developed. A simplified dynamical law valid when dissipation in the monolayer itself is
negligible is also proposed. Throughout the analysis, special attention is paid to the dependence of
the dynamical behavior on a characteristic length scale set by the ratio of the viscosities in the
monolayer and in the subpha$81070-663(96)01804-§ © 1996 American Institute of Physics.

I. INTRODUCTION AND EXPERIMENTAL The complete interpretation of such experiments requires
BACKGROUND an understanding of the hydrodynamics of thin layers
coupled to a subfluid. Some progress has been made in the
: L analysis of particular cases. Building on earlier work on the
water interface are often found in inhomogeneous statea. ; . .
o . . : : iffusion of a cylinder embedded in a membrdfieStone
within which appear domains of nearly uniform dengifyin S
. and McConnell have solved the linearized boundary dynam-
many ways, these states resemble conventional two-phalseS about a circld®™ Schwartz. Knobler. and Bruinsia
coexistence regions with sharp interfaces between different ' . ' '
) ~'and Ston& have examined the flow of monolayers through
homogeneous phases; because of long-range electrostatic wk . L .
; o . channels. The related problem of fingering in quasi-two-
teractions within the monolayer, however, domains of a

given phase can be stable rather than coarsening in3timed|men5|onal domains of ferrofluids has also recently been

Experimentally observed domains typically have sizes OFonsidered?‘%as.ha.\s the behavior of capillary waves in the
10-1004m presence of coexisting monolayer pha¥e$he more gen-

A considerable body of experimerftal? and eral treatment of boundary mot|'on applicable to a domain of
theoretical® 15 work has focused on the motion of the do- &Y Shape has, however, remained an open problem of con-

main boundaries. These investigations have had two compléjderable_ Interest. . .
mentary motivations. On the one hand, the boundary dynam- In th|s paper,.cv%e adapt boundary integral teghmques
ics provide a means of probing physical parameters, suchrggom f'“"?' mechanics’ to the_ study _Of thin Iayers_restlng on
the line tension between phases, that are otherwise difficuft subfluid. Our approach is applicable to arbitrary geom-

to measuré:'2150n the other, the electrostatic interactions etries, and hence offers several advantages over techniques
are caused by the molecules’ permanent dipoles that are Oll?_asgd on gigeqfunctiqn expgnsions that are useful only in
ented with respect to the surface of the water; their mutua'P"’lrt'CUI"’lr S|tuat|on_s with a _h'gh degree of Sy”_‘me”y-_ It al-
repulsion can result in intricate fingering instabilities that!OWS the comparatively straightforward calculation of Imee_\r-_
have parallels in a variety of other pattern-forming systéms.i2€d growth rates about any number of stable shapes; it is
The laws of motion of the interfaces between monolayeralso a starting point for the detailed investigation of the

phases have been probed directly in experiments monitoringoundary dynamics in the nonlinear regime. Further, by
the relaxation of domains to a circular ground state, startingeParating those aspects of the problem that depend on ener-

either from an elongated “bola” shap¥ or from smaller ~ 9€tics from those determined by the hydrodynamic equa-
elliptical deformationg:2 The fastest-growing mode at the tONS, we gain several physical insights. Finally, our formu-

onset of a fingering instability has also been examitiett. lation provides a new example of a dynamical law governing
curve motion in the plane. It is thus of interest to the broader

study of pattern formation.
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tion, we demand that all velocities vanish at infinity, and we
Ll impose no-slip boundary conditions on the bottom of the
, ’C subfluid trough. Our model is thus essentially the same as
Ay that first introduced by Saffman to model flow in fluid
membrane$® its predictions have been shown to agree well
td with experiment for monolayers flowing through a charirel.
v \ The form of the forceFS is determined by the subfluid’s
Newtonian stress tensor evaluated zt0. The no-slip
n boundary conditions on the velocity field imply that all
terms containingy’ -z or its derivatives vanish, leaving the
FIG. 1. Schematic of the system studied, in which an interfacexists simple expression

within a monolayer of viscosity; resting on top of a subphase with viscos-
ity »' and depthd.

s, au|

F=— n E . (3)
z=0

law. In Sec. Il we consider in greater detail the more ana-  The presence of a domain boundary will modify the
lytically tractable limiting cases of an infinitely deep or very equations for flow in a homogenous layer. We describe the
thin subfluid. In Sec. IV, we examine the linear stability of interface as a closed cun@in the x—Yy plane(Fig. 1) and
straight and circular boundaries. Drawing on these results, igsk that the fluid velocity be continuous across this boundary.
Sec. V we propose a simplified dynamics appropriate whemn order to make the problem more tractable, we also assume
dissipation occurs mostly in the subfluid. This |Im|t|ng form that the two mono|aye|' phases Separated by the interface
has the intriguing feature that it contains a local drag term apossess the same viscosity; this assumption will be discussed
the interface not unlike that introduced in the Rouse modefurther later in this section. With the curve is associated a
of polymer dynamics? In Sec. VI we give a brief, illustra- parametrization («) and an energy[r] that is a functional
tive calculation in the nonlinear regime, and in Sec. VIl weof r(a). In the simplest case in which there exists only a line
discuss some limitations and possible extensions of OUfensiony, for exampleg[r]=y/ds, whereds=+/gda, and

work. Jg=|dr/da| is the metric factor.
To understand the effect of an interfacial force, we next
Il. GENERAL FORMULATION introduce the Green’s functio@;; that gives the response of

a monolayercoupled to a subfluitb a point force exerted on
the monolayer. A force acting at the origin will induce a

We begin by ignoring the presence of domains andyelocity field u¢ in the monolayer that is related to the
studying a homogeneous two-dimensional layer coupled to &reen’s function by
water subphase. The geometry of the system is shown in Fig.
1. Both fluids are taken to have an infinite horizontal extent, ud(r)= LG--(r)g- (4
while the subphase may have a finite degthThe mono- ! 4aq 1 7E0

layer is assumed to be an incompressible, Newtonian fluid h i ted indi is implied. O
with surface viscosityn (dimensions mass/timdilling the where summation over repeated Indices 1S implied. Une can

planez=0 7 It rests on a three-dimensional incompressibIeSim"arly introduce Green'’s functions for the pressure and the
fluid of viscosity 7' [dimensions masééngthxtime)] that body force exerted by the subfluid, defined by the relations

occupies the region- d<z<0. All variables referring to the 1 S 1.

subfluid are primed. Since the Reynolds numbers involved in -~ PY(r)=;—P;(r)g; and F; A= i (L R C)
the slow relaxation of micron-scale domains seldom exceed

1074, we are justified in working in the overdamped limit. Together, the three will satisfy the equations
Neglecting all inertial terms in the Navier—Stokes equation, 2~ s_

we then find that the system is governed by the two coupled VoGij — aiPj+ = —4md; &(r), (6a)
Stokes equations, 3,Gij=0. (6b)

7V2u=Vp+FS=0 @) The first of these equations is the analog for the Green’'s

and functions of equatior{1) governing flow in the monolayer,
'V2y'—Vp' =0 @ while the second reproduces an incompressibility. constraint.

K P ' One could of course also write down the equations corre-
along with the incompressibility condition§¥-u=0 and sponding to the subfluid Stokes equati@ and to the ex-
V.u’=0. The termFS gives the body force that the subfluid pression(3) for FS, but they are not necessary for the further
exerts on the monolayer. Note that the monolayer is treatedevelopment of the present paper.
as a truly two-dimensional fluid, sp is a surface pressure For our purposes, the essential feature of an interface is
with dimensions of force/length. The two fluids are alsothat it exerts a force on the surrounding fluid. To find the
linked by no-slip boundary conditions; these simply requirevelocity field in the presence of an interface, one must thus
that, atz=0, u| =u andu’-z=0, where thel indicates the sum the contributions from the forces it exerts at each point.
in-plane component of a three-dimensional vector. In addiin other words,

A. The model and a boundary integral formulation
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1 the problem only through the factors of#lin front of the

uj(r)=— mJ‘dSG\j(f—f(S))Afi(F(S)), () integral in equatiorf9), and a little algebra makes it possible

. to deal with variations iny. It has been our experience that,

where we have chosen the sign convention tifais the net  in this case, the correction term due to viscosity contrast
force per unit length that the fluid exerts on the interfaceusually vanishes to linear order. Nonetheless, a more com-
With equation(7), we have effectively reduced the problem plete theory would allow for the possibility of viscosity dif-
of solving the two coupled partial differential equatiofi3 ~ ferences between phases.
and (2) to that of finding the correct Green’s function; al- Before turning to the calculation of;;, we remark
though equatior{7) makes no explicit reference to the sub- lastly that our curve evolution dynamics produces a gradient
fluid, it is included implicitly because its presence deter-flow in configuration space. That is, the energgssociated
mines the form ofG;;. Virtual work arguments give an Wwith an interface will always decrease monotonically in time,
expression foAf in terms of&[r]; when a small element of with dé&/dt precisely given by the sum of the rates of
the surface is moved slightly, the stresses in the surroundingscous dissipation in the monolayer and in the subfluid.
molecular layer must do work to change The balance is To prove this, we begin by observing thaf=Ac-n,

expressed by the relation where Ao is the difference in stress tensors across the
interface. The time derivative of the energy is then

166 dé/dt=[fds(56/6r)-u= [dsh-Aec-u. The divergence theo-
Af_\/_a§’ (8) rem allows one to transform this integral into an integral

over the plane; by using the dynamical equatibn one can
which is simply a generalization of the well-known Young— then make terms iff> appear that can by similar arguments
Laplace formula for the force exerted by a tense interfacepe written in terms of integrals over the subfluid volume.
The preceding two equations are the basis for all of our subbitimately, one finds that
sequent treatment of boundary motion. With them, we can

calculateu anywhere in the plane; in particular, the values of d&f: _ f 2 4 N2_ ,f 37 al )2

u on C give the interfacial velocity. Observe that the bound- dt 2n | d7r(e) 27" | diri(e)”, (10
ary velocity is always determinatbnlocally, and so depends _ ) )

on the shape of the entire domain. wheree;; = (d;u; +d;u;)/2 is proportional to the viscous part

Equation(7) for the fluid velocity can also be derived by of the stress tensor in the monolayer, and a similar definition
a more formal rouf& In the spirit of textbook solutions of N0lds fore in the subfluid. Summation over repeated indi-
Laplace’s equatio”’ one begins by proving a reciprocal €S IS implied. The two integrals give, respectively, the rates
identity relating two arbitrary flows andv. Choosingv to of viscous dissipation in the monolayer and in the subfluid.
be proportional tc{;ij , one finds that the |Im|t|ng value of The result is hardly Surprising, but it has potentially impor-

u as it approaches the boundaryof an arbitrary region is tant conseqgences for the pattern forming properties of the
model: The system is constrained always to move “down-

1 hill” in the space of shapes, so it will tend to get caught in
uj(r)=— mfcdsqj(r—r(s))fi(r(s)) metastable minima, and many shapes will be inaccessible to
it.
1
—z—fdsu(r(s))Ti;k(r—r(s))nk(r(s)), €)
mJ)c
wheref; is the force that the fluid inside exerts onc, n, is B Calculation of the Green's function
a component of the wunit normal vector, and  To findG;;, we begin by finding the velocity field in the
Tijk=— 6iP;+ 6, Gjj + 9;Gy; is the Green’s function for the subfluid induced by an arbitrary flow in the monolayer; we
stress tensor. In the case in which the viscosities inside angill then proceed to calculate® for this velocity field and
outsideC are equal, one can readily combine the expressionfinally to solve for the Green’s function. The first task is
for the limits from the inside and the outside to recover equagreatly simplified by an observation of Stone and
tion (7). When the two viscosities are different, this approachMcConnell}® who showed that when the monolayer velocity
does not generally workG;; and T;; can depend om, so  field is incompressible the subfluid pressyreis constant.
terms containing the Green’s functions for the inside andrhough their proof only holds for an infinite subfluid, it can
outside regions cannot necessarily be combined and carmeadily be extended to the case where the depth is finite; the
celled. Hence, except in certain limits, our theory cannotesult can also be verified independently starting from the
immediately be extended to include viscosity contrast. Beexpression for the subfluid velocity as an integral over the
cause of the difficulty of measuring the viscosities of indi- plane z=0.2° With a constant pressur&p’=0, and each
vidual phases in the region of coexistence, the importance afomponent ofu’ becomes harmonic. Solving far is thus
such contrast is usually not known. In most systems of interreduced to an exercise in electrostatics. Because the system
est, dissipation in the monolayer is negligible compared tds invariant with respect to translations in the monolayer
dissipation in the bulk?3° suggesting that viscosity differ- plane, the drag force must take the form
ences may not introduce too strong an effect. Likewise, in ,
the opposite limit in which the subfluid is completely ig- so_ T | 2 _
nored,G;; does not depend on. The viscosity then enters FAro)= 47rf drK(ro=rju(n), (D
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whereK is the derivative with respect toof the appropriate come atg~1/L, and the relevant dimensionless parameters
Green’s function for Laplace’s equation. Bathandu are  ared/L andalL. This would be the case, for example, for a
functions defined on the plane. When the degptho, K is  circular domain of radiu® whose boundary was smooth on
readily obtained by the method of images; the extension tall smaller scales; we would then halke-R. We caution,
the case of a finite depth is treated in Appendix A. It turnshowever, thag~ 1/L is at best a rough estimate and tlgat
out to be convenient to proceed in Fourier space. Denotinghust actually be allowed to range from zero to infinity.
the Fourier transforniin two dimensiongof a function by a  Hence, great care must be exercised in taking limits when
hat and adopting the convention thd(r)=/d?qf(q) there is more than one candidate for This is particularly

Xexp(qg-r), we find that true when an approximation is valid only for large enough
L, for there is always the danger that the domain boundary
K(q)=— ﬂcotr(qd), (120 Wil finger or develop roughness at smaller length scales. For
™ example, the important length scale in the case of a circle
whence by the convolution theorem subject ton-fold harmonic perturbations is not its radi&s
~o , . but the wavelength 2R/n; whether or not a given approxi-
F>(a)=—n'q coth(qd)u(q). (13 mation is valid thus depends on the mode one is considering.

The obvious next step is to take the Fourier transform of they |nfinite subfluid
Green’s function equatiof6a). Making use of the fact that

V-u=0, one can obtain an expression foy and thus show We begin by considering the case of a very deep sub-
that fluid, qd—oo. This is usually the experimentally relevant

limit, for typical troughs have depths on the order of milli-
meters, while the monolayer domains observed tend to be on
the scale of tens, or at most hundreds of micrinis this
limit, coth(qd)—1, andH takes the simplified form

9°8;—qiq
mq°[q°+ag cothqd)]”
The parametea is the ratio of the viscosities of the subphase

Gij(q) = (14

and the monolayer, . 1
H(Q)= 3 ——- (19
’ +a)
a=_, (19 a1 .
K Note that in the limit of largey/a, H behaves ag~*, while

and has dimensions of inverse length. This parameter playsia the limit of small g/a it behaves agj~3; these should
fundamental role in all subsequent analyses. When multidetermine the behavior @&;; at small and large, respec-
plied by an appropriate length scale, it will be the governingtively. If one letsg/a—<, or equivalently sete.=0, one

dimensionless parameter of the problem. recovers the case of a purely two-dimensional layer without
The form of the expression fd®;; suggests that we de- any coupling to a bulk fluid. Although the integrals required
fine the differential operator, to take the inverse transform of * diverge in the usual
sense, they can be dealt with by the theory of generalized
D, =- %(&sz—ﬁi&j) (16)  functions??**Essentially, all that is required is the introduc-

tion of a convergence factor like that commonly used to treat
so that we can writ&;; in terms of a single scalar function quantum-mechanical scattering from a Coulomb potential.

as One then finds that
G;; =D,;H(r), 1
i =DiH(r) (17 H(r)zzrzln(r) (20)
with 2
. 1 and
H(a) = (18

g°[q°+aq coth(qd)]”

In principle, we could now invert this transform and calcu-
late Gj; . In practice, the result would be so cumbersome as

to be useless. Instead, in the next section we will study th%;’_here riis Ia“ CorEpolne”nt fOfﬂ- f'd'hiS iShprggjgsseJy |ﬂr11€ twho-
behavior ofH in several different limits. imensional “Stokeslet” of fluid mechanics:™ Althoug

one should generally not take the logarithm of a quantity
with dimensions, in the above equations this transgression
turns out to be without consequences. With 0, the system

In this section, we will consider the behavior of the has no intrinsic length scale, and we can choose to divide
model in the limits of large and smallandd. Since both of by whatever length we please; the only change will be in an
these variables have dimensions, we must compare themimportant additive constant corresponding to a Galilean
with some other quantity to have a meaningful notion oftransformation.
“large” and “small.” The only candidate that presents itself It is tempting to try to treat the limit in which dissipation
in the present formulation is the wavevectprIf the system in the subfluid dominates in the same manner just used for
under consideration has a single length sdajethen the the case in which it is negligible. Unfortunately, if one
most important contributions in Fourier space are likely toblithely takes the inverse transform of &%), obtaining

rir;
Gi,-(r)=—5ijln(r)+r—2, (21)

lIl. LIMITING CASES
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—2mr/a, and proceeds to calculate a Green’s function,ous section. Expanding the Fourier transformKof invert-
clearly unphysical results emerge. In the simplest terms, onig, and taking the convolution with, we obtain
can argue that this occurs because the limit of laytewill

break down at large distances, a feature that is acceptable for K (q)=— x 1+ E(qd)2+ e, (243
finite size domains, while the limit of smatj/a becomes md 3

invalid precisely at the small distances that one must always A 1

consider. More specifically, the limd—o corresponds to K(r)y=-— —[5(r)+ =d?V25(r)+---|, (24b)
neglecting the termyV2u in the dynamical equatiofi). One d 3

is then left with a lower order equation for which one is 7' 1

allowed to impose fewer boundary conditions, so the integral Fo=— q u+ §d2V2U+ Bk (249

formulation of equatior(7) can no longer hold. We will ar-
gue in Section V that these difficulties can be circumventedrhe first term in the expansion & has been derived by
with the judicious use of cut-offs. Stone via more heuristic argumetitd? it is also the expres-
To proceed further within the present framework, how-sion for FS that one obtains by treating the subfluid in the
ever, one must deal with the form fot valid for arbitrary  lubrication approximation. In qualitative terms, the series
a. A fairly involved expression for the inverse transform is tells us that asl increases the force exerted by the subfluid

obtained in Appendix B; it can be expanded abaut0 to  develops an increasingly nonlocal character. For very small

give d, the no-slip boundary conditions on the bottom of the
trough completely dominate the behavior and prevent the
H(r)= 12 4C—3+4In(ar/2) ar)2— z(ar)3 effects of motion in the monolayer from propagating through
a 8 9 the subfluid. Asd increases, however, different parts of the
1-C— In(arf2) adsorbed layer become more and more able to communicate
+ o (an*+---|, (22)  Wwith each other through the subfluid. In the opposite limit of
32 infinite depth, we thus expect th& will depend on the
whereC=0.577 is Euler’s constant. Sind,;r2=24,;, the  Velocity field throughout the monolayer. o
term proportional ta? will add a constant velocity t6;; . We confine ourselves for the moment to considering

Unlike in the case=0, such a constant now has a physicalonly the leading term in the above expansions. It is of course

meaning; the presence of the subfluid destroys Galilean irRlS0 possible to look at higher order approximations, but they
variance. lack the internal consistency of the lowest order dynamics. In

particular, they will not always yield a law of motion that is
a gradient flow. In the first approximation, a comparatively

) ) simple equation holds:
B. Thin subfluid

We next turn to the case of a very thin subfluid layer, nV2u—Vp— %u=0. (25
gd—0 or d/L—0. Although no experiments have yet been
conducted in this regime, it seems plausible that it might berhis equation has the same form as the Laplace transform
experimentally accessible. In numerical studies of monolayewith respect to time of the linearized Navier—Stokes equa-
flow in canals, for example, Stone has observed that the etion pgu/gt=»V?u—Vp and has been studied in this
fects of finite depth become important whery L.*® For the  contex?: it has also been used to model flow in porous
largest experimentally accessible monolayer domains, gnedia®® If we ignore dissipation in the monolayer entirely
trough with a depttd~100um would then be required; this compared with dissipation in the subfluid, the equation re-
seems mechanically conceivable, although reflection fromluces to Darcy’s lawu= — Vp, which describes quasi-two-
the bottom of the trough might make visualization with somedimensional flow in Hele—Shaw cefi&23The Green’s func-
microscopy techniques difficulf. Beyond the fact that its tion for Eq. (25) has previously been calculafécand can
theoretical treatment is less involved, this limit has the poreadily be obtained by taking the inverse transform of equa-
tential advantage that it would give the experimenter, in th&ion (23). One finds that
depthd, an additional parameter that could be controlled

with a fair degree of precision. F(')r example, Klinger and H(r)=— Z—Z[In()\r)JrKo()\r)] (26)
McConnell have reported the ability to set to within A
1,LL m.31 . and
To lowest order imd, H takes the form
1 K1(Ar)
~ 1 a 7], Gij(r)=—25ij{—2—Ko()\r)—
H=—>—>—, \N=o=—. 23 (A1) AT
T R 23 o)
rir; r
The parameten plays the same role aa in the infinite +2% ()\_r)Z_KO(M)_)l\—r}’ (27)

subfluid problem. The inverse transform ldf can be taken
without great difficulty and a Green’s function obtained. It whereK; is a modified Bessel function. Note that in the limit

turns out to be more instructive, however, to back up severalr—0, H approaches the expression obtained in the com-
steps and to consider the functignintroduced in the previ- plete absence of a subfluid. Close enough to a singularity, the
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presence of the subfluid will always be negligible because
the higher order derivativ®2u will always dominateFS.

LI Tt 7 T LI L LI LI
s | |
- ,' '\ 4

IV. LINEAR STABILITY \\ thin subfluid .

]
ri
1
While the present formulation of the monolayer hydro- ' " 4
dynamics permits the investigation of boundary motion far 1.0 —:— \ —
from any regular geometric shape, where a fully nonlinear i
analysis is necessary, we focus here on the calculation of ]
linearized growth rates about several simple geometries. To :
develop physical understanding, we will begin with an inter- 0.5 — ~.. |
face in the shape of a straight line; we will then turn to the b b . .
more experimentally relevant case of a circular boundary. T

)
5

A. Stability about a line | | | | | .
OQOIIIIIIIIIIIIIIIIIIII

Consider an unperturbed interface that rests on the line 0 2 4 8 8 10

y=0 and subject it to a sinusoidal perturbation k (,u,m_l)
r(x)=§/(k)e'kxey, where g is a unit vector in the
y-direction; we use the wavevect@rto distinguish a one- _ ) .
dimensional Fourier transform from a two-dimensional T'C: 2. Comparison of the reduced growth rate)=u(k) '/f(k) about

. . . . a line in the limits of a very thin subfluid and of an infinite subfluid. Both
transjorm_ with W_aveyeCtoq' This gives ”S_e o a fqrce curves are for a system with=10um™1. The dotted line was calculated
Af= f(k)e'Akxey which in turn causes a velocity at the inter- using equation30) with d=10um; the solid curve was obtained by the
face ﬂ(k)ékxey, with (= gy/dt. For a boundary without in- methods of Appendix B in the limil—. The two curves approach each
ternal structure Af must a|Ways be norma”y directed. so other and drop off like X ask—o, but have markedly different behavior
there is no possibility that it will have a@ component T'he for values of 1k on the order of typical domain length scales.
relationship off to y will depend ong[r], and its particular

form is not of immediate interest in the present discussion._, . . e
P A This is the samd& dependence one would expect if dissipa-

Quite gef‘era”y' though, we expect that: f o y. Sincef is tion occurred only at the boundary of the domain, instead of
already first order small, once it has been calculated we ma) the bulk fluid

consider that the boundary takes its unperturbed shape. The k dependence of these growth rates can be under-

those cases in Wh'Ch an analytic expresgoquns known, stood on the basis of relatively simple arguments. Suppose
we may then simply calculate the velocity component as ~ no . L
thatH(q)~q"; n is determined by the number of derivatives

. f(k) o i of u and of p in the dynamical equation. Then, we expect
u(k)=- 4y __dxGylxg) ™. (28) that G;;~g"*2. To find the linearized growth rate about a
line, one must first take the inverse transform@yf in two

We find that in the limit of negligible subfluid dissipation dimensions, then, in a rough sense, take a one-dimensional

(a=0), Fourier transform of the resulting function. On purely dimen-
A f(k) sional grounds, this will introduce an additional factor of
uk)=— py DR (290  g. Indentifyingqg with the wavevectok of the perturbation,

g we then expect thaili(k)~k"*%. This is indeed the case:
while in the case of a thin subfluid, Whena=0, H~q * and (k) ~k~%, and similarly for the
) f(k) K2 other limits.
U(k)_ 27])\2 |k| \/W ’ (30)
. . . B. Stability about a circle
Once again the effects of the subfluid are unimportant at
small enough length scales: Ng/\ — o, the expression ap- As in the previous section, we begin by considering a

proaches that valid in the absence of a subfluid. Similarly, aslightly ~ perturbed domain parametrized as
|k|/x—0, we recover the form that has previously been calf (6)=R(1+€,€"’)e;, whereeg, is a radially-directed unit
culated starting from Darcy’s laf%:?3 vector. We expect a forcé,€"%, and a normal velocity
When a compact direct space form f8f; is not known, componenti,€"’e; ; u,=Rde,/dt. The force must again be
one may still find the growth rates by remaining in Fouriernormally-directed for a structureless interface. Incompress-
space. The method is presented in Appendix C for stabilitybility requires that the fluid velocity have a tangential com-
about a circle; the results of a similar calculation for a lineponent at the interface, unlike in the case of a line; this
are plotted in Figure 2 in terms of a reduced growth ratecomponent does not, however, affect the evolution of the
a(k)=0(k) n’/f(k). At present, we simply state that, for an boundary’s shape, so we will ignore it. To lowest order, we

infinite subfluid in the limit|k|/a<1, may still consider that the force acts at the unperturbed
A circle: Although there can now exist a zeroth order force, it
(k)= — m (31) must be independent af and so will not cause any fluid
Ty’ motion, even when acting at the perturbed interface.
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Whereas for stability about a line we used a variety of

direct space forms foG;; , here we shall instead derive one o AR R
expression valid for arbitrarg andd. We begin by observ- monolayer
ing that, using polar coordinates and integrating over the e d‘ss‘Pat“’.\ 3
polar angle, we may formally write C AN ]
05} N . .
» Jo(qr) ! N e
H(r)=2 d _ 32 ey _Yissipation
" ’Tfo 997q+a cothiqd)] (32 G 1
0.2
Starting from this representation &f, straightforward but
lengthy manipulationgdescribed in Appendix Clead to an o ]
expression for the growth rats, : ‘ h
n?Rf, (= Ja(w) 0.05 ]
Up=——— f W : . (33 ]
n Jo w‘[w+aR cothwd/R)]

This is the central result of this section and the analog of the

growth rates given by equatiorig9), (30), and(31) for per- n

turbations about a line. If we let the subfluid be infinite and

set cothvd/R)=1, we recover the expression previously ob-FIG. 3. Reduced growth raie,=u,7'/f, versus the mode numbarfor a
tained by Stone and McConnéﬂ.When a=0 or aR—m, circular domain withaR=25 resting on an infinitely deep subfluid. The

; : - olid line gives the exact value, calculated from equat@®). The down-
the mtegral can be evaluated in closed form. One finds tha@/ard sloping dotted line gives the expression valid when dissipation in the

R |n| subfluid‘is neg_lig‘ible[equatioq(34)],‘while_the other dotted line plots the
f, (|n| =2), (34) expression valid in the opposite limigquation(35)]. The exact growth rate
is always less than either of the approximations, but approaches the limiting
expressions as—2 andn—oo.

U=~ 2, n7—1

when dissipation occurs only in the monolayer, and

I,]2
anZ—1n (In[=2), (35  given by equation33) and the approximation of equation

(35) for a number of different values @fR andn. To a good

when the subfluid dominates. The leading corrections t@pproximation, all of the points fall on the same curve. Ac-
these expressions for finigeR can also easily be computed. tually, this collapse occurs over a much wider range of
In both cases, the first correction tends to decrease the magR/n than shown in the figure, even when the fractional
nitude of the growth rate. This is not surprising: To zerotherror is greater thar?(1). Figure 4 also gives an idea of the
order, we entirely ignored dissipation in the subfluid, in theerror involved in using the approximate expression for the
one case, and in the monolayer, in the other. The next terngrowth rate. We see that faR as high as 100, the approxi-
by accounting for these additional sources of energy loss,
increases the total amount of damping and so slows down the
dynamics.

One may verify that in the limin—o, R—o, with
k=n/R fixed, the result$34) and(35) for a circle tend to the
growth rates about a straight lif@9) and (31). For n large
enough, the curvature of the circular boundary is unimpor-
tant on the scales over which the forces and velocities vary,
and the boundary acts essentially like a line. Hence, the
length scale with which one must compards not the cir-
cle’s radiusR but the wavelength of the perturbation, which
is proportional to {=R/n. The expressioni34) is the ap-
propriate approximation for smadlR/n, while (35) is more
accurate for largaR/n. This dependence am of the domi-
nant source of dissipation can be seen in Fig. 3, where the
exact reduced growth rate,=u, 7'/ f, is compared with the
two limiting forms. For fixedaR>1, the growth rate is 0.02
roughly independent af for smalln but decays like 1 for
large n. The crossover occurs where the curves given by aR/ n
equations(34) and (35) intersect, amR/n~1. Except for a
multiplicative factor, the growth rate about a line is a func-FIG. 4. Fractional errofo,(a—)—o,]/a, vsaR/n for a circular domain
tion only of a/k. This is not precisely the case for a circle, resting on an infinite subfluid. Hei_fnzunn’_/fn is the red_uced growth rate
but, even fom small, many important quantities depend es-fﬁ'cu'ated from the exact expressi@), while oy(a— <) is obtained from

. . e approximation(35) valid when dissipation in the monolayer can be
sentially only onaR/n. For example, Fig. 4 plots VErsus pegiected. The solid line gives the bestfit power law,
aR/n the fractional difference between the exact growth rate o,(a—=) - o, )/o,=1.4/@R/n).

U,=— ——
n 77_77!

0.5 LIS B B R | T T T 7

e
]

[on(a=e)=0,]/0,
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mation is accurate to within 5% for the first few modes, withwe obtain interface velocities on the order ofdm/s for
error increasing linearly as/aR for largern. This asymp- smallNg, and considerably less near the branching instabil-
totic dependence of the error may also be derived directly byty.

expanding the integrand of equati¢38).%

C. Example: Dipolar forces V. DYNAMICAL LAW FOR MOTION DOMINATED BY

. . . THE SUBFLUID
In previous sections, we made no assumptions about the

nature of the energy functional[r] associated with the Two important features of the limit in whicaL—
boundary. Here we undertake a sample calculation for theaye already been emphasized: First, the monolayer viscos-
functional of greatest experimental interest, that of a dipolajty represents a singular perturbation that must always be
domain. In this case, we associate with the boundary noiken into account near enough to a boundary or to a singu-
only a line tensiony, but also the electrostatic energy stored|arity. Second, linear stability results suggest that this limit
in the electric field created by the dipoles. In reality, thiScan pe partially understood in terms of an effectioeal
electric field exerts a force not at the boundary but on tthissipative force that opposes the boundary velocity at a
bulk dipolar fluid. Under the assumption that the domain hagjiven point on the interface. It is the purpose of this section
a constant dipole density, however, the electrostatic body, yse these two observations to find a simplified boundary
force per unit volume can be written asv$, where¢ isan  jntegral expression valid asL— . The physical ideas that
appropriate potential energy. After the introduction of a motivate the discussion are relatively straightforward:
modified pressur@y,=p+ ¢,* the equations describing the The Green's functiorG;; deviates appreciably from its as-
bulk flow are thus unchanged, and the electrostatic interagymptotic large a form only whenr=<1/a. For a large
tions only enter through their effect on the boundary condi-enough, this describes a very small region around the point
tions. One can show that this effect is correctly incorporateqynere we wish to know the boundary velocity, and it seems
into our formalism if one simply views the electrostatic en- plausible that one might be able to neglect the variation of
ergy of the dipolar domain as a functional of its boundary’sphysical quantities across this region. Then, the contribution
parametrization. Several equivalent forms exist for the enyansmitted through the monolayer itself to the velocity at a
ergy &4 of an arbitrarily shaped domain witftonstank di-  point r will be proportional toAf(r). In this picture, the
pole densityu per unit ared>?'~?**"~Qf these, the most  effective force at the interface is thus a consequence of the
useful to us takes the form of the energy of interaction of twoextremely small length scales over which dissipation in the

current loops: monolayer is important. These allow us to take this dissipa-
u? R R tion to be essentially local compared with the dissipation in
Zalrl=— FJ dslf ds,t(sy)-t(sy) the subfluid, which retains its very nonlocal character.
¢ ¢ To put these ideas into mathematical form, we begin by
[r(sy)—r(sy)| finding the limiting forms ofG;; for small and largear.
(T) (360  These can be obtained by straightforward differentiation of

the corresponding limits oH(r), derived in previous sec-

rir]'

B+~ (39)

HereCis the curve parametrized by t is the unit tangent to  tions and in Appendix Il. One finds that far small, Gij
¢, h is the thickness of the monolayer, and pehaves as

® (&) =sinh Y(1/¢) + £é— Y1+ &. Adding to the electrostatic

term the usual line tension energy., wherelL is the length ar

of the curve, we arrive at an expression fgr]. A fair 2

amount of algebra then yields the force comporfgntin the
case of monolayers, the thickness is of molecular sizeWhile forar large the appropriate expression is
h~10A, and the typical domain radius B~ 10um, so we

3+C+|
Z n

Gi(r)=

are justified in taking the limit in which the aspect ratio Gh(r)zzr_‘;i_ (39)
p=2R/h>1. It has then been shown tfat ar
y 1 8R ) Note the important feature o’.’EiLJ- that, unlike most of the
fnzﬁ 1- ENB In eh (n°=1) Green’s functions we have examined, it does not contain a

term proportional tog;; . As a first approximation, we will
1 n suppose that there is a sharp transition between small and
+ZNB(1_4n2)E m} (37 large ar behavior. That is, we will approximate the full
=24 Green’s function as
Here the dipolar Bond numb&t;=2u?/y gives the relative
importance of the electrostatic and line tension forces. Sub- Gh(r), r<ula,
stituting this expression fof,, into any of the growth rates Gij(r= GL(r), r>uvla
calculated in the last section, one obtains a prediction for e ’
u, that can be compared directly with experiment. With val-wherewv is a constant of order unity that will be determined
ues of the line tension on the order ok10 8 erg/cm!®a  later. The expression for the velocity at a pointhen be-
domain radiusR~50xm, and subfluid viscosityy’=1cp, comes

(40)
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1 constant and normally-directed, both very desirable features.
uj(r)=— prpese) NN dsG;(r—r(s)Afi(r(s)) Substituting forv, we find the approximation to equati6¢n)
r=r(S)[>va that is the central result of this section:
1
- dsG (r—r(s))Af,(r(s)). Afy(r 1
470 )i —r(s)|<via Gg‘ ( (r(s) ug(r)y=-— ﬁ(,)— mJ dsG\"l(r—r(s))Afi(r(s)).
c

(41) (44)
This expression can be written in an alternative form in theThe first term can be associated with dissipation in the
usual case in which there are no tangential forces and one {fionolayer and is entirely local, while the second corre-
only interested in the normal velocity. Then, the productsponds to dissipation in the subfluid. Note that the factor of
GjjAf; is not singular as(s) approaches because the only 1/a in Gij, when multiplied by the Zf in front of the inte-

nonvanishing term in the sum contains a factor ofgral, yields 14, so the velocity does not depend at all on

[(r(s)—r)-n]? in the numerator. Choosing the coordinate the monolayer viscosity.

s=0 whenr(s)=r and expanding for smadl, one finds that
r(s)—r=ts—(1/2)xAs?+---. Hence[(r(s)—r)-nJ? « s*
cancelling the singularity in the denominator@llfj and mak-
ing it possible to extend the integral cﬁh to zero. For
notational convenience, we pick axes such thandt cor-
respond toe, and e, respectively, whers=0. Then, the
normal component ofi atr is justu;, and we can write

~ Fy) A5G T (SNAT((9))

uy(r)=

1

d7n)ir-rs)|<va
—GhH(r=r(s)]Afi(r(s)

Becausesh contains a factor of &/ the first integral in the
above expression will be proportional tcal/Thus, to lead-
ing order in largea, only terms of order H in the second

ds[G5(r—r(s)

(42

It remains to clarify when the results of this section are
expected to hold—that is, what it means &fto be large. By
considering the corrections of ordera?/to the expression
(43), one can convince oneself that these are negligible only
when

Afy(r)

a>k and a>m,

(45
wherex is the curvatureA f;=d(Af(r(s))-e,)/ds, and both
gquantities are evaluated at These expressions are not sur-
prising: For smooth interfaces, the curvature will be of the
order of 1L, whereL is the size of the domaimA\f;/Af;
gives the length scale over which the force varies. As we
have already pointed out, both are important length scales in
the system.

Unlike the Green’s function valid for arbitrasgy, G}'J- has
a compact analytic expression in direct space. The formula
(44) thus presents considerable advantages for analytic and

integral are of interest. At this level of approximation, only egpecially for numerical calculations. Such a simplification is

constant and logarithmic terms in the integrand need bg'the more welcome because almost all experiments to date
retained—that is, forces and velocities are taken to vary Veryaye peen performed on systems where the subfluid viscosity
slowly across the region of integration. Then, the secondjominates. Admittedly, these improvements come at the ex-

integral becomes

vla

47777 —vla
_Afy(nv

27y

dsAf(r) 5

i -ed]

where it should be emphasized thst, (r) = Af(r) - ¢, is the

| als| c 3
n—-»|+ +Z

(43

pense of an approximation that is not perfectly controlled,
but that nonetheless appears physically reasonable.

VI. EVOLUTION OF THE PERIMETER

Finally, we provide a simple illustration of the use of the
present formulation for calculations in the nonlinear regime.

force component at the point where we wish to calculate théVe consider a domain with only line tension energy,

velocity, and so does not depend en Hence, to leading

&=L, and calculate the time derivative of its perimeter

order in largea, the second integral yields a local force. We This quantity is of particular interest becausecan be ob-
must still, however, specify the numerical value of the pro-served directly in experiments.

portionality constant|In(v/2)+C—1/4] in equation(43),

Parametrizing the curve in the standard way ag «),

or, equivalently, ofv itself. This can be done by demanding and recalling thabl/sr(«) = —di/de, we can write

that the approximations of this section lead to the same Iineadr
stability results as the limits as— of the expressions

valid for arbitrarya already obtained. Thus we ask thabe
such thatli(k) = — f(k)/ 7%’ [Eq. (31)] for stability about a

line, and similarly for other geometries. This requirement

determines the unique value~2.88. Likewise, with this

dt Y
qai chdaa ‘U(a)=— mfcdsljcdsz"(sl)

XNi(s1)Gjj(r12) k(S2)Nj(Sy),

wherer,=r(s;) —r(s,), « is the curvature, and is the

(46)

choice ofv, one can show that the proposed dynamical lawarclength parameter. Sinéex L, it will always be true that
preserves the area of domains and that the interfacial velocityL/dt<0; the proof is identical to that already given for an
of an arbitrarily shaped domain will vanish when the force isarbitrary energy functional. The Green’s functiGg can be
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any of the several forms we have already presented. Or8CKNOWLEDGMENTS
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shortening equation” previously derived, under the assump-
tion that dissipation occurs only at the domain boundary. APPENDIX A: DETAILS OF THE DERIVATION OF THE
This simpler equation has already been fruitfully comparedGREEN’'S FUNCTION
with experimenf’® and we hope that our extensions will

likewise prove useful in analyzing data. This appendix gives a few of the steps that were omitted

in the main text in the derivations of equatioiid) and(12).
Since the components of are harmonic, they can be rep-
resented in the usual manner as

dL(r,rg)
dz '’

VIl. DISCUSSION

) (A1)

1
1 _ 2 .
Equation(7) encapsulates the focus of this paper: It pro- Ui (ro)= 477f drui(r

vides a general prescription for finding the velocity of the - . .
9 P P g y where £ is a Green's function for Laplace’s equation that

boundary of an arbitrarily shaped monolayer domain. We : . ;
have discussed the form this equation takes in several |imit‘-’f‘”'5255 r?n Ehe p:jal’E=0, %nd the mtegrﬁl f taken_o;)/er this
ing cases and have shown that it can be used to make qua%}gne' L.e oun alry c?n .ItIOI’]S are that =u atz—_ ' Sﬁ
titative predictions that can be compared with experiment. Int e two-dimensiona Ye OC|ty. Co,/mponer.‘ﬁ appear in the

Integrand. The Green’s functiol” is obtained by an eigen-

particular, section V suggests an approach to the limit i . S . : .
which dissipation in the monolayer itself is small; since mos?functlon expansion in Cartesian coordinates. With the hat

experiments have been conducted in this regifi8jts dy- denoting a Fourier transform with respect to the variables

namics are of particular interest. Our approximation to equa)—(_x0 andy —Yo, one finds that
1 sinh(qz.)sinfq(z-+d)]

tion (7) has the interesting feature that it contains a local o

term whose effect is equivalent to that of a drag force acting (0,2,20) =~ 7q sinh(qd) , (A2)
directly on the interface. From a theoretical perspective, it is )

clear that our somewhaid hoctreatment of this limit leaves Wherez- andz. are, respectively, the larger and smaller of
a number of open questions. For example, the issue of aNdZo. SinceF™=—7"du, /z, comparison of equations
whether the dynamical law44) gives precisely a gradient (11) and(A1) indicates thaK = 92%7dzdz,, with the deriva-
flow demands further elucidation, as does the application ofives evaluated at=z,=0. The expressiofi12) for K fol-
our arguments to the case of a thin subfluid, which seems tpyws immediately.

reduce to Darcy’s law when the subfluid viscosity dominates.

Ir_1 general, a more mathematically rigorous treatment is deaApPENDIX B: INVERSION OF H

sirable. These problems are currently under active sttdy. . i ) ) ]

The logical next step would be to undertake a detailed nu- ' this appendix, we obt?m an analytic expression for the
merical investigation of relaxation and pattern formation ininverse transform oH=1/1g"(q+a)]. Begin by expanding

the strongly nonlinear regime; techniques that have been dé? partial fractions:

veloped for similar problents should make such studies . 1 1 1 1
possible. To provide a complete test of the theory, it likewise ~ H(q)= a2 + &g Dgra) (B1)

seems useful to conduct experiments on systems in which the
monolayer viscosity is sufficiently large that it can be mea-The inverse transforms of the first three terms are kndivn.
sured independentfl?.:** Experiments carried out on a shal- To invert the fourth, we use the general result that
low trough might also be of interest. Finally, there are several” ~[g(a)]=— (1?7 ~1[Vig(a)], where7 ~* denotes
physical effects that our theory does not pretend to includean inverse Fourier transform and the derivatives in the La-
Foremost among these are, first, the possibility that one dplacian are taken with respect ¢qo We can then write

the monolayer phases might have a significant compressibil- -
ity, and, second, the presence of thermal fluctuations in do- H(r)=—
main shape. The inclusion of thermal fluctuations, in particu- a
lar, might have a significant qualitative effect on the pattern- (B2)
forming properties of the model. We also have made ndere, we have expressed the result in a dimensionless form
attempt to treat the dynamics of the various liquid condensebtly settingé=ar and have performed the integral over the
phases that show hexatic or other long-range order. Clearlypolar angle in the inverse transform ﬁﬁ[ll(qua)]. The
such order greatly increases the complexity of the problemintegral in the fourth term converges in the usual sense and

1 1 ¢(~ Xx—1
—§+In§+ E+ ?JO dXJO(§X)(X+—1)3
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