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Morphoelasticity of large bending deformations of cell sheets during development
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Deformations of cell sheets during morphogenesis are driven by developmental processes such as cell
division and cell shape changes. In morphoelastic shell theories of development, these processes appear as
variations of the intrinsic geometry of a thin elastic shell. However, morphogenesis often involves large bending
deformations that are outside the formal range of validity of these shell theories. Here, by asymptotic expansion
of three-dimensional incompressible morphoelasticity in the limit of a thin shell, we derive a shell theory for
large intrinsic bending deformations and emphasize the resulting geometric material anisotropy and the elastic
role of cell constriction. Taking the invagination of the green alga Volvox as a model developmental event, we
show how results for this theory differ from those for a classical shell theory that is not formally valid for these
large bending deformations and reveal how these geometric effects stabilize invagination.

DOI: 10.1103/PhysRevE.103.022411

I. INTRODUCTION

Cell division, cell shape changes, and related processes
can drive deformations of cell sheets during animal and plant
development [1–6]. In elastic continuum theories of the de-
velopment of the green alga Volvox [7–10], of tissue folding
in Drosophila [11,12], or of more abstract active surfaces [13],
these driving processes appear as changes of the reference or
intrinsic geometry of thin elastic shells.

Just as classical thin shell theories arise from an asymp-
totic expansion of bulk elasticity in the small thickness of
the shell [14–16], these morphoelastic shell theories should
be asymptotic limits of a bulk theory. While there is now
a well-established framework of three-dimensional morphoe-
lasticity [17,18], based on a multiplicative decomposition of
the deformation gradient tensor into intrinsic and elastic de-
formations [19], studies of this asymptotic limit have mostly
been restricted to the case of flat morphoelastic plates. Ex-
tensions of the classical Föppl–von Kármán equations [20,21]
have been derived and residual stresses in Kirchhoff plate
theories [22] have been studied in this case. A theory of
non-Euclidean plates [23] has been developed in parallel.
Apart from a general geometric theory of morphoelastic sur-
faces [24], studies of morphoelastic shells have remained
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more phenomenological, however: Some models [7,8,11–13]
simply replaced the elastic strains in classical shell theories
[15,25,26] with measures of the difference of the intrinsic and
deformed geometries. Other studies [9,10] took a more geo-
metric approach, mirroring geometric derivations of classical
shell theories [25] based on the so-called Kirchhoff “hypothe-
sis”. This is the asymptotic result [15] that the normals of the
midsurface of the undeformed shell remain, at leading order,
normal to the deformed midsurface.

There is, however, one more serious limitation of these
models: Tissues in development undergo large bending defor-
mations (Fig. 1) that are outside the formal range of validity
of the underlying thin shell theories, which assume that the
thickness of the shell is much smaller than all length scales
of the midsurface of the shell [15,25,26]. However, even if the
thickness of the cell sheet is much smaller than its undeformed
radius of curvature, this radius of curvature may become com-
parable, locally, to the thickness of the cell sheet as it deforms
(Fig. 1). This is associated with cells contracting at one cell
pole to splay and thereby bend the cell sheet [4].

Here, we derive a theory of thin incompressible mor-
phoelastic shells undergoing large bending deformations by
asymptotic expansion of three-dimensional elasticity. We re-
veal how, even in a constitutively isotropic material, this
biological scaling limit of large bending deformations in-
duces, in the thin shell limit, a geometric anisotropy absent
from classical shell theories: different deformation directions
exhibit different deformation responses. We stress how this
geometric effect is associated with the geometric singular-
ity of cell constriction, i.e., the limit of wedged triangular
cells [Fig. 1(b), inset] associated with these large bending
deformations. Specializing to the invagination of the green
alga Volvox [27,28], we then show how results for this
theory differ from those for a classical theory that is not
formally valid in this large bending limit and reveal how
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FIG. 1. Large bending deformations during morphogenesis:
Even if the thickness of the cell sheet is small compared to the
undeformed radius of curvature, the local radius of curvature need
not remain large compared to the cell sheet thickness as the sheet
deforms. (a) Cross section of ventral furrow formation in Drosophila,
reproduced from Ref. [29]. (b) Midsagittal cross section of invagina-
tion in the spherical alga Volvox globator, reproduced from Ref. [8].
Inset: Cartoon of constricted triangular cells in the bend region. Scale
bars: 20 μm.

invagination is stabilized by the geometry of large bending
deformations.

II. ELASTIC MODEL

In this section, we describe large bending deformations
of a thin incompressible morphoelastic shell, starting from
three-dimensional morphoelasticity. We shall have to distin-
guish between three configurations of the shell [Fig. 2(a)]:
(i) the undeformed configuration of the shell, (ii) the deformed
configuration of the shell, and (iii) the intrinsic configuration
of the shell that encodes the local, intrinsic deformations of
the shell, i.e., the cell shape changes or cell division in the
biological system. These intrinsic deformations are not in
general compatible with the global geometry of the shell: in
other words, this intrinsic configuration cannot, in general,
be embedded into three-dimensional Euclidean space [17].
Elasticity must therefore intervene to “glue” the intrinsically
deformed infinitesimal patches of cell sheet back together,
as illustrated in Fig. 2(a). Configurations (i) and (ii) are re-
lated by the geometric deformation gradient F̃. This tensor
decomposes multiplicatively into an intrinsic contribution F0

that relates configurations (i) and (iii), and an elastic contribu-
tion F = F̃(F0)−1. This is the multiplicative decomposition of
morphoelasticity [17,18].

In this section, we restrict to torsionless deformations of
an axisymmetric shell. The analysis can be extended to more
general deformations of the shell, and, for the sake of com-
pleteness, we do so in Appendix A, but the restriction to
axisymmetric deformations eschews the mire of tensorial no-
tation that arises in the general case.

FIG. 2. Morphoelasticity of an axisymmetric shell. (a) The unde-
formed (top), deformed (left), and intrinsic (right) configurations of
the shell are related by the three tensors F̃, F0, and F = F̃(F0)−1.
The geometric and intrinsic midsurface stretches are f̃s, f̃φ and
f 0
s , f 0

φ . (b) Undeformed configuration V of an axisymmetric shell
of thickness εh(s), described by coordinates r(s), z(s), where s is
arclength, with respect to the basis {ur, uφ, uz} of cylindrical po-
lars. (c) Cross section of the undeformed shell, defining a basis
B = {es, eφ, n} and the transverse coordinate ζ . The surfaces
of the undeformed shell are at ζ = ±h±(s), where the tan-
gent vectors are e±

s , e±
φ , and the normal is n±. (d) Deformed

configuration Ṽ of the shell: After a torsionless deformation,
the shell has thickness εh̃(s), arclength s̃, and is described
by coordinates r̃(s), z̃(s) with respect to cylindrical polars.
(e) Cross section of the deformed shell, defining a basis
B̃ = {ẽs, ẽφ, ñ}. Normals to the midsurface rotate so that a point
at a distance εζ from the undeformed midsurface S is at a dis-
tance εζ̃ (s, ζ ) from the deformed midsurface S̃ and displaced by
a distance ες̃ (s, ζ ) parallel to S̃. At the surfaces ζ̃ = ±h̃±(s) of
the deformed shell, the tangent vectors are ẽ±

s , ẽ±
φ , and the normal

is ñ±. (f) The intrinsic midsurface S0, on which ζ 0 = 0, embeds,
locally, into three-dimensional space to define an intrinsic basis
B0 = {Es, Eφ, N}.

The derivation of the shell theory for large bending de-
formations divides, like derivations of classical shell theories,
into two steps: First, in Sec. II A, we describe the kinematics
of the deformation and derive expressions for the geomet-
ric, intrinsic, and elastic deformations gradients. Second, in
Sec. II B, we analyze the mechanics of the shell and expand
the three-dimensional elastic energy and equilibrium condi-
tions asymptotically. At the end of this section, in Sec. II C,
we discuss the limit of small bending deformations that gives
rise to classical shell theories.
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A. Axisymmetric deformations of an elastic shell

We consider an elastic shell of undeformed thickness εh,
where ε � 1 is a small asymptotic parameter expressing the
thinness of the shell compared to other length scales associ-
ated with its midsurface. Large bending deformations will be
introduced in Sec. II B by allowing one of the intrinsic radii
of curvature of the shell to be of order O(ε). We begin by
deriving an expression for the elastic deformation gradient F
for torsionless deformations of an axisymmetric shell.

1. Undeformed configuration of the shell

We will describe the undeformed configuration V of the
shell with reference to a midsurface S that we will choose
later. With respect to the basis {ur, uφ, uz} of cylindrical coor-
dinates, we define the position vector of a point on S ,

ρ(s, φ) = r(s)ur(φ) + z(s)uz, (1)

with s denoting arclength and φ being the azimuthal coordi-
nate [Fig. 2(b)]. The tangent angle ψ (s) of S is defined by

r′(s) = cos ψ (s), z′(s) = sin ψ (s), (2)

in which dashes denote differentiation with respect to s. The
vectors

es(s, φ) = cos ψ (s)ur(φ) + sin ψ (s)uz, eφ(φ) = uφ(φ)
(3)

thus constitute a basis of the tangent space of S [Fig. 2(c)],
which we extend to a (right-handed) orthonormal basis
B = {es, eφ, n} for V by adjoining the normal to S ,

n(s, φ) = cos ψ (s)uz − sin ψ (s)ur(φ). (4)

In particular, n = es × eφ. We complete the description of S
by computing its curvatures,

κs(s) = ψ ′(s), κφ (s) = sin ψ (s)

r(s)
. (5)

Now, the position of a point in V is

r(s, φ, ζ ) = ρ(s, φ) + εζn(s, φ), (6)

where we have introduced the transverse coordinate ζ , which
is such that the shell surfaces are at ζ = ±h±(s) [Fig. 2(c)].
Noting the derivatives ∂n/∂s = −κses and ∂n/∂φ = −κφeφ,
we obtain the tangent basis of V ,

∂r
∂s

= (1 − εκsζ )es,
∂r
∂φ

= r(1 − εκφζ )eφ,
∂r
∂ζ

= εn,

(7)

from which follows the expression for the Riemannian metric
of the undeformed configuration,

χ2
s ds2 + χ2

φ dφ2 + χ2
ζ dζ 2, (8a)

with associated scale factors

χs = 1 − εκsζ , χφ = r(1 − εκφζ ), χζ = ε, (8b)

and hence volume element

dV = χsχφχζ ds dφ dζ

= ε(1 − εκsζ )(1 − εκφζ ) r ds dφ dζ . (8c)

The position vectors of the surfaces ζ = ±h±(s) of the
undeformed shell are

r±(s, φ, ζ ) = ρ(s, φ) ± εh±(s)n(s, φ), (9a)

so, using commata to denote partial differentiation,

∂r±

∂s
= (1 ∓ εκsh

±)es ± εh±
,sn. (9b)

The unit tangent vectors to the shell surfaces are e±
s ‖ ∂r±/∂s

and e±
φ = eφ, in which the symbol ‖ expresses parallelism and

hides a normalization factor for the unit vector on the left-hand
side. By definition, the unit normals n± to the undeformed
shell surfaces [Fig. 2(c)] obey n± ‖ e±

s × e±
φ . Now introducing

the normalization factor explicitly, we find

n± = n ∓ ν±es√
1 + ν2±

with ν± = εh±
,s

1 ∓ εκsh± . (10)

2. Deformed configuration of the shell

As the shell deforms into its deformed configuration Ṽ , the
midsurface S maps to the deformed midsurface S̃ [Fig. 2(d)],
with position vector

ρ̃(s, φ) = r̃(s)ur(φ) + z̃(s)uz, (11)

where, in particular, s is again the undeformed arclength.
Denoting by s̃ the deformed arclength, we define the stretches

f̃s(s) = ds̃

ds
, f̃φ (s) = r̃(s)

r(s)
, (12)

which enable us to define the tangent angle ψ̃ (s) of S̃ by

r̃′(s) = f̃s cos ψ̃ (s), z̃′(s) = f̃s sin ψ̃ (s), (13)

where dashes still denote differentiation with respect to s.
Similarly to the analysis of the undeformed configuration, we
introduce the tangent vectors

ẽs(s, φ) = cos ψ̃ (s)ur(φ) + sin ψ̃ (s)uz, ẽφ(φ) = uφ(φ),
(14)

and the normal vector

ñ(s, φ) = cos ψ̃ (s)uz − sin ψ̃ (s)ur(φ), (15)

so ñ = ẽs × ẽφ. This defines a (right-handed) orthonormal
basis B̃ = {ẽs, ẽφ, ñ} describing Ṽ [Fig. 2(e)]. The curvatures
of the deformed shell are

κ̃s(s) = ψ̃ ′(s)

f̃s(s)
, κ̃φ (s) = sin ψ̃ (s)

r̃(s)
. (16)

As the shell deforms, the normals to S need not remain normal
to S̃ , and so a point in V at a distance εζ from S will end up,
in Ṽ , at a distance εζ̃ from S̃ , and displaced by a distance
ες̃ parallel to S̃ [Fig. 2(e)]. By definition of the midsurface,
ζ̃ = ς̃ = 0 if ζ = 0. The position of a point in Ṽ is thus

r̃(s, φ, ζ ) = ρ̃(s, φ) + εζ̃ (s, ζ )ñ(s, φ) + ες̃ (s, ζ )ẽs(s, φ).
(17)

Continuing to use commata to denote partial differentiation,
we find

∂ r̃
∂s

= [ f̃s(1 − εκ̃sζ̃ ) + ες̃,s]ẽs + ε(ζ̃,s + f̃sκ̃sς̃ )ñ (18a)
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and

∂ r̃
∂φ

= [r̃(1 − εκ̃φζ̃ ) + ες̃ cos ψ̃]ẽφ,
∂ r̃
∂ζ

= ε(ζ̃,ζ ñ + ς̃,ζ ẽs).

(18b)

Noting that r̃ = f̃φr from definitions (12), the Riemannian
metric of Ṽ is therefore

{[ f̃s(1 − εκ̃sζ̃ ) + ες̃,s]
2 + ε2(ζ̃,s + f̃sκ̃sς̃ )2}ds2

+[ f̃φr(1−εκ̃φζ̃ )+ες̃ cos ψ̃]2dφ2 + ε2[(ζ̃,ζ )2+(ς̃,ζ )2]dζ 2

+2ε{ς̃,ζ [ f̃s(1 − εκ̃sζ̃ ) + ες̃,s] + εζ̃,ζ (ζ̃,s + f̃sκ̃sς̃ )}ds dζ .

(19a)

From ζ̃ = ς̃ = 0 on ζ = 0, it follows that ζ̃,s = ς̃,s = 0 on
ζ = 0. Hence the metric of S̃ is simply

f̃ 2
s ds2 + f̃ 2

φ r2dφ2. (19b)

At the surfaces ζ̃ = ±h̃±(s) of the deformed shell, the unit
tangent vectors are ẽ±

s and ẽ±
φ = ẽφ. They define the normals

ñ± ‖ ẽ±
s × ẽ±

φ [Fig. 2(e)].

3. Intrinsic configuration of the shell: Incompatibility

To specify the intrinsic configuration V0 of the shell, we
introduce the intrinsic stretches f 0

s , f 0
φ and the intrinsic cur-

vatures κ0
s , κ0

φ and the intrinsic normal displacement ζ 0. We
assume that f 0

s , f 0
φ and κ0

s , κ0
φ are functions of s only, while

ζ 0(s, ζ ) is strictly increasing in ζ , with ζ 0 = 0 on ζ = 0. Fur-
ther, we assume that the analog of the displacement parallel to
the midsurface vanishes, ς0 = 0.

Although we have named these functions with reference to
similar quantities defined for the deformed configuration, they
lack a geometric meaning at this stage. In fact, the Riemannian
metric that we can write down by analogy with Eq. (19a),{[

f 0
s

(
1 − εκ0

s ζ 0)]2+ ε2(ζ 0
,s

)2}
ds2 + [

f 0
φ

(
1 − εκ0

φζ 0)]2
r2dφ2

+ ε2
(
ζ 0
,ζ

)2
dζ 2 + 2ε2ζ 0

,ζ ζ
0
,s ds dζ , (20a)

is not in general compatible: Its Riemann curvature ten-
sor does not vanish in general, so it cannot, in general, be
embedded into three-dimensional Euclidean space [17]. Me-
chanically, this means that relieving all stresses in the shell
requires an infinite number of cuts [17]. This is not surprising
because, in the biological system, each cell undergoes inde-
pendent shape changes or division in general and, since cells
are infinitesimal in this continuum description, isolating these
infinitesimal building blocks requires infinitely many cuts.

We now define the intrinsic midsurface S0 of the shell by
its Riemannian metric, which is, by analogy with Eq. (19b)
and consistently with Eq. (20a),(

f 0
s

)2
ds2 + (

f 0
φ

)2
r2dφ2. (20b)

It follows from a local embedding theorem for Rieman-
nian metrics [30,31] that this two-dimensional metric can
be embedded, at least locally, into three-dimensional Eu-
clidean space. In particular, this means that there exists a local

(right-handed) orthonormal intrinsic basis B0 = {Es, Eφ, N}
of three-dimensional space such that Es, Eφ = uφ are tan-
gent to S0, and N is normal to it [Fig. 2(f)]. From this
basis, we compute the curvatures of S0, κ

0
s = −Es · N,s and

κ
0
φ = −Eφ · N,φ . The intrinsic curvatures κ0

s , κ0
φ are specified

independently from these as they do not enter the definition of
S0 in Eq. (20b). In particular, κ0

s , κ0
φ are in general different

from κ
0
s , κ

0
φ . This expresses the incompatibility of metric

(20a). While Eq. (20b) assigns a geometric meaning to the
intrinsic stretches f 0

s , f 0
φ , these intrinsic curvatures therefore

remain without the direct geometric realisation that would
result from an embedding into three-dimensional Euclidean
space, as does the intrinsic normal displacement ζ 0.

We specify the latter by requiring the intrinsic deforma-
tions to conserve volume. This assumption is, for example,
appropriate for Volvox inversion [Fig. 1(b)]: the cell measure-
ments of Ref. [28] suggest that the cell shape changes driving
inversion preserve volume. For other developmental processes
that include cell division, the assumption of intrinsic volume
conservation would be replaced with a position-dependent
constraint that takes account of this growth. Since ζ 0(s, ζ )
is increasing and can hence be inverted to yield ζ (s, ζ 0),
Eq. (20a) becomes, on changing coordinates from {s, φ, ζ } to
{s, φ, ζ 0}, (

χ0
s

)2
ds2 + (

χ0
φ

)2
dφ2 + (

χ0
ζ 0

)2
(dζ 0)2, (21a)

with scale factors

χ0
s = f 0

s

(
1 − εκ0

s ζ 0
)
, χ0

φ = f 0
φ r

(
1 − εκ0

φζ 0
)
, χ0

ζ 0 = ε.

(21b)

Its volume element is therefore

dV 0 = χ0
s χ0

φχ0
ζ 0 ds dφ dζ 0

= ε f 0
s f 0

φ

(
1 − εκ0

s ζ 0
)(

1 − εκ0
φζ 0

)
r ds dφ dζ 0. (21c)

Intrinsic volume conservation requires dV = dV 0, so
Eqs. (8c) and (21c) combine to yield a differential equation
for ζ 0 as a function of ζ , which we will eventually integrate
in Sec. II B under the scaling assumptions of our shell theory.

At this stage, S , S̃ , and S0 are defined to be corresponding
surfaces within the shell. Indeed, it would it be possible to de-
velop a shell theory for any choice of surfaces that correspond
to each other in this way. We add that there is no obvious
correspondence between the shell theories that result from
different choices of the intrinsic midsurface S0 belonging to
V0 since the latter cannot be embedded into three-dimensional
space.

We now make a particular choice of the surfaces S , S̃ , and
S0 that, as we shall see in the discussion at the end of Sec. II B,
justifies referring to these surfaces as midsurfaces. We do
so by imposing the following condition: the surfaces of the
shell, at ζ = ±h±(s) and ζ̃ = ±h̃±(s) in V and Ṽ respectively,
correspond to ζ 0 = ±h0(s)/2; the calculations in Sec. II B
will show that this choice can be made. We stress that,
like ζ 0, the intrinsic thickness h0(s) lacks a direct geometric
realization.
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We close by noting that ζ 0(s, ζ ) and hence h0(s) can also
be specified without reference to the incompatible metric
(20a), by imposing the condition det F0 = 1. Indeed, with
the intrinsic deformation gradient F0 defined as in Eq. (24)
below, this is easily seen to be equivalent with dV = dV 0.
Conversely, the condition det F0 = 1 can be used to define the
intrinsic volume element dV 0 without reference to Eq. (20a).

4. Calculation of the deformation gradient tensors

The geometric deformation gradient is F̃ = Grad r̃ [17], in
which the gradient with respect to the undeformed configura-
tion is [17]

Grad = 1

χ2
s

∂

∂s
⊗ ∂r

∂s
+ 1

χ2
φ

∂

∂φ
⊗ ∂r

∂φ
+ 1

χ2
ζ

∂

∂ζ
⊗ ∂r

∂ζ
. (22)

Combining Eqs. (7), (8b), and (18), we thus obtain the geometric deformation gradient,

F̃ =

⎛
⎜⎜⎜⎜⎜⎜⎝

f̃s(1 − εκ̃sζ̃ ) + ες̃,s

1 − εκsζ
0 ς̃,ζ

0
f̃φ (1 − εκ̃φζ̃ ) + ες̃ cos ψ̃/r

1 − εκφζ
0

ε(ζ̃,s + f̃sκ̃sς̃ )

1 − εκsζ
0 ζ̃,ζ

⎞
⎟⎟⎟⎟⎟⎟⎠

, (23)

expressed here with respect to the mixed basis B̃ ⊗ B. We now complete specifying the intrinsic configuration V0 by writing
down an analogous expression for the intrinsic deformation gradient with respect to the mixed basis B0 ⊗ B, viz.,

F0 =

⎛
⎜⎜⎜⎜⎜⎜⎝

f 0
s (1 − εκ0

s ζ 0)

1 − εκsζ
0 0

0
f 0
φ (1 − εκ0

φζ 0)

1 − εκφζ
0

εζ 0
,s

1 − εκsζ
0 ζ 0

,ζ

⎞
⎟⎟⎟⎟⎟⎟⎠

. (24)

The elastic deformation gradient is, therefore, with respect to the natural mixed basis B̃ ⊗ B0,

F = F̃(F0)−1 =

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

f̃s(1 − εκ̃sζ̃ ) + ε(ς̃,s + ς̃,ζ 0ζ 0
,s)

f 0
s (1 − εκ0

s ζ 0)
0 ς̃,ζ 0

0
f̃φ (1 − εκ̃φζ̃ ) + ες̃ cos ψ̃/r

f 0
φ (1 − εκ0

φζ 0)
0

ε(ζ̃,s + f̃sκ̃sς̃ − ζ 0
,sζ̃,ζ 0 )

f 0
s (1 − εκ0

s ζ 0)
0 ζ̃,ζ 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

. (25)

B. Thin shell theory for large bending deformations

In this subsection, we derive the effective elastic energy
for the shell by asymptotic expansion of three-dimensional
elasticity. We assume the simplest constitutive law, that the
shell is made of an incompressible neo-Hookean material
[17], so its elastic energy is

E =
∫∫∫

V0
e dV 0, with e = C

2
(I1 − 3), (26)

wherein C > 0 is a material parameter, and I1 is the first in-
variant of the right Cauchy–Green tensor C = F�F [17]. The
integration of the strain energy density e is over the intrinsic
configuration V0 of the shell, with volume element dV 0. As
we have noted above, this can be defined from the condition
det F0 = 1, independently of the incompatible metric (20a).

The force on an area element dS̃ with unit normal m̃ of the
deformed configuration is Tm̃ dS̃ [17,32]. In this expression,
T is the Cauchy stress tensor, which, for this neo–Hookean
material, is related to the deformation gradient by [21]

T = C(FF� − pI), (27)

in which I is the identity and the Lagrange multiplier p
is proportional to pressure and imposes the incompress-
ibility condition det F = 1. To this area element of the
deformed configurations corresponds, in the undeformed
configuration, an area element dS with unit normal m. Nan-

son’s relation [17,32] states that m̃ dS̃ = J̃ F̃
−�

m dS, where
J̃ = det F̃ = det F det F0 = 1. We introduce the tensor

P = TF̃
−� = CQ with Q = F(F0)−� − pF̃

−�
. (28)

In particular, if F0 = I, then P = TF−� is the familiar (first)
Piola–Kirchhoff tensor [17]. By definition, Tm̃ dS̃ = Pm dS,
and hence, similarly to the derivation of the familiar Cauchy
equation of classical elasticity [17,32], the configuration of the
shell minimizing the energy (26) is determined by

Div Q� = 0, (29a)

where the divergence (with respect to the undeformed con-
figuration of the shell) is defined by contracting the first and
last indices of the gradient in Eq. (22). Since B is independent
of ζ by definition, and using the nabla operator to denote the
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gradient on S , this becomes, on separating the components
parallel and perpendicular to the midsurface,

(Qn),ζ
ε

+ ∇ · Q� = 0. (29b)

1. Scaling assumptions

At this point, we break the complete generality of our
description by making scaling assumptions appropriate for a
shell theory of large intrinsic bending deformations.

First, we introduce large intrinsic bending deformations
explicitly by scaling the intrinsic curvatures so as to allow
small radii of curvature in the meridional direction, viz.,

κ0
s = f 0

s f 0
φ

λ0
s

ε
, κ0

φ = f 0
s f 0

φ λ0
φ, (30)

in which the scaled intrinsic curvatures λ0
s , λ

0
φ are assumed to

be O(1) quantities. This scaling regime in which the merid-
ional intrinsic radius of curvature becomes comparable to the
thickness of the cell sheet is, as shown in Fig. 1(b), the one
relevant for Volvox invagination, which we shall analyze in
Sec. III. Appendix A treats the general case in which all
components of the curvature tensor are allowed to be large.

Second, we make the standard scaling assumptions of shell
theory, that the elastic strains are small, i.e., that the stretches
and curvatures in the deformed configuration do not differ
“too much” from the intrinsic stretches and curvatures. In
particular, while we have allowed the radius of curvature 1/κ0

s
to become comparable to the shell thickness in Eqs. (30), we
shall assume the deviations from this to remain small. More
formally, we introduce the shell strains Es, Eφ by writing

f̃s = f 0
s (1 + εEs), f̃φ = f 0

φ (1 + εEφ ), (31)

and the curvature strains Ls, Lφ by letting

κ̃s = f 0
s f 0

φ

(
λ0

s

ε
+ Ls

)
, κ̃φ = f 0

s f 0
φ

(
λ0

φ + Lφ

)
. (32)

Finally, we introduce the scaled variables

Z0 = f 0
s f 0

φ ζ 0, Z = f 0
s f 0

φ ζ̃ , S = f 0
s f 0

φ ς̃ . (33)

While we will come back to discussing the factors f 0
s f 0

φ

that arise in Eqs. (30), (32), and (33), we note, for now and
from Eq. (20b), the following: the intrinsic midsurface S0

has surface element dS0 = f 0
s f 0

φ r dr dφ = f 0
s f 0

φ dS, with dS
the surface element of the undeformed midsurface S . Hence
these rescalings by f 0

s f 0
φ absorb the intrinsic stretching of the

midsurface. This will turn out to simplify expressions that
arise in subsequent calculations.

2. Boundary and incompressibility conditions

We solve the Cauchy equation (29b) subject to the in-
compressibility condition det F = 1 and force-free boundary
conditions. These boundary conditions, that there be no exter-
nal forces on the surfaces of the shell, are relevant for many
problems in developmental biology, where deformations are,
as discussed in the Introduction, driven by changes of the
intrinsic geometry only; including external forces does not
pose any additional difficulty though.

These force-free boundary conditions read T±ñ± = 0 [17],
where T± are the Cauchy tensors evaluated on the surfaces

ζ̃ = ±h̃± of Ṽ . By the above, these are equivalent with
P±n± = 0, where, from Eq. (28), P± = CQ± are evaluated
on the surfaces ζ = ±h± of V , the normal vectors n± of which
are given by Eqs. (10). The latter yields the expansion

n± = n ∓ εh±
,ses + O(ε2). (34)

The incompressibility condition is det F = 1. Since the
bases B̃ and B0 are orthonormal, there exist rotations, rep-
resented by proper orthogonal matrices R̃ and R0, that map
the standard Cartesian basis X onto B̃ and B0, respectively.
Hence, if F denotes the matrix in Eq. (25) that represents F
with respect to the mixed basis B̃ ⊗ B0, then F is represented
by R̃�FR0 with respect to X ⊗ X . Since det R̃ = det R0 = 1,
det F = det (R̃�FR0) = det F. The incompressibility condi-
tion can therefore be evaluated using the matrix in Eq. (25),
but it is important to recognize that incompressibility is a
tensorial condition. For the general, nonaxisymmetric defor-
mations discussed in Appendix A, we shall indeed have to
distinguish more carefully between tensors and the matrices
representing them with respect to mixed nonorthogonal bases,
which is why we have already introduced different notations,
based on Ogden’s [32], for matrices (sans serif font) and ten-
sors (bold sans serif font) that could be used interchangeably
here.

3. Intrinsic volume conservation

Before expanding the boundary and incompressibility con-
ditions asymptotically, we determine the dependence of ζ 0

and hence Z0 on ζ that results from the condition dV = dV 0 of
intrinsic volume conservation. On recalling that κ0

s = O(ε−1),
the expressions for dV in Eq. (8c) and dV 0 in Eq. (21c) yield,
at leading order, a differential equation for Z0(ζ ),

(
1 − λ0

s Z0)Z0
,ζ = 1 �⇒ Z0 = 1

λ0
s

(
1 −

√
1 − 2λ0

s ζ
)
, (35)

where we have imposed Z0 = 0 at ζ = 0. Let H0 = h0 f 0
s f 0

φ .
Since ζ 0 = ±h0/2 ⇐⇒ Z0 = ±H0/2 at ζ = ±h± by defini-
tion, Eq. (35) implies

h± = H0

2

(
1 ∓ λ0

s

4
H0

)
�⇒ h = h+ + h− = H0, (36)

wherein h is again the undeformed thickness of the cell sheet
[Fig. 2(c)]. We note that Eq. (36) is a leading-order result only,
since we have ignored O(ε) corrections in Eq. (35).

4. Expansion of the boundary and incompressibility conditions

To expand the incompressibility and boundary conditions
in the small parameter ε, we posit regular expansions

Z = Z(0) + εZ(1) + O(ε2), S = S(0) + O(ε), (37)

for the scaled transverse and parallel displacements. Through-
out this paper, we shall use subscripts in parentheses in this
way to denote the different terms in asymptotic expansions in
ε. We further expand

Q = Q(0) + εQ(1) + O(ε2), p = p(0) + O(ε). (38)
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(a) Expansion at order O(1). At leading order, Eq. (29b) yields (Q(0)n),ζ = 0, so Q(0)n = Q(s) is independent of ζ . It follows
that 0 = Q±n± = Q±

(0)n + O(ε) = ±Q + O(ε) using Eq. (34). Thus 0 ≡ Q = Q(0)n = (qs
(0), 0, qn

(0) ). Expanding definition (28)
using Eqs. (23)–(25), this yields [33]

0 = qs
(0) = f 0

s f 0
φ

(
1 − λ0

s Z0
)λ0

s S(0)[p(0) − (S(0),Z0 )2] + (
1 − λ0

s Z(0)
)
S(0),Z0 Z(0),Z0(

1 − λ0
s Z(0)

)
Z(0),Z0 − λ0

s S(0)S(0),Z0

, (39a)

0 = qn
(0) = f 0

s f 0
φ

(
1 − λ0

s Z0
)(

1 − λ0
s Z(0)

)
[(Z(0),Z0 )2 − p(0)] − λ0

s S(0)S(0),Z0 Z(0),Z0(
1 − λ0

s Z(0)
)
Z(0),Z0 − λ0

s S(0)S(0),Z0

, (39b)

where we have used (ζ 0
,ζ )

−1 = f 0
s f 0

φ (1 − λ0
s Z0) + O(ε), which follows from Eq. (35) on recalling the rescalings (33). Moreover,

on expanding the incompressibility condition using Eq. (25), we find

1 = det F = 1 − 1 − λ0
s Z0 − (

1 − λ0
s Z(0)

)
Z(0),Z0 + λ0

s S(0)S(0),Z0

1 − λ0
s Z0

+ O(ε). (40)

Equations (39) and (40) define a system of three simultaneous linear algebraic equations for p(0), Z(0),Z0 , and S(0),Z0 , with solution

p(0) =
(
1 − λ0

s Z0
)2

(
1 − λ0

s Z(0)
)2 + (

λ0
s S(0)

)2 , (41a)

Z(0),Z0 =
(
1 − λ0

s Z0
)(

1 − λ0
s Z(0)

)
(
1 − λ0

s Z(0)
)2 + (

λ0
s S(0)

)2 , (41b)

S(0),Z0 = − λ0
s S(0)

(
1 − λ0

s Z0
)

(
1 − λ0

s Z(0)
)2 + (

λ0
s S(0)

)2 . (41c)

Equation (40) or Eqs. (41b) and (41c) imply

− 2Z(0),Z0

(
1 − λ0

s Z(0)
) + 2λ0

s S(0)S(0),Z0 = −2
(
1 − λ0

s Z0
)
. (42a)

Integrating and using the fact that Z(0) = S(0) = 0 at Z0 = 0 by definition of the midsurfaces, we obtain(
1 − λ0

s Z(0)
)2 + (

λ0
s S(0)

)2 = (
1 − λ0

s Z0
)2

. (42b)

Equation (41a) now becomes p(0) = 1. Moreover, on substituting Eq. (42b) into Eq. (41b),

∂Z(0)

∂Z0
= 1 − λ0

s Z(0)

1 − λ0
s Z0

�⇒ 1 − λ0
s Z(0)

1 − λ0
s Z0

= const., (43)

which, using Z(0) = 0 at Z0 = 0 again, yields Z(0) ≡ Z0. Hence S(0) ≡ 0 from Eq. (42b). The last equality is the Kirchhoff
“hypothesis” [15]: normals to the intrinsic midsurface remain, at lowest order, normal to the deformed midsurface.

(b) Expansion at order O(ε). We now expand the incompressibility condition further, finding

0 = det F − 1 = ε

(
Es + Eφ − LφZ0 + ∂Z(1)

∂Z0
− LsZ0 + λ0

s Z(1)

1 − λ0
s Z0

)
+ O(ε2). (44)

On solving the resulting differential equation for Z(1) by imposing Z(1) = 0 at Z0 = 0, we obtain

Z(1) = −Z0
{
6(Es + Eφ ) − 3Z0

[
Ls + Lφ + λ0

s (Es + Eφ )
] + 2λ0

s Lφ (Z0)2
}

6
(
1 − λ0

s Z0
) . (45)

(c) Expansion at order O(ε2). It will turn out not to be necessary to expand the deformation gradient explicitly beyond order
O(ε). Indeed, it will suffice to consider a formal expansion,

F =
⎛
⎝1 + εa(1) + ε2a(2) + O(ε3) 0 εv(1) + O(ε2)

0 1 + εb(1) + ε2b(2) + O(ε3) 0
εw(1) + O(ε2) 0 1 + εc(1) + ε2c(2) + O(ε3)

⎞
⎠, (46)

with the leading-order terms found from Eq. (25). This also yields, using Eq. (45),

a(1) = 6Es − 6
[
Ls + λ0

s (Es − Eφ )
]
Z0 + 3λ0

s

[
Ls − Lφ + λ0

s (Es − Eφ )
]
(Z0)2 + 2

(
λ0

s

)2
Lφ (Z0)3

6
(
1 − λ0

s Z0
)2 , b(1) = Eφ − Z0Lφ. (47)
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Expressions for a(2), b(2), c(1), c(2), v(1),w(1) could similarly be obtained in terms of the expansions (37), but, as announced, will
turn out to be of no consequence. Using Eq. (46), the incompressibility condition becomes

1 = det F = 1 + ε(a(1) + b(1) + c(1) ) + ε2(a(2) + b(2) + c(2) + a(1)b(1) + b(1)c(1) + c(1)a(1) − v(1)w(1) ) + O(ε3). (48)

Next, using Eq. (24), we introduce an analogous formal expansion for the intrinsic deformation gradient, viz.,

F0 =
⎛
⎝ a0

(0) + O(ε) 0 0
0 b0

(0) + O(ε) 0
εw0

(1) + O(ε2) 0 c0
(0) + O(ε)

⎞
⎠, (49)

where c0
(0) = [ f 0

s f 0
φ (1 − λ0

s Z0)]
−1

using Eq. (35), and the values of a0
(0), b0

(0),w
0
(1) are of no consequence. Hence, using Eq. (46),

F̃ = FF0 =
⎛
⎝ a0

(0) + O(ε) 0 εc0
(0)v(1) + O(ε2)

0 b0
(0) + O(ε) 0

ε
(
w0

(1) + a0
(0)w(1)

) + O(ε2) 0 c0
(0) + O(ε).

⎞
⎠, (50)

and thus, since p = 1 + O(ε),

Q =
⎛
⎝O(ε) 0 ε(v(1) + w(1) )/c0

(0) + O(ε2)
0 O(ε) 0

O(ε) 0 O(ε).

⎞
⎠ �⇒ Q(0) = O, Q(1)n =

⎛
⎝(v(1) + w(1) )/c0

(0)
0

O(1)

⎞
⎠. (51)

In particular, Eq. (29b) at order O(1) is just (Q(1)n),ζ = 0.
Moreover 0 = Q±n± = εQ±

(1)n + O(ε2), since Q(0) = O and
using Eq. (34). Similarly to above, this implies Q(1)n ≡ 0.
From this and from Eq. (48), we infer

w(1) = −v(1), c(1) = −(a(1) + b(1) ), (52a)

c(2) = a2
(1) + a(1)b(1) + b2

(1) − a(2) − b(2) + v(1)w(1). (52b)

5. Asymptotic expansion of the constitutive relations

On computing the expansion of C = F�F from Eq. (46)
and hence that of I1 = tr C, and simplifying using Eqs. (52),
we obtain

I1 = 3 + ε[2(a(1) + b(1) + c(1) )] + ε2
[
a2

(1) + b2
(1) + c2

(1) + v2
(1) + w2

(1) + 2(a(2) + b(2) + c(2) )
] + O(ε3)

= 3 + ε2
[
4
(
a2

(1) + a(1)b(1) + b2
(1)

)] + O(ε3). (53a)

Hence, from Eqs. (47) and on introducing x = λ0
s Z0,

I1 = 3 + ε2

(1 − x)4

{
[1 + (1 − x)2]2E2

s + 2[1 + (1 − x)2]EsEφ + (4 − 12x + 18x2 − 12x3 + 3x4)E2
φ

− 1

λ0
s

[
2x(4 − 6x + 4x2 − x3)EsLs − 2x(2 − x)EφLs − 2x

3
(6 − 12x + 11x2 − 5x3 + x4)EsLφ

− 2x

3
(12 − 39x + 55x2 − 36x3 + 9x4)EφLφ

]

+ 1(
λ0

s

)2

[
x2(2 − x)2L2

s + 2x2

3
(6 − 9x + 5x2 − x3)LsLφ + x2

9
(36 − 126x + 177x2 − 114x3 + 28x4)L2

φ

]}

+ O(ε3). (53b)

This determines the leading-order term in the asymptotic ex-
pansion of the energy density in Eqs. (26). On defining, from
Eq. (46), the (symmetric) effective two-dimensional deforma-
tion gradient and associated two-dimensional strain,

F̂ =
(

1 + εa(1) 0
0 1 + εb(1)

)
+ O(ε2), Ê = F̂

�
F̂ − I
2ε

,

(54)

wherein I is again the identity, we rewrite Eq. (53a) as

I1 − 3 = 2ε2[(tr Ê)2 + tr Ê2] + O(ε3). (55)

This shows how, at leading order, the energy density depends
only on the two invariants of the effective two-dimensional
strain. In the asymptotic limit of a thin shell, the constitutive
relations have thus become effectively two-dimensional.
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6. Derivation of the thin shell theory

We are now set up to average out the transverse coordi-
nate and thus obtain the thin shell theory. We compute, from
Eq. (21c), the leading-order expansion for the volume element
in the intrinsic configuration:

dV 0 = ε
(
1 − λ0

s Z0
)

r ds dφ dZ0 + O(ε2)

= 1 − x

λ0
s

ε r ds dφ dx + O(ε2). (56)

Moreover, we introduce η = λ0
s h/2, so that the shell surfaces

ζ 0 = ±h0/2 correspond to x = ±η.
On substituting Eqs. (53b) and (56) into Eqs. (26), integrat-

ing with respect to x, and using axisymmetry, we then obtain

E =
∫∫

S
ê r ds dφ = 2π

∫
C

ê r ds, (57a)

with the first integration over the undeformed axisymmetric
midsurface S and the second over the curve C generating S .
The effective two-dimensional energy density ê in Eq. (57a) is

ê = ε

λ0
s

∫ η

−η

e(x)(1 − x) dx = C

2
ε3

{
h
[
αssE

2
s + (αsφ + αφs)EsEφ + αφφE2

φ

] + 2h2[βssEsLs + βsφEsLφ + βφsEφLs + βφφEφLφ]

+ h3
[
γssL

2
s + (γsφ + γφs)LsLφ + γφφL2

φ

]} + O(ε4), (57b)

wherein

αss = η4 − 2η2 + 2

(1 − η2)2 + 2 tanh−1 η

η
, (58a)

αsφ = αφs = 1

(1 − η2)2 + tanh−1 η

η
, (58b)

αφφ = 3η4 − 6η2 + 4

(1 − η2)2 , (58c)

βss = − η(2 − η2)

2(1 − η2)2 , (58d)

βsφ = η6 + 4η4 − 11η2 + 3

18η(1 − η2)2 − tanh−1 η

6η2
, (58e)

βφs = − 1

2η(1 − η2)2 + tanh−1 η

2η2
, (58f)

βφφ = 3η5 − 5η3 + η

6(1 − η2)2 , (58g)

γss = η4 − 2η2 + 2

4η2(1 − η2)2 − tanh−1 η

2η3
, (58h)

γsφ = γφs = η6 − 2η4 + η2 + 3

36η2(1 − η2)2 − tanh−1 η

12η3
, (58i)

γφφ = 10η4 − 21η2 + 12

36(1 − η2)2 (58j)

are functions of the large bending parameter

η = λ0
s

2
h = κ0

s

2 f 0
s f 0

φ

(εh) = κ0
s

2
(εh0) (59)

only. Moreover, from Eqs. (31) and (32), the shell strains in
Eq. (57b) are

εEs = f̃s − f 0
s

f 0
s

, εEφ = f̃φ − f 0
φ

f 0
φ

, (60)

while the curvature strains are

Ls = κ̃s − κ0
s

f 0
s f 0

φ

= Ks − 2η

h
Es + O(ε), (61a)

Lφ = κ̃φ − κ0
φ

f 0
s f 0

φ

= Kφ + O(ε), (61b)

where we have defined

Ks = f̃sκ̃s − f 0
s κ0

s(
f 0
s

)2
f 0
φ

, Kφ = f̃φκ̃φ − f 0
φ κ0

φ

f 0
s

(
f 0
φ

)2 . (62)

Shell theories are expressed more naturally in terms of
the alternative curvature strains Ks, Kφ . Indeed, Ks, Kφ

vanish for pure stretching deformations, whereas Ls, Lφ

do not: Consider a shell, the undeformed (and intrinsic)
configuration of which is a sphere of radius R, and
which deforms into a sphere of radius R′ = f R, for
example because of a pressure difference between the
inside and outside. For this deformation, f 0

s = f 0
φ = 1,

κ0
s = κ0

φ = 1/R, while f̃s = f̃φ = f , κ̃s = κ̃φ = 1/ f R, and
so Ls = Lφ = (1 − f )/ f 3R �= 0 for f �= 1, but Ks = Kφ = 0.
Reference [15] has also discussed this point, noting that Ls, Lφ

and Ks, Kφ can be used interchangeably in classical shell
theories. However, Eq. (61a) shows that, in the large bending
limit considered here, Ls − Ks = O(1). Even at leading
order, the stretching deformations associated with changes in
curvature cannot therefore be neglected in this limit. In terms
of the alternative curvature strains Ks, Kφ , Eq. (57b) becomes

ê = C

2
ε3

{
h
[
ᾱssE

2
s + (ᾱsφ + ᾱφs)EsEφ + αφφE2

φ

]
+ 2h2[β̄ssEsKs + β̄sφEsKφ + βφsEφKs + βφφEφKφ]

+ h3[γssK
2
s + (γsφ + γφs)KsKφ + γφφK2

φ

]} + O(ε4),
(63)
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where αφφ, βφs, βφφ, γss, γsφ = γφs, γφφ are still given by
Eqs. (58), while

ᾱss = αss − 4ηβss + 4η2γss = 4

(1 − η2)2 , (64a)

ᾱsφ = ᾱφs = αsφ − 2ηβφs = 2

(1 − η2)2 , (64b)

β̄ss = βss − 2ηγss = − 1

η(1 − η2)2 + tanh−1 η

η2
, (64c)

β̄sφ = βsφ − 2ηγsφ = − η(2 − η2)

3(1 − η2)2 . (64d)

This completes the derivation of the elastic energy (57a) of
a thin shell undergoing large axisymmetric bending defor-
mations. In Appendix B, we derive the associated governing
equations, using the expression (63) of the energy density in
terms of the alternative curvature strains defined in Eqs. (62).

7. Discussion

Several features of the shell theory that we have obtained
here are worth discussing in some detail.

(a) Stretching, coupling, and bending energies. The terms
that appear in the elastic energy (63) separate into stretching,
coupling, and bending terms, viz.,

ê = êstretch + êcouple + êbend + O(ε4), (65)

with

êstretch = Ch

2
ε3

[
ᾱssE

2
s + (ᾱsφ + ᾱφs)EsEφ + αφφE2

φ

]
, (66a)

êcouple = Ch2ε3[β̄ssEsKs + β̄sφEsKφ + βφsEφKs + βφφEφKφ],

(66b)

êbend = Ch3

2
ε3

[
γssK

2
s + (γsφ + γφs)KsKφ + γφφK2

φ

]
. (66c)

As (ᾱsφ + ᾱφs)2 − 4ᾱssᾱφφ= − 48(1 − η2)−2
< 0 for |η|<1,

the stretching energy êstretch is positive semidefinite. Numeri-
cally, we also find that (γsφ + γφs)2 − 4γssγφφ < 0 for |η|<1,
and hence the bending energy êbend is positive semidefinite,
too. However, the coupling energy êcouple can clearly be of
either sign, though ê is of course positive semidefinite.

(b) Constriction limit: Divergence. All of the coefficient
functions in Eqs. (58) and (64) diverge as η → ±1. More
precisely, the coefficients diverge like (1 − |η|)−2, and so
Eq. (63) loses asymptoticity when 1 − |η| = O(

√
ε), and

hence the shell theory is not formally valid in this limit. This
is mirrored by a similar breakdown of asymptoticity at other
places in the analysis: for example, Eqs. (47) show that the
expansion of the deformation gradient in Eq. (46) also breaks
down when 1 − |η| = O(

√
ε). However, this divergence, ab-

sent from theories not valid for large bending deformations,
is not surprising in the first place. Indeed, the limit η → ±1
corresponds to constricted cells, i.e., wedge-shaped, triangular
cells [Fig. 1(b), inset] for which the intrinsic meridional radius
of curvature is half the intrinsic cell sheet thickness: one of the
surfaces of the shell has contracted to a point in the intrinsic
configuration, so is geometrically singular. As the intrinsic
configuration approaches this constricted limit somewhere,

deviations from the intrinsic configuration become more and
more expensive energetically there compared to other posi-
tions in the shell, unless the divergence of ê as η → ±1 is
suppressed. This happens if êcouple ≈ −(êstretch + êbend) < 0 or
the divergence of each of êstretch, êcouple, êbend is suppressed,
which is possible for special values of Es, Eφ, Ks, Kφ , as dis-
cussed in more detail below.

(c) Geometric anisotropy. Plots of the coefficient func-
tions in Eqs. (58) and (64), arbitrarily scaled with ᾱss to
absorb their divergence as η → ±1, are shown in Fig. 3. These
illustrate how the relative importance of different deforma-
tion modes depends on the amount of intrinsic bending. In
other words, large bending deformations break the material
isotropy, so that different directions of stretching have differ-
ent effective stretching moduli; similarly, different effective
bending moduli are associated with different directions of
bending. This anisotropy is therefore geometric. It is not per-
haps surprising since it mirrors the curvature anisotropy of the
intrinsic configuration but, as discussed below, this effect is

FIG. 3. Effective two-dimensional energy density. Plots of the
coefficients in Eq. (63), defined in Eqs. (58) and (64), against
η. All coefficients are arbitrarily scaled with ᾱss to absorb their
divergence in the constriction limit η → ±1. (a) Plot of the
stretching coefficients ᾱss, ᾱsφ, ᾱφs, αφφ . Inset: Unscaled plot of
ᾱss against η, diverging as η → ±1. (b) Plot of the mixed co-
efficients β̄ss, β̄sφ, βφs, βφφ . (c) Plot of the bending coefficients
γss, γsφ, γφs, γφφ .
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absent from the classical theories not valid for large bending
deformations.

(d) Midsurfaces. The leading-order solution above shows
that ζ̃ = ζ 0 + O(ε). This implies that h̃± = h0/2 + O(ε),
and hence (h̃+ − h̃−)/2 = O(ε). The middle surface
ζ̃ = (h̃+ − h̃−)/2 of the deformed configuration Ṽ therefore
coincides with ζ̃ = 0, i.e., with the midsurface S̃ at leading
order, which is the order to which the shell theory is valid.
However, (h+ − h−)/2 = −λ0

s h2/8 + O(ε) = O(1), from
Eq. (36), and so S , defined by ζ = 0, is not the middle surface
ζ = (h+ − h−)/2 of the undeformed configuration V . We
could have derived a shell theory with similar properties to the
one obtained here but in which the midsurfaces correspond
to the middle surface of V but not to that of Ṽ . Since the
middle surface of Ṽ is the one that is ultimately observed, our
choice is perhaps the more natural one, and we are justified in
referring to S, S̃,S0 as midsurfaces.

C. Limit of small bending deformations

We conclude our calculations by taking the limit η → 0, in
which the bending deformations become small compared to
the thickness of the shell. The energy density in Eq. (63) then
limits to the form familiar from classical shell theories [15],

ê0 = 2Cε3

[
h
(
E2

s + EsEφ + E2
φ

) + h3

12

(
K2

s + KsKφ + K2
φ

)]
,

(67)

up to corrections of order O(ε4). This is the energy density of
a thin Hookean shell [15,25,26] with Poisson’s ratio ν = 1/2,
implying incompressibility, and elastic modulus E = 3C. In
particular, our analysis also provides a formal derivation of the
morphoelastic version of this classical shell theory. Again, the
energy density separates into stretching and bending terms,

ê0 = ê0,stretch + ê0,bend, (68)

with

ê0,stretch = 1

2
(4Ch)ε3

[
E2

s + EsEφ + E2
φ

]
, (69a)

ê0,stretch = 1

2

(
Ch3

3

)
ε3

[
K2

s + KsKφ + K2
φ

]
, (69b)

but there is no term that couples the strains and curvature
strains. Such coupling terms do arise in the expansion cor-
responding to Eq. (53b), but are odd functions of Z0, so
disappear on integration over [−H0, H0] and hence from
Eq. (67).

In this classical theory, the same stretching modulus
E (εh)/(1 − ν2) = 4C(εh) and the same bending modulus
E (εh)3/[12(1 − ν2)] = C(εh)3/3 are associated with all di-
rections of stretching or bending; to pick up on a point made
earlier, it is this isotropy resulting from the constitutively as-
sumed isotropy of the material that is broken by the geometry
of large bending deformations.

Of course, Eq. (67) could be derived directly by imposing
different scalings, of small intrinsic bending, replacing those
for large bending deformations in Eqs. (30); these scalings
would considerably simplify the solutions of Eqs. (39), (40),
and (44). Indeed, the structure of these calculations would be

broadly similar to the earlier asymptotic derivation of the clas-
sical shell theories in Ref. [16]. We emphasize that, in either
derivation, the terms at order O(ε2) in the expansion (46) of
the deformation gradient need not be computed explicitly.

1. Stretching and bending energies for small and large bending

We compare the stretching and bending energies in the
small and large bending limits by observing that

êstretch = ê0,stretch + η2(2 − η2)

(1 − η2)2 (2Es + Eφ )2, (70a)

êbend = ê0,bend + η2(3 − 2η2)

36(1 − η2)2 (3Ks + Kφ )(k(η)Ks + Kφ ),

(70b)

where we have used Eqs. (58) and (64) and defined

k(η) = −η(4η6 − 11η4 + 10η2 − 6) + 6(1 − η2)2 tanh−1 η

η5(3 − 2η2)
.

(71)

This shows that the classical theory underestimates
the stretching energy of large bending deformations:
êstretch � ê0,stretch from Eq. (70a). Moreover, êstretch diverges as
|η| → 1 unless the deformations are such that Eφ = −2Es.

The classical theory may, however, overestimate the bend-
ing energy of large bending deformations. Indeed, numeri-
cally, we find 13/5 = k(0) < k(η) < k(±1) = 3 for |η| < 1,
and hence, from Eq. (70b), êbend < ê0,bend if and only if
KsKφ < 0 and k(η)|Ks| < |Kφ| < 3|Ks|. Also from Eq. (70b),
êbend diverges as |η| → 1 unless Kφ = −3Ks.

In particular, êstretch and êbend are both bounded as
|η| → 1 if and only if Eφ = −2Es and Kφ = −3Ks. In this
case, Eq. (66b) shows that êcouple is also bounded as |η|→1.
The conditions Eφ = −2Es, Kφ = −3Ks thus define the spe-
cial deformations that allow the stretching, bending, and
coupling energies to remain bounded as |η| → 1 that we men-
tioned earlier.

2. Other elastic shell theories

The energy density in Eq. (67) has the same structure
as the elastic energy densities used in the models refer-
enced in the Introduction, but the morphoelastic definitions
of the shell and curvature strains in Eqs. (60) and (62) differ
from those in these previous models: In models not based
on morphoelasticity and its multiplicative decomposition of
the deformation gradient [7,8,11–13], the shell and curvature
strains are simply differences of stretches or curvatures, miss-
ing the scaling factors of f 0

s , f 0
φ that appear in Eqs. (60) and

(62). We also note that the expressions for the curvature strains
in Eqs. (62) differ by a factor of g0 = f 0

s f 0
φ , from those in

Refs. [9,10], which, as discussed in the Introduction, used a
geometric approach to derive a morphoelastic shell theory.
Earlier, we noted that this factor corresponds to the stretching
of the intrinsic midsurface. Moreover, since h̃±=h0/2+O(ε)
as noted above, the deformed cell sheet has thickness
h̃ = h̃+ + h̃− = h0 + O(ε). Equation (36) therefore yields
h/h̃ = h/h0 + O(ε) = g0 + O(ε). The fact that the curva-
ture strains in Eqs. (62) decrease as g0 increases therefore
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expresses the fact that the shell becomes easier to bend as
it thins as a result of this stretching of the midsurface, with
êbend, ê0,bend ∝ g−2

0 . This geometric role of the factor g0 has
been noticed previously in the context of uniform growth of
an elastic shell [34].

The geometric approach in Refs. [9,10] also leads to addi-
tional terms in the energy density. The present analysis proves
that these terms are not leading-order terms in the thin shell
limit. However, there is no reason to expect this geometric
approach to yield all terms at next order in the asymptotics. A
complete expansion could in principle be obtained by con-
tinuing the asymptotic analysis presented here. Taking the
analysis to higher orders in this way would in particular an-
swer the question: at what order does the Kirchhoff hypothesis
break down, i.e., at what order do the normals to the deformed
midsurface diverge from those to the undeformed midsurface?
This would permit asymptotic justification of the so-called
shear deformation theories [35] in which the normals to the
undeformed midsurface need not remain normals in the de-
formed configuration, but we do not pursue this further here.

III. INVAGINATION IN VOLVOX

A. Biological background

The green algal genus Volvox [36] has become a model
for the study of the evolution of multicellularity [37,38], for
biological fluid dynamics [39], and for problems in devel-
opmental biology [40,41]. Adult Volvox colonies [Fig. 4(a)]
are spheroidal, consisting of several thousand biflagellated
somatic cells that enclose a small number of germ cells [36].
Each germ cell undergoes several rounds of cell division to
form a spherical embryonic cell sheet [Figs. 4(b) and 4(e)], at
which stage those cell poles whence will emanate the flagella
point into the sphere [36]. To acquire motility, the embryo
turns itself inside out in a process called inversion [27,42].

In some species of Volvox [27,28], inversion starts with
the formation of a circular invagination [Figs. 4(c) and 4(f)],
reminiscent of the cell sheet folds associated with processes
such as gastrulation or neurulation in higher organisms. At the
cell level, this invagination results from two types of cell shape
changes [7,28]: (1) cells near the equator become wedge-
shaped [Fig. 4(d)], while the cytoplasmic bridges (cell-cell
connections resulting from incomplete division) rearrange to
connect the cells at their thin wedge ends, and (2) cells in
the posterior hemisphere narrow in the meridional direction.
These cell shape changes arise simultaneously, with (1) splay-
ing the cells and thereby bending the cell sheet [Fig. 4(d)]
and (2) contracting the posterior hemisphere to facilitate the
subsequent inversion of the posterior hemisphere inside the as
yet uninverted anterior hemisphere.

At later stages of inversion, other cell shape changes arise
in different parts of the cell sheet [9,28] to ease the peeling of
the anterior hemisphere over the inverted posterior and thus
complete inversion. In particular, the anterior hemisphere of
the cell sheet thins as cells there stretch anisotropically [9,28].

B. Results

Following our earlier work [7–10], we model Volvox in-
version by considering the deformations of an incompressible

FIG. 4. Invagination in Volvox. (a) Volvox colony, with somatic
cells and one embryo labeled. (b) Light-sheet microscopy image of a
spherical Volvox embryo before inversion. (c) Corresponding image
at an early stage of inversion, when a circular invagination (I) has
formed. (d) Splaying of cells and bending of the cell sheet result
from the formation of wedge-shaped cells and the rearrangement of
the cytoplasmic bridges (CBs); red lines indicate position of CBs.
(e) Midsagittal cross section of a Volvox embryo before inversion.
(f) Corresponding cross section during invagination, with the regions
where wedge-shaped cells (W) and contracted spindle-shaped cells
(C) have formed labeled. (g) Plot of the intrinsic curvature κ0

s against
arclength s, defined in the inset. The plot defines the model param-
eters κp, κb, κa, s0, and w. Regions of cell shape changes (W, C)
as in (f) are also indicated. (h) Corresponding plot of the intrinsic
stretches f 0

s , f 0
φ , defining additional model parameters fp, fa. Panels

(a)–(f) include microscopy images by Stephanie Höhn and have been
redrawn from Ref. [8]. Scale bars: (a) 50 μm; (e), (f) 20 μm.

elastic spherical shell under quasistatic axisymmetric vari-
ations of its intrinsic stretches and curvatures representing
the cell shape changes driving inversion. The slow speed of
inversion—it takes about an hour for a Volvox embryo to
turn itself inside out [27,28]—justifies this quasistatic approx-
imation. In more detail, Figs. 4(g) and 4(h) show functional
forms of the intrinsic stretches and curvatures encoding the
cell shape changes driving invagination and define the model
parameters κp, κb, κa, fp, fa, s0, and w that encode the intrinsic
curvatures and intrinsic stretches of different regions of the
cell sheet and the extent of these regions. In numerical calcu-
lations, we regularize the step discontinuities in the definitions
of the intrinsic stretches and curvatures in Figs. 4(g) and 4(h),
we nondimensionalize all lengths with the preinversion radius
R of the embryo, and we take εh = 0.15, appropriate for
Volvox globator [7,9].

We solve the governing equations derived in Appendix B
numerically using the boundary value problem solver bvp4c
of MATLAB (The MathWorks, Inc.) and the continuation soft-
ware AUTO [43].
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FIG. 5. Comparison of the elastic model for large bending deformations and the classical model. Solid lines: Large bending model with
energy density given by Eq. (63); dashed lines: classical model with energy density given by Eq. (67). (a) Early invagination stage: the two
models yield very similar shapes. Thick lines: Midline of the cell sheet. Thin lines and shaded area: Transverse extent of the shell, illustrating
the thickness variations resulting from the cell shape changes. Dotted line: midline of the undeformed spherical shell. Parameter values:
κp = κa = 1, κb = −2, fp = 0.8, fa = 1, s0 = 1.5, w = 0.2. (b) Corresponding plot of the meridional shell strain Es. The grey shaded area
marks the bend region s0 − w < s < s0. (c) Corresponding plot of the meridional curvature strain Ks. (d) Later invagination stage: As the cells
in the bend region approach the constriction limit, the shapes resulting from the two models differ increasingly. Parameter values are as in
(a), except κb = −8.5, w = 0.5. (e) Corresponding plot of the meridional shell strain Es. (f) Corresponding plot of the meridional curvature
strain Ks. (g) Bifurcation diagram, for different values of w, in (k, d ) space, where k = −κb and d is the posterior displacement defined in the
axis inset. Different lines correspond to parameter values w = 0.3, 0.5, 0.6, 0.7, 0.8, 0.9. Other parameter values are as in (a). The vertical line
|η| = 1 corresponding to the constriction limit is also shown. For w > w∗ (in the large bending model) or w > w∗

0 (in the classical model),
discontinuous jumps in d , denoted by vertical arrows, arise as k is increased. The thick lines correspond to w = 0.6 and show that w∗ > w∗

0 .

During the invagination stage, the radius of curvature in
the bend region of wedge-shaped cells [Fig. 4(f)] becomes
comparable to the thickness of the cell sheet: This is the
scaling limit of large bending deformations studied in Sec. II.
We therefore compare the resulting elastic model, with en-
ergy density (63), to the classical theory, in which the energy
density is given by Eq. (67). For weakly invaginated stages
of Volvox inversion (corresponding to small values of η in
the large bending theory), the two models yield, unsurpris-
ingly, very similar shapes [Fig. 5(a)], mirrored by very similar
profiles of meridional shell strain [Fig. 5(b)] and meridional
curvature strain [Fig. 5(c)]. The contraction of the poste-
rior hemisphere leads to thickening of the cell sheet there
[Fig. 5(a)]. However, the more the intrinsic configuration
of the cell sheet approaches the limit of cell constriction,
the more the shapes resulting from the two models dif-
fer [Fig. 5(d)]. Correspondingly, the meridional shell strain
[Fig. 5(e)] and meridional curvature strain [Fig. 5(f)] in the
two models differ increasingly. It may seem counterintuitive
that these strains are larger in the bend region of nearly con-
stricted cells for the large-bending model than for the classical
model [Figs. 5(e) and 5(f)], since the stretching and bending
cost of these larger strains is much higher in the large-bending
model than in the classical model. Indeed, on computing the
stretching and bending energies (not shown) of the shapes
in Fig. 5(d), we find them to be much larger in the large-
bending model than in the classical model. However, these
large energies are balanced by a correspondingly large and
negative coupling energy: for example, Es < 0 and Ks > 0 in
the bend region [Figs. 5(e) and 5(f)], while η < 0 �⇒ β̄ss > 0
[Fig. 3(b)], and so β̄ssEsKs < 0. This negative coupling energy

therefore explains the large strains in the bend region that arise
in the large-bending model.

The largest curvature strains [Fig. 5(f)] arise, however, in
the anterior fold, i.e., in the second bend region that arises
as a passive mechanical consequence of the wedge-shaped
cells in the bend region just next to it [7,9]. As a result of
the contraction of the posterior hemisphere, the cell sheet is
thinner in the anterior [Fig. 5(d)], and hence is easier to bend
there, as discussed earlier. In fact, around the invagination
stage in Fig. 5(d), cells in the anterior fold begin to stretch
in the meridional direction [9,28], leading to further thinning
and increased bendability of the cell sheet there.

The examples in Figs. 5(a) and 5(d) indicate that the results
of the two models differ at a quantitative, if not at a quali-
tative level. We extend this observation by plotting, for both
models, k = −κb against the displacement d of the posterior
pole [Fig. 5(g), inset] for different values of the width w of
the bend region in Fig. 5(g). Again, the solution curves show
similar behavior in the two models, but differ at a quantitative
level. They confirm what one observes in Fig. 5(d), that the
cell sheet is more invaginated, at the same parameter values
and for sufficiently large k, in the classical model than in the
large-bending model. Nonetheless, the cell sheet invaginates
completely even in the large-bending model as w increases
[Fig. 5(g)], i.e., as more cells become wedge-shaped and the
bend region widens, as observed during Volvox inversion [28].
Moreover, one can argue that invagination is actually more
stable in the large-bending model: There is a critical bend
region width, w∗ in the large-bending model and w∗

0 in the
classical model, such that the solution curves in the (k, d )
diagram are single-valued for w < w∗ or w < w∗

0 , but become
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multivalued for w > w∗ or w > w∗
0 , respectively, leading to

discontinuous jumps in d as k is varied. Where multiple so-
lutions exist for a given value of k, the one with the lowest
value of d has the lowest energy (not shown). For the classical
theory, we have discussed this bifurcation behavior in Ref. [8],
and rationalized it by constructing an effective energy that
estimates different elastic contributions. It is therefore not
surprising that, here, we find qualitatively identical bifurca-
tion behavior in the two models, but that again, there are
quantitative differences in the bifurcation behavior. However,
Fig. 5(g) shows that w∗ > w∗

0 . In other words, continuous
invagination is possible in a larger region of parameter space
in the large bending theory than in the classical theory: in
this sense, invagination is stabilized in the large-bending
theory.

This discussion shows how the geometry of large bending
deformations modifies the mechanical picture of invagina-
tion suggested by the classical theory. When we introduced
the problem of large bending deformations, we argued that
classical shell theories cannot describe these deformations
because of the assumption of large radii of curvature inherent
in them. At this stage, we must therefore ask: can the large-
bending theory derived here provide a complete description
of the mechanics of invagination? This is first a question of
self-consistency: Is the intrinsic configuration not too incom-
patible? In other words, are the deformations resulting from
the imposed intrinsic stretches and curvatures consistent with
the scalings (31) and (32) assumed in the derivation of the
shell theory? Even for the late invagination stage in Fig. 5(d),
the meridional shell strain remains small [Fig. 5(e)], although
the meridional curvature strain reaches values of order O(1/ε)
[Fig. 5(f)]. Of course, the invagination stage in Fig. 5(d) does
not satisfy the restriction 1 − |η| � √

ε of our shell theory
discussed earlier. This kind of condition is particularly re-
strictive for biological tissues in which ε is not “that small”
(Fig. 1). While results remain qualitatively unchanged for
somewhat smaller values of |η| within that range of validity,
this hints that understanding the elasticity of the constric-
tion limit |η| → 1 remains a key open problem for future
work.

IV. CONCLUSION

In this paper, we have derived a morphoelastic shell theory
valid for the large bending deformations that are commonly
observed in developmental biology (Fig. 1), and have shown
how this scaling limit of large bending deformations induces
a purely geometric effective material anisotropy absent from
classical shell theories. Taking the invagination of the green
alga Volvox as an example, we have compared this large-
bending theory to a simpler, classical theory not formally
valid for large bending deformations. Since the classical the-
ory does not account for the geometric material anisotropy
or the singularity of cell constriction, it differs, for strongly
invaginated shapes as in Figs. 1(b), 4(c), and 4(f), from the
theory for large bending deformation at a quantitative, if not
at a qualitative level. In particular, we have argued that these
geometric effects stabilize Volvox invagination.

This and the growing interest in quantitative rather than
merely qualitative analyses of morphogenesis [44,45] empha-

size the importance of this scaling limit of large bending
deformations for studies of the mechanics of developmental
biology. The theory we have derived here is not, however,
the most general theory of these large bending deformations.
Indeed, when writing down the expression for the intrinsic
deformation gradient in Eq. (24), we assumed that there is
no intrinsic displacement parallel to the midsurface, ς0 = 0.
The nonlinear differential equations extending Eqs. (39) and
(40) that arise in the expansions of the boundary and in-
compressibility conditions for ς0 �= 0 still admit a trivial
solution p(0) = 1, Z(0) ≡ Z0, S(0) ≡ S0, where S0 = f 0

s f 0
φ ς0.

We were, however, unable to extend our calculations in
Sec. II to prove that this solution is unique; a similar is-
sues arises when extending the calculations of this paper to
more general constitutive relations, as discussed below and
in Appendix C. It therefore remains unclear what form the
extension of the Kirchhoff “hypothesis” [15] to this case
takes.

In this paper, we assumed the simplest, incompressible
neo-Hookean constitutive relations when deriving our shell
theory for large bending deformations. The restriction to in-
compressible elastic materials is justified by the biological
context of our analysis, in which the models derived here
describe sheets of fluid-filled cells that are therefore indeed
incompressible to a first approximation. However, the bulk
elastic response of biological materials such as brain tissue
is not linear [46–48]. The restriction to linear neo-Hookean
relations may therefore appear to be a limitation of the anal-
ysis, but that turns out not to be the case: in the thin shell
limit, general hyperelastic constitutive relations reduce to neo-
Hookean relations. This result has been established previously
for thin plates [20,49], and, in Appendix C, we (partially)
extend it to the large bending deformations of thin shells
considered here. In the context of shell theories, the problem
of specifying the nonlinear constitutive relations of biological
tissues does not therefore arise. However, we have recently
shown that the continuum limit of a class of discrete models
of cell sheets involves not only nonlinear elastic, but also non-
local, nonelastic terms [50]. Moreover, adding the geometric
singularity of apical constriction (corresponding to triangular
cells in the underlying discrete model) as a constraint to the
variational problem that arises in this continuum limit remains
an important open problem [50]. Solving this may provide a
regularization of the singularity that breaks asymptoticity as
|η| → 1 in the theory derived here, and hence a yet more
complete mechanical picture of the bend region of wedge-
shaped cells in Volvox invagination [Fig. 4(d)]. Meanwhile,
all of this suggests that the journey toward understanding the
continuum mechanics of biological materials, on which we
have taken another step with the present analysis of large
bending deformations of thin elastic shells, will continue to
abound with new problems in nonlinear mechanics.
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APPENDIX A: THIN-SHELL THEORY FOR LARGE
BENDING DEFORMATIONS OF AN ELASTIC SHELL

In this Appendix, we extend the calculations for axisym-
metric deformations of an elastic shell in Sec. II to general
deformations.

1. Deformations of an elastic shell

As in Sec. II, we begin by deriving expressions for the de-
formation gradient tensors of an elastic shell of thickness εh,
where ε is, again, a small asymptotic parameter that expresses
the thinness of the shell.

a. Undeformed configuration of the shell

We parameterize the undeformed midsurface S of the shell
in terms of generalized, not necessarily orthogonal coordi-
nates; we shall use Greek letters to denote these coordinates.
Thus, if ρ is the position of a point on S , the tangent vectors
there are eα = ∂ρ/∂α. The metric g of the midsurface thus has
components gαβ = eα · eβ, and we set g = det g.

Next, we define a basis B for the shell by adjoining the
unit normal vector n to this tangent basis. This obeys the
Weingarten equation [51]

n,α = −κα
βeβ, (A1)

in which commata denote partial differentiation and the (sym-
metric) curvature tensor is καβ = −eα · n,β .

The position of a point in the undeformed configuration
V of the shell is r = ρ + εζn, where ζ denotes the trans-
verse coordinate, as defined for axisymmetric deformations
in Fig. 2(c). Hence

r,α = (
δα

β − εζκα
β
)
eβ, r,ζ = εn, (A2)

wherein we have used the Weingarten equation (A1), and
where δ is the Kronecker delta. The metric G of the unde-
formed configuration therefore has components

Gζ ζ = ε2, Gαζ = Gζα = 0, (A3a)

and
Gαβ = gαγ (δγ

δ − εζκ
γ

δ )(δδ
β − εζκ

δ
β ), (A3b)

where we have used the symmetry of the curvature tensor. In
particular, its inverse has components

Gζ ζ = ε−2, Gαζ = Gζα = 0, Gαβ. (A4)

The position vectors of the surfaces ζ = ±h± of the un-
deformed shell are r± = ρ ± εh±n, and hence the tangent
vectors to these surfaces are

e±
α = r±

,α = (
δα

β ∓ εh±
κα

β
)
eβ ± εh±

,αn. (A5)

We now order B = {e1, e2, n} as a right-handed basis by ex-
changing n ↔ −n if required. Expanding in components, this

implies that e1 × e2 = √
gn, and hence e1 × n = −e2/

√
g,

e2 × n = e1/
√

g. Continuing to expand in components and
after some calculations, we infer

e±
1 × e±

2 = [1 ∓ 2εh±H + ε2(h±)2K]
√

gn

∓ εh±
,α

[
(1 ± εh±H )δα

β ∓ εκβ
αh±] eβ

√
g
, (A6)

wherein we have identified H = 1
2 κα

α and K = det κα
β as

the mean and Gaussian curvatures [51] of S . On normalizing
these vectors, we obtain the normals to the shell surfaces,

n± = n ∓ ν±
αeα√

1 + ν±
βν± β

, (A7a)

with

ν±
α = εh±

,β[(1 ± εh±H )δβ
α ∓ εκα

βh±]

g[1 ∓ 2εh±H + ε2(h±)2K]
. (A7b)

b. Deformed configuration of the shell

We take the same generalized coordinates to parameterize
the deformed midsurface S̃ of the shell. The tangent vectors at
a point ρ̃ on S̃ are thus ẽα = ∂ρ̃/∂α. The metric g̃ of the mid-
surface has components g̃αβ = ẽα · ẽβ, and we let g̃ = det g̃.
We extend the tangent basis of S̃ to a basis B̃ for the deformed
shell by adding the unit normal ñ, and introduce the (sym-
metric) curvature tensor κ̃αβ = −ẽα · ñ,β . The Weingarten and
Gauß equations [51]

ñ,α = −κ̃ β
α ẽβ, ẽα,β = κ̃αβ ñ + �̃

γ

αβ ẽγ (A8)

express the derivatives of the normal and tangent vectors in
terms of the curvature tensor and Christoffel symbols associ-
ated with the deformed midsurface metric [51]. The position
of a point in the deformed configuration Ṽ of the shell is

r̃ = ρ̃ + ε(ζ̃ ñ + ς̃ α ẽα), (A9)

where ζ̃ and ς̃ α are the transverse and parallel displacements
of this point relative to the midsurface, defined for axisymmet-
ric deformations in Fig. 2(e). In particular, the displacement
parallel to the midsurface is now no longer a scalar. Using the
Weingarten and Gauß equations (A8), we find

r̃,α = [
δα

β + ε
(
ς̃ β

;α − ζ̃ κ̃α
β
)]

ẽβ + ε(ζ̃,α + ς̃ β κ̃αβ )ñ, (A10a)

r̃,ζ = ε
(
ζ̃,ζ ñ + ς̃ α

,ζ ẽα

)
, (A10b)

in which ς̃ β
;α = ς̃ β

,α + �̃αγ
β ς̃γ is a covariant derivative. It

follows that the metric G̃ of Ṽ has components

G̃ζ ζ = ε2[(ζ̃,ζ )2 + ς̃ α
,ζ ς̃α,ζ ], (A11a)

G̃αζ = G̃ζα = ες̃α,ζ + ε2
[
ζ̃,ζ (ζ̃,α + ς̃ β κ̃αβ )

+ ς̃β,ζ

(
ς̃ β

;α − ζ̃ κ̃ β
α

)]
, (A11b)

G̃αβ = g̃αγ

[
δγ

δ+ε
(
ς̃δ

;γ −ζ̃ κ̃
γ

δ

)][
δβ

δ+ε
(
ς̃ δ

;β −ζ̃ κ̃β
δ
)]

+ ε2(ζ̃,α + ς̃ γ κ̃αγ )(ζ̃,β + ς̃ δκ̃βδ ). (A11c)

c. Intrinsic configuration of the shell: Incompatibility

We define the intrinsic configuration of the shell by
specifying the symmetric positive-definite intrinsic metric
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components g0
αβ , the symmetric intrinsic curvatures κ0

αβ ,
and the intrinsic transverse displacement ζ 0, which is an in-
creasing function of ζ . It follows from a local embedding
theorem for Riemannian metrics [30,31] that the surface S0

with metric components g0
αβ can be embedded into three-

dimensional Euclidean space, and we denote by B0 the
corresponding intrinsic basis containing the tangent vectors
Eα and the normal N such that g0

αβ = Eα · Eβ.
The components of the curvature tensor κ

0
αβ = −Eα · N,β

associated with S0 are in general different from the intrinsic
curvatures κ0

αβ , since the latter are specified independently
from the definition of S0. This expresses the incompatibility
of the intrinsic metric G0 of the intrinsic configuration V0 of
the shell. This metric has components

G0
ζ ζ = ε2

(
ζ 0

,ζ

)2
, G0

αζ = G0
ζα = ε2ζ 0

,ζ ζ
0
,α, (A12a)

and

G0
αβ = g0

αγ

(
δγ

δ − εζ 0κ0 γ
δ

)(
δδ

β − εζ 0κ0
β

δ
) + ε2ζ 0

,αζ 0
,β ,

(A12b)

that we write down by analogy with Eqs. (A11), assuming,
as we did in Sec. II, that there is no intrinsic displacement
parallel to the midsurface, ς0 α = 0. We emphasize again that,
in contrast with the intrinsic metric components g0

αβ , the
intrinsic curvatures κ0

αβ and the intrinsic transverse displace-
ment ζ 0 remain without a direct geometric realization.

As in Sec. II, we specify ζ 0 by imposing intrinsic volume
conservation. The condition of intrinsic volume conservation
reads

√
det G0 = √

det G, or, as we argue in what follows
and equivalently, det F0 = 1, where the intrinsic deformation
gradient F0 is given by Eq. (A17b) below. We shall integrate
the differential equation resulting from this condition under
the scaling assumptions of shell theory later, and we shall
again choose the midsurfaces S , S̃ , and S0 in such a way
that the shell surfaces ζ = ±h± and ζ̃ = ±h̃± correspond to
ζ 0 = ±h0/2. We recall that the intrinsic thickness h0 also
lacks a direct geometric realization.

d. Calculation of the deformation gradient tensors

The geometric deformation gradient is F̃ = Grad r̃, where,
by definition, Grad r̃ = r̃,α ⊗ r,α + r̃,ζ ⊗ r,ζ . Now, from
Eqs. (A4),

r,α = Gαγ (gγ β − εζκγ β )eβ, r,ζ = ε−1n. (A13)

Using Eqs. (A10), it follows that

F̃ = (
δα

γ − εζ̃ κ̃α
γ + ες̃α

;γ
)
Gγ δ (gδβ − εζκδβ )ẽα ⊗ eβ

+ ε
(
ζ̃ ,α + κ̃α

ε ς̃
ε
)
g̃αδGδγ (gγ β − εζκγ β )ñ ⊗ eβ

+ ς̃ α
,ζ ẽα ⊗ n + ζ̃,ζ ñ ⊗ n, (A14a)

or, in block matrix notation [52],

F̃ =
(

ÃH ς̃,ζ

b̃�g̃H ζ̃,ζ

)
[B̃ ⊗ B∗], (A14b)

in which the asterisk denotes a dual basis, and where we have
introduced

Hα
β = Gαγ gγ δAδ

β with Aα
β = δα

β − εζκ
α

β, (A15)

and where we have also let

Ãα
β = δα

β − εζ̃ κ̃α
β + ες̃α

;β, b̃α = ε
(
ζ̃ ,α + κ̃α

β ς̃β
)
.

(A16)

By analogy with Eqs. (A14), the intrinsic deformation gradi-
ent tensor is

F0 = (
δα

γ − εζ 0κ0 α
γ

)
Gγ δ (gδβ − εζκδβ )Eα ⊗ eβ

+ εζ 0 ,αg0
αδGδγ (gγ β − εζκγ β )N ⊗ eβ + ζ 0

,ζ N ⊗ n,

(A17a)

or, in block matrix notation,

F0 =
(

A0H 0

b0�
g0H ζ 0

,ζ

)
[B0 ⊗ B∗]. (A17b)

Here we have again assumed that there is no intrinsic dis-
placement parallel to the midsurface, ς0 α = 0, and we have
introduced

A0 α
β = δα

β − εζ 0κ0 α
β, b0 α = εζ 0 ,α. (A18)

At this stage, we interrupt the computation of the deforma-
tion gradient tensors and we discuss the condition of intrinsic
volume conservation. From Eq. (A3b) and definition (A15),
Gαβ = gαγ Aγ

δAδ
β . Now det MN = det M det N for matrices

M, N, so, from Eqs. (A3a),

det G = ε2g(det A)2, (A19a)

where we recall the definition g = det g. Similarly, on intro-
ducing g0 = det g0 and on evaluating the determinant of a
block matrix [53], Eqs. (A12) yield

det G0 = ε2(ζ 0
,ζ )2g0(det A0)2. (A19b)

Above, we have claimed that the intrinsic volume conser-
vation condition

√
det G0 = √

det G is equivalent with the
tensorial condition det F0 = 1. Since Eq. (A17b) expresses
the intrinsic deformation gradient with respect to a mixed
non-orthogonal basis, we shall need the following observation
to evaluate the determinant and hence prove our claim:

Proposition 1. Let {eα} and {Eβ} be right-handed bases
with corresponding metrics gαβ = eα · eβ, and Gαβ = Eα · Eβ,
and let M = Mα

βeα ⊗ Eβ be a tensor represented by the ma-
trix M = (Mα

β ) with respect to {eα} ⊗ {Eβ}. Let g = det gαβ

and G = det Gαβ . Then

det M =
√

g

G
det M.

Proof. Let {Xi} be the standard Cartesian basis, and write
eα = eαiXi, Eα = EαiXi. Let e = det eαi, E = det Eαi. By
assumption, e, E > 0. By definition, gαβ = eα · eβ = eαieβi

as Xi · Xj = δi j . Since det eβi = det eiβ , e2 = g. Similarly,
E2 = G. Now

M = eαiM
α

βGβγ Eγ jXi ⊗ Xj,

which implies, since det G−1 = G−1, det M = e(det M)G−1E .
This completes the proof [54]. �
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Since the normal vectors n in B and N in B0 are, by
definition, unit vectors perpendicular to the remaining basis
vectors, Proposition 1 and Eq. (A17b) yield

det F0 =
√

g0

g
det F0 =

√
g0

g
ζ 0

,ζ det A0 det H. (A20a)

Now definition (A15) implies, since Gαβ = gαγ Aγ
δAδ

β , that

det H = [g(det A)2]−1gdet A = 1

det A
, (A20b)

Since we assume ζ 0
,ζ > 0, Eqs. (A19) and (A20) show that√

det G0 = √
det G ⇐⇒ det F0 = 1, as claimed. Because we

have written down Eqs. (A12) and (A17) defining the incom-
patible metric of V0 and the intrinsic deformation gradient
F0 by analogy with the corresponding results for the defor-
mation configuration Ṽ , but have not derived them from an
embedding of V0, it is not a priori clear that these expressions
are consistent. This is why we needed to show, as we did in
Sec. II, that the expression for G0 is consistent with that for
F0 as far the only use of the former (i.e., intrinsic volume
conservation or the definition of the intrinsic volume element)
is concerned. Equivalently, intrinsic volume conservation can
be imposed without reference to the incompatible metric G0;
consequently, as also noted in Sec. II, the volume element dV 0

of V0 can be also be defined with reference to F0 only.
We now return to the computation of the elastic defor-

mation gradient F = F̃(F0)−1. On inverting the block-lower
triangular matrix in Eq. (A17b), we find

(F0)−1 =

⎛
⎜⎝

H−1(A0)−1 0

−b0�
g0(A0)−1

ζ 0
,ζ

1

ζ 0
,ζ

⎞
⎟⎠ [B ⊗ (B0)∗].

(A21)

From this and from Eq. (A14b), we obtain

F =
⎛
⎝

(
Ã − ς̃,ζ 0 b0�

g0
)
(A0)−1 ς̃,ζ 0(

b̃�g̃ − ζ̃,ζ 0 b0�
g0

)
(A0)−1 ζ̃,ζ 0

⎞
⎠ [B̃ ⊗ (B0)∗].

(A22)

2. Thin shell theory for large bending deformations

As in Sec. II, we assume that the shell is made of an
incompressible neo-Hookean material, with energy given by
Eqs. (26). Equation (28) still provides an expression for the
stress tensor Q, now with respect to B̃ ⊗ (B0)∗, and with the
deformation gradients F̃, F0

, F now given by Eqs. (A14b),
(A17b), and (A22), respectively. Moreover, Eq. (29b) still
holds.

a. Scaling assumptions

Again as in Sec. II, we rescale the intrinsic and deformed
curvature tensors, κ0 = κ0 α

βEα ⊗ Eβ and κ̃ = κ̃α
β ẽα ⊗ ẽβ, to

introduce large bending deformations explicitly and absorb
the intrinsic stretching of the midsurface by writing

κ0 =
√

g0

g

λ0

ε
, κ̃ =

√
g0

g

λ̃

ε
, (A23)

In what follows, we shall need explicit representations of
these tensors, λ0 = λ0 α

βEα ⊗ Eβ and λ̃ = λ̃α
β ẽα ⊗ ẽβ, and

shall denote by λ0 and λ̃ the corresponding matrices of
components.

Next, we make the standard scaling assumptions of shell
theory, that the elastic strains remain small. To this end, we
introduce the deformation gradient restricted to the midsur-
face,

f = ẽα ⊗ Eα. (A24)

First, we require that the shell strains be small: accordingly,
we define the shell strain tensor E by

2εE = f�f − I. (A25)

Now f�=Eα ⊗ ẽα, so f�f=g̃αβEα ⊗ Eβ=g0 αγ g̃γ βEα ⊗ Eβ.
Hence, if we set E=Eα

βEα ⊗ Eβ, then

2εEα
β = g0 αγ gγ β − δα

β or 2εE = (g0)−1g̃ − I, (A26a)

in equivalent matrix notation. In the calculations that follow,
we shall need a consequence of this definition,

g̃ = g0(I + 2εE). (A26b)

Second, we require that the curvature strains remain small:
we therefore introduce two different (scaled) curvature strain
tensors,

εL = f−1λ̃f − λ0, εK = f�λ̃f − λ0. (A27)

Since f−1 = Eα ⊗ ẽα, f−1λ̃f = λ̃α
βEα ⊗ Eβ, and hence, on

writing L = Lα
βEα ⊗ Eβ, we find [55]

εLα
β = λ̃α

β − λ0 α
β or εL = λ̃− λ0. (A28)

Similarly, f�λ̃f = g0 αγ g̃γ δλ̃
δ
βEα ⊗ Eβ, whence, on letting

K = Kα
βEα ⊗ Eβ and from Eqs. (A26a) and (A28),

Kα
β = Lα

β + 2Eα
γ λ0 γ

β + O(ε) or K = L + 2Eλ0 + O(ε).
(A29)

These scalings and definitions are consistent with the scal-
ings (30) and the definitions (31) and (32) of the shell and
curvature strains for the axisymmetric deformations analysed
in Sec. II. Indeed, for these axisymmetric deformations,

g=
(

1 0
0 r2

)
, g̃=

(
f̃ 2
s 0
0 r2 f̃ 2

φ

)
, g0 =

((
f 0
s

)2
0

0 r2
(

f 0
φ

)2

)
,

(A30)

from Eqs. (8), (19b), and (20b). In particular,
√

g0/g = f 0
s f 0

φ .
Moreover, Eq. (A26b) yields

f̃s = f 0
s

√
1 + 2εEs

s = f 0
s

(
1 + εEs

s
) + O(ε2), (A31a)

f̃φ = f 0
φ

√
1 + 2εEφ

φ = f 0
s

(
1 + εEφ

φ

) + O(ε2), (A31b)

while Es
φ = Eφ

s = 0. Thus, identifying

Es = Es
s, Eφ = Eφ

φ, (A31c)

we conclude that Eqs. (31) are consistent with Eq. (A26b) at
leading order, i.e. at the order to which the shell theory will be
valid.
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Direct computation relates the components of λ̃ to the prin-
cipal curvatures of S̃ defined in Eqs. (16), viz.

λ̃s
s = κ̃s

ε f 0
s f 0

φ

, λ̃φ
φ = κ̃φ

ε f 0
s f 0

φ

, (A32a)

while λ̃s
φ = λ̃φ

s = 0. Hence Eqs. (30) and (32) are consistent
with Eqs. (A23) and (A28) if we identify

λ0
s =λ0 s

s, ελ0
φ =λ0 φ

φ, Ls =Ls
s, Lφ =Lφ

φ, (A32b)

with the off-diagonal components vanishing. However, com-
paring Eqs. (61) and (A29) shows that the alternative
curvature strains defined here are different from those defined
in Eqs. (62):

Ks
s = Ls + 2Esλ

0
s + O(ε) �= Ls + Esλ

0
s + O(ε) = Ks,

(A32c)

using Eq. (59). We are not aware of a tensorial representation
of the alternative curvature strains introduced in Eqs. (62) and
that vanish for pure stretching deformations.

As in the axisymmetric calculations in Sec. II, it will turn
out to be convenient to scale the displacements parallel and
perpendicular to the midsurfaces by absorbing the intrinsic
stretching of the midsurface. We therefore introduce scaled
variables

Z0 =
√

g0

g
ζ 0, Z =

√
g0

g
ζ̃ , S =

√
g0

g
ς̃. (A33)

b. Boundary and incompressibility conditions

As in Sec. II, we solve the Cauchy equation (29b) subject to
the incompressibility condition det F = 1 and subject to force-
free boundary conditions.

Again as in Sec. II, these boundary conditions on the
shell surfaces read Q±n± = 0, where Q± are evaluated on
the surfaces ζ = ±h± of V . The normal vectors n± to these
undeformed shell surfaces are given by Eqs. (A7), which yield
the expansion

n± = n ∓ ε
h±

,α

g
eα + O(ε2). (A34)

The deformation gradient is given in Eq. (A22) with re-
spect to the mixed basis B̃ ⊗ (B0)∗. In what follows, we shall
therefore use Proposition 1 to evaluate the tensorial incom-
pressibility condition det F = 1.

c. Intrinsic volume conservation

We now impose volume conservation of the intrinsic
configuration of the shell compared to the undeformed con-
figuration. We need one preliminary result:

Lemma 1. Let M be a 2×2 matrix, and x be a scalar. Then

det (I + xM) = 1 + x tr M + x2 det M.

Proof. By direct computation,

det

(
1 + xM11 xM12

xM21 1 + xM22

)

= 1 + x(M11 + M22) + x2(M11M22 − M12M21),

which proves the claim. �

Volume conservation between the undeformed and intrin-
sic configurations of the shell requires equality of the volume
elements,

√
det G =

√
det G0. Now, from definition (A15),

Aα
β = δα

β + O(ε), and so Eq. (A19a) yields
√

det G = ε
√

g + O(ε2). (A35a)

Moreover, from Eqs. (A18) and (A19b) with the scalings
introduced above and invoking Lemma 1, we find

√
det G0 = ε

(√
g

g0
Z0

,ζ

){√
g0[1 − 2H0Z0 + K0(Z0)2]

}
+ O(ε2), (A35b)

wherein H0 = 1
2λ0

α
α and K0 = det λ0

α
β , which we think

of as (scaled) intrinsic mean and Gaussian curvatures [51].
Since these are not associated with an embedding of S0 into
three-dimensional Euclidean space, we must establish their
properties from first principles, based on the assumed sym-
metry of the intrinsic metric and the intrinsic curvature tensor.
The following results are undoubtedly folklore:

Proposition 2. If M is a symmetric matrix and N is a
positive-definite symmetric matrix, then MN has real eigen-
values.

Proof. Since N is positive-definite and symmetric, it has a
symmetric square root N1/2 [56]. Now

MN = (N1/2)−1(N1/2MN1/2)N1/2,

so MN is similar to and hence has the same eigen-
values [56] as N1/2MN1/2. Since M and N1/2 are symmetric,
so is N1/2MN1/2, which therefore has real eigenvalues [56].
Hence MN has real eigenvalues, too, as claimed. �

Corollary 1. If M is a symmetric 2×2 matrix and N is a
positive-definite symmetric 2×2 matrix, then

[tr (MN)]2 � 4 det (MN).

Proof. By Proposition 2, the 2×2 matrix MN has real
eigenvalues μ1, μ2. Hence

[tr (MN)]2−4 det (MN)

= (μ1+μ2)2−4μ1μ2 = (μ1−μ2)2 � 0,

which completes the proof. �
Now λ0

α
β = λ0

αγ g0 γ β . Since κ0
αβ is symmetric, so is its

rescaling λ0
αβ . As g0

αβ is symmetric and positive definite, so
is its inverse g0 αβ . Hence the conditions of Corollary 1 are
satisfied; it implies the inequality (H0)2 � K0.

Next, integrating the differential equation for Z0(ζ ) result-
ing from Eqs. (A35) and imposing Z0 = 0 at ζ = 0, we find

Z0 − H0(Z0)2 + K0

3
(Z0)3 = ζ . (A36)

Since Eqs. (A35) neglect O(ε2) corrections, this result holds
at leading order only.

We recall that, by definition, the shell surfaces are at
ζ 0 = ±h0/2 in the intrinsic configuration, and at ζ = ±h±
in the undeformed configuration, so that h+ + h− = h is
the undeformed thickness of the cell sheet. On defining
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FIG. 6. Intrinsic volume conservation. (a) Plot of ζ (Z0) defined
in Eq. (A36) for the cases K0 > 0, H0 < 0; K0 > 0, H0 > 0;
K0 < 0. The positions of the turning points at Z0 = Z0

± are in-

dicated, and ζ (Z0) must increase monotonically for |Z0| < H 0/2.
This condition excludes the dotted parts of the graphs. (b) Intrinsic
volume conservation in (K0h2,H0h) space: conservation of intrin-
sic volume is only possible within the region of parameter space
enclosed by the solid curve, in which −16/9 < h2K0 < ω = 64/9
and h|H0| <

√
ω = 8/3. The dashed lines delimit the regions of

parameter space excluded by the inequality (H0)2 � K0 and the
condition that Eq. (A37b) have a positive real solution.

H0 = h0
√

g0/g, so that the shell surfaces are at Z0 = ±H0/2
in the intrinsic configuration, Eq. (A36) yields

h± = H0

2

[
1 ∓ H0

2
H0 + K0

12
(H0)2

]
, (A37a)

whence

h = h+ + h− = H0 + K0

12
(H0)3, (A37b)

which is a depressed cubic equation for H0(h) that can be
solved in closed form. In particular, Eq. (A37b) has a unique
positive real solution if K0 > 0, but has no positive real so-
lution if h2K0 < −16/9. If 0 > h2K0 > −16/9, two positive
real solutions exist; by continuity, the smaller must be chosen.

More generally, we require that ζ increase with Z0, for
|Z0| � H0/2. As (H0)2 � K0, the cubic in Eq. (A36) has
two turning points [Fig. 6(a)], at Z0 = Z0

±, where explicit
expressions for Z0

− � Z0
+ in terms of K0,H0 can be found by

solving a quadratic equation. The requirement that ζ increase
with Z0 translates to inequalities Z0

± ≷ H0(h)/2 depending on
the signs of K0,H0 [Fig. 6(a)]. These inequalities involving
h,H0,K0 only depend on H0h and K0h2, since the curvatures
can be nondimensionalized with h. The inequalities can then
be solved numerically to determine the region in (K0h2,H0h)
parameter space for which intrinsic volume conservation is
possible [Fig. 6(b)]. In particular, Fig. 6(b) shows that in-
trinsic volume conservation requires −16/9 � K0h2 � ω and
|H0h| � √

ω, where ω is a numerical constant. An expression
for the boundary of this region can also be determined in

closed form using MATHEMATICA (Wolfram, Inc.); this can be
used to show that ω = 64/9.

For the axisymmetric deformations considered in Sec. II,
K0 = λ0 s

sλ
0 φ

φ = O(ε) from Eqs. (A32b). For K0 = 0, the
condition derived here is |hH0| � 1. But, using Eqs. (A32b)
again, hH0 = hλ0

s /2 + O(ε) = η + O(ε) on recalling defini-
tion (59), and so this condition is equivalent, as expected, to
the condition |η| � 1 found in Sec. II.

d. Expansion of the boundary and incompressibility conditions

To avoid drowning in a bath of indices, we shall use the
block matrix notation for tensors [52] introduced above in the
expansions that follow below. This means, however, that some
care needs to be taken over distinguishing between tensor
and matrix transposes and, in particular, over the bases with
respect to which transposes of block matrices represent tensor
transposes [52]. We shall use the following results repeatedly:

Proposition 3. Let B and B′ be bases of three-dimensional
space with corresponding metrics g, G. A tensor M is repre-
sented by the matrix M with respect to B ⊗ (B′)∗. Then M� is
represented by G−1M�g with respect to B′ ⊗ B∗.

Proof. Let B={eα}, B′={Eα}, so that M=Mα
βeα⊗Eβ.

By definition, M� = Mβ
αEα ⊗ eβ = Gαγ Mδ

γ gδβEα⊗eβ, as
claimed. �

Corollary 2. Let B = {eα} ∪ {n} and B′ = {Eα} ∪ {N} be
bases of three-dimensional space, where n, N are the respec-
tive unit normals to the planes spanned by {eα}, {Eα}. Let the
metrics g, G have components gαβ = eα · eβ, Gαβ = Eα · Eβ.
If M is a tensor such that

M =
(

A b
c� d

)
[B ⊗ (B′)∗],

then

M� =
(

G−1A�g G−1c
b�g d

)
[B′ ⊗ B∗].

Proof. Proposition 3 implies that M� is represented, with
respect to B′ ⊗ B∗, by(

G 0
0� 1

)−1( A b
c� d

)�(
g 0

0� 1

)

=
(

G−1A�g G−1c
b�g d

)
,

which completes the proof. �
To expand the boundary and incompressibility conditions,

we posit, analogously to Eqs. (37),

Z = Z(0) + εZ(1) + O(ε2), S = S(0) + O(ε). (A38)

(i) Expansion at order O(1). On inserting the rescalings
(A33) into Eqs. (A16) and (A18), we obtain

A0 = I − Z0λ0, Ã= Ã(0) + O(ε), with Ã(0) = I − Z(0)λ
0,

(A39a)

and

b0 = O(ε), b̃ = λ0S(0) + O(ε), (A39b)
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and thence, from Eq. (A22),

F =
(

B v
w� c

)
+ O(ε), (A40)

where, with dashes now denoting differentiation with respect
to Z0,

B = Ã(0)(A0)−1, v = S′
(0), w = (A0)−�g0λ0S(0), c = Z ′

(0),

(A41)

since g̃ = g0 + O(ε) from Eq. (A26b). Recalling the def-
initions g̃ = det g̃, g0 = det g0 introduced earlier, this also
implies g̃/g0 = 1 + O(ε). Using Proposition 1 and on com-
puting the determinant of the block matrix [53] in Eq. (A40),
the incompressibility condition thus becomes

1 = det F = (det B)
(
c − w�B−1v

) + O(ε). (A42)

Next, on substituting the first of Eqs. (A39b) into Eq. (A21)
and using Corollary 2,

(F0)−� =
(

O(1) O(ε)

O(1)
(
ζ 0

,ζ

)−1

)
. (A43)

Moreover, Eqs. (A15) yield H = I + O(ε) using Eqs. (A3),
so, on substituting Eqs. (A39) into Eq. (A14b), and using
definitions (A41),

F̃ =
(

BA0 ζ 0
,ζ v

w�A0 ζ 0
,ζ c

)
+ O(ε). (A44a)

Hence, using further properties of block matrices [53] and,
again, g̃ = g0 + O(ε) and Corollary 2,

F̃
−�=

⎛
⎝ O(1) −(

ζ 0
,ζ

)−1
(g0)−1B−�w(c−w�B−1v)−1

O(1)
(
ζ 0

,ζ

)−1
(c − w�B−1v)−1

⎞
⎠

+ O(ε). (A44b)

We now write, as we have done previously in Eqs. (38),

Q = Q(0) + εQ(1) + O(ε2), p = p(0) + O(ε). (A45)

Inserting Eqs. (A40), (A43), and (A44b) into definition (28),
we obtain

Q(0)n = (ζ 0
,ζ )−1

(
v + p(0)(g0)−1B−�w(c − w�B−1v)−1

c − p(0)(c − w�B−1v)−1

)
.

(A46)
Now, as in Sec. II, the governing equation (29b) of three-
dimensional elasticity is, at leading order, (Q(0)n),ζ = 0,
and hence Q(0)n is independent of ζ . The boundary con-
ditions therefore become 0 = Q±n± = Q(0)n + O(ε), where
we have used Eq. (A34). It follows that Q(0)n ≡ 0 as in
Sec. II.

From Eqs. (A41), w�B−1 = S�
(0)D with D = (λ0)�g0Ã−1

(0),
so B−�w = D�S(0). Equations (A42) and (A46) then yield
the leading-order incompressibility and boundary conditions,

Z ′
(0) − S�

(0)DS′
(0) = (det B)−1

, (A47a)

and hence

S′
(0)+p(0)(det B)(g0)−1D�S(0) =0, Z ′

(0)−p(0)(det B)=0.

(A47b)

In particular, noting that S′
(0)
�D�S(0) = S�

(0)DS′
(0) since this

expression is a scalar,

S′
(0)
�g0S′

(0) =−p(0)(det B)S′
(0)
�D�S(0)

= −p(0)(det B)S�
(0)DS′

(0)

= −p(0)(det B)[Z ′
(0)− (det B)−1] = p(0)− (Z ′

(0) )
2.

(A48)

Moreover, from Eqs. (A39) and definitions (A41) and using
Lemma 1, we obtain

det B = det Ã(0)

det A0
= 1 − 2H0Z(0) + K0(Z(0) )2

1 − 2H0Z0 + K0(Z0)2
. (A49)

Substituting in the second of Eqs. (A47b) and integrating,

tanh−1 K0Z(0) − H0√
(H0)2 − K0

= p(0) tanh−1 K0Z0 − H0√
(H0)2 − K0

+ t,

(A50)

in which t is a constant of integration; the singular cases
K0 = 0, K0 = H0 = 0, or K0 = (H0)2 can be dealt with sim-
ilarly, but we will not discuss these in detail.

Next, by definition, on the midsurface Z0 = 0, we have
Z(0) = 0 and S(0) = 0. Thus det B = 1 on Z0 = 0, and hence,
successively from Eqs. (A47), Z ′

(0)=0, S′
(0)=0 on Z0=0, and

hence p(0) = 1 (which is constant). Then taking Z0 = Z(0) = 0
in Eq. (A50) gives t = 0; the same equation then immediately
yields Z(0) ≡ Z0. Finally, Eq. (A48) yields S′

(0)
�g0S′

(0) = 0, so
S′

(0) ≡ 0 since g0 is positive definite. Now S(0) = 0 on Z0 =0,
so this implies that S(0) ≡ 0, which proves the Kirchhoff
“hypothesis” [15] for general large bending deformations.

For axisymmetric deformations, this argument provides
an alternative to the direct integration of the leading-order
equations in Sec. II.

(ii) Expansion at order O(ε). We now expand further. In
particular, extending Eqs. (A39a), we find

Ã = A0 − ε(Z0L + Z(1)λ
0) + O(ε2). (A51)

The leading-order solution also shows that b0, b̃, ς̃ are all at
the most of order O(ε), whence

F = I + ε

(
−(Z0L + Z(1)λ

0)(A0)−1 O(1)

O(1) Z ′
(1)

)
+ O(ε2),

(A52)

from Eq. (A22). Using Lemma 1 and Eq. (A26b), we also find√
g̃

g0
= (1 + 2ε tr E + 4ε2 det E)1/2

= 1 + ε tr E + ε2

2
[4 det E − (tr E)2] + O(ε3). (A53)

Accordingly, from Proposition 1 and using Lemma 1 again,

det F = 1 + ε{Z ′
(1) + tr E − tr [(Z0L + Z(1)λ

0)(A0)−1]}
+ O(ε2). (A54)

The incompressibility condition det F = 1 thus yields, at or-
der O(ε), an ordinary differential equation for Z(1). To make
further progress, we shall need the following result:
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Lemma 2. Let M be a 2×2 matrix, and x be a scalar. Then

(I + xM)−1 = I + x adj M
1 + x tr M + x2 det M

.

Proof. By definition of the adjugate matrix,

(I + xM)−1 = adj (I + xM)

det (I + xM)
= adj (I + xM)

1 + x tr M + x2 det M
,

using Lemma 1. But, by direct computation,

adj (I + xM) =
(

1 + xM22 −M12

−M21 1 + xM11

)

=
(

1 0
0 1

)
+x

(
M22 −M12

−M21 M11

)
= I + x adj M.

The result follows. �
On multiplying this result by a general 2×2 matrix N and

taking the trace on both sides, we obtain

Corollary 3. Let M, N be 2×2 matrices, and let x be a
scalar. The following equality holds:

tr [N(I + xM)−1] = tr N + x tr (N adj M)

1 + x tr M + x2 det M
.

We shall also need the following observation:
Lemma 3. Let M, N be 2×2 matrices. Then

tr (N adj M)=tr M tr N−tr (MN) and tr (M adj M)=2 det M.

Proof. Notice that M + adj M = (tr M)I since(
M11 M12

M21 M22

)
+

(
M22 −M12

−M21 M11

)
= (M11 + M22)

(
1 0
0 1

)
.

Hence NM + N adj M = (tr M)N on multiplication by N.
Taking the trace gives the first result. The second result fol-
lows from the definition of the adjugate, M adj M = (det M)I,
by taking the trace and noting that tr I = 2. �

Combining Corollary 3 and Lemma 3, and recalling the
definitions tr λ0 = 2H0, det λ0 = K0, we find the differential
equation for Z(1) resulting from Eq. (A54) to be

Z ′
(1) +

( −2H0 + 2K0Z0

1 − 2H0Z0 + K0(Z0)2

)
Z(1) + tr E − Z0 tr L − (Z0)2[2H0 tr L − tr (Lλ0)]

1 − 2H0Z0 + K0(Z0)2
= 0. (A55)

Integrating and imposing Z(1) = 0 at Z0 = 0, we obtain

Z(1) = −
[
Z0 − H0(Z0)2 + 1

3K0(Z0)3
]

tr E − 1
2 (Z0)2 tr L + 1

3 (Z0)3[2H0 tr L − tr (Lλ0)]

1 − 2H0Z0 + K0(Z0)2
. (A56)

(iii) Expansion at order O(ε2). From Eq. (A52), we may write

F =
(

I+εB(1)+ε2B(2) + O(ε3) εv(1) + O(ε2)

εw�
(1) + O(ε2) 1+εc(1)+ε2c(2) + O(ε3)

)
, (A57)

where, in particular and using Lemma 2,

B(1) = − (Z0L + Z(1)λ
0)(I − Z0 adj λ0)

1 − 2H0Z0 + K0(Z0)2
, (A58)

in which Z(1) is given by Eq. (A56). Explicit expressions for the terms B(2), v(1), w(1), c(1), c(2) of the formal expansion (A57)
could be obtained in terms of the expansions defined in Eqs. (A38), but will turn out not to be required.

From the general expression for the determinant of block matrices [53] and Eq. (A57),

det F = (
1 + εc(1) + ε2c(2)

)
det

[
I + εB(1) + ε2B(2) − (

εw�
(1)

)
(εv(1) )

] + O(ε3). (A59a)

Expanding this using Lemma 1, and using Proposition 1 and Eq. (A53), we deduce that

det F = 1 + ε(tr B(1) + tr E + c(1) ) + ε2
[
tr B(2) + c(2) + c(1) tr B(1) + det B(1) − w�

(1)v(1)

+ (tr B(1) + c(1) ) tr E + 2 det E − 1
2 (tr E)2

] + O(ε3). (A59b)

Next we introduce a formal expansion of the intrinsic deformation gradient,

F0 =
(

B0
(0) + O(ε) 0

εw0
(1)
� + O(ε2) c0

(0) + O(ε)

)
, (A60a)

from Eq. (A17b) and using the first of Eqs. (A39b). In this expansion, c0
(0) = ζ 0

,ζ , which is positive by assumption. The values
of the expansion terms B0

(0) and w0
(1) will turn out to be of no consequence. In particular, using Corollary 2,

(F0)−�=

⎛
⎜⎜⎜⎜⎝

(g0)−1
(
B0

(0)

)−�
g + O(ε) −ε

(g0)−1
(
B0

(0)

)−�
w0

(1)

c0
(0)

+O(ε2)

0� 1

c0
(0)

+ O(ε)

⎞
⎟⎟⎟⎟⎠. (A60b)

022411-21



PIERRE A. HAAS AND RAYMOND E. GOLDSTEIN PHYSICAL REVIEW E 103, 022411 (2021)

Moreover, from Eqs. (A57) and (A60a),

F̃ =
(

B0
(0) + O(ε) εc0

(0)v(1) + O(ε2)

ε
(
w�

(1)B
0
(0) + w0

(1)
�) + O(ε2) c0

(0) + O(ε)

)
, (A61a)

so that, using the general expression for the inverse of a block matrix [53] and, once again, Corollary 2 and g̃ = g0 + O(ε),

F̃
−� =

⎛
⎜⎜⎜⎝

(g0)−1
(
B0

(0)

)−�
g + O(ε) −ε

(g0)−1

c0
(0)

[
w(1) + (

B0
(0)

)−�
w0

(1)

] + O(ε2)

O(ε)
1

c0
(0)

+ O(ε)

⎞
⎟⎟⎟⎠. (A61b)

On substituting Eqs. (A57), (A60b), and (A61b) into definition (28) and recalling that p = 1 + O(ε), we obtain

Q =

⎛
⎜⎝ O(ε) ε

v(1) + (g0)−1w(1)

c0
(0)

+ O(ε2)

O(ε) O(ε)

⎞
⎟⎠, (A62a)

and hence

Q(0) = O, Q(1)n =

⎛
⎜⎝

v(1) + (g0)−1w(1)

c0
(0)

O(1)

⎞
⎟⎠. (A62b)

As in Sec. II, the fact that Q(0) =O implies that, at leading order, Eq. (29b) is (Q(1)n),ζ =0, with boundary conditions Q±
(1)n

± =0,
which, as above, leads to Q(1)n ≡ 0. This and the incompressibility condition det F = 1 yield, from Eqs. (A59b) and (A62b),

c(1) = −tr B(1) − tr E, w(1) = −g0v(1), (A63a)

and hence

c(2) = −tr B(2) + (tr B(1) + tr E) tr B(1) − det B(1) − 2 det E + 3
2 (tr E)2 − v�

(1)g
0v(1). (A63b)

e. Asymptotic expansion of the constitutive relations

To expand the constitutive relations and hence obtain the asymptotic expansion of the three-dimensional energy density, we
need one more result:

Lemma 4. Let M, N be 2×2 matrices. Then
(i) tr (M2) = (tr M)2 − 2 det M,
(ii) tr (M2N) = tr M tr (MN) − det M tr N.
Proof. The Cayley–Hamilton theorem [53] for a 2×2 matrix states that M2 = (tr M)M − (det M)I. Taking the trace on both

sides of this relation and noting that tr I = 2, we obtain (i). Multiplying the Cayley–Hamilton relation by N and taking the trace
yields (ii). �

We start by computing the expansion of the (left) Cauchy–Green tensor C = F�F. From Eq. (A57), we obtain

F� =
(

I + ε
[
2E + (g0)−1B�

(1)g
0
] + ε2

[
2(g0)−1B�

(1)g
0E + (g0)−1B�

(2)g
0
] + O(ε3) ε(g0)−1w(1) + O(ε2)

εv�
(1)g

0 + O(ε2) 1 + εc(1) + ε2c(2) + O(ε3)

)
, (A64)

using Corollary 2 and Eq. (A26b), and hence

C =

⎛
⎜⎝

I + ε
[
2E + B(1) + (g0)−1B�

(1)g
0
] + ε2

{
2
[
EB(1) + (g0)−1B�

(1)g
0E

]
+B(2) + (g0)−1B�

(2)g
0 + (g0)−1B�

(1)g
0B(1) + (g0)−1w(1)w�

(1)

} + O(ε3)
O(ε)

O(ε) 1 + 2εc(1)+ ε2
(
2c(2)+ c2

(1)+ v�
(1)g

0v(1)
) + O(ε3)

⎞
⎟⎠.

(A65)

We recall general properties of the trace operator: for matrices M, N, tr M� = tr M and tr MN = tr NM. Since Eq. (A65)
represents C with respect to B0 ⊗ (B0)∗, it follows that

I1 = 3 + ε[2(tr B(1) + tr E + c(1) )] + ε2
{
2(tr B(2) + c(2) ) + (

v�
(1)g

0v(1) + w�
(1)(g

0)−1w(1)
) + c2

(1) + tr
(
(g0)−1B�

(1)g
0B(1)

)
+ 2

[
tr (EB(1) ) + tr

(
E(g0)−1B�

(1)g
0)]} + O(ε3)

= 3 + ε2
{
2(tr E + tr B(1) )

2 + 2 tr E2 + tr B2
(1) + tr

(
(g0)−1B�

(1)g
0B(1)

) + 2
[
tr (EB(1) ) + tr

(
E(g0)−1B�

(1)g
0)]} + O(ε3),

(A66a)
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using Eqs. (A63) and Lemma 4. Recasting this result into a more symmetric form,

I1 − 3 = 2ε2[(tr Ê)2 + tr Ê2] + O(ε3), where Ê = E + 1
2

[
B(1) + (g0)−1B�

(1)g
0], (A66b)

so Ê is the effective two-dimensional strain. Thus Eq. (A66b) determines the leading-order term in the expansion of the three-
dimensional energy density e defined in Eqs. (26), analogously to Eq. (55). This completes its asymptotic expansion in the limit
of a thin shell that undergoes general large bending deformations.

We are left to express the leading-order expansion of e in terms of tensorial invariants of the midsurface, thereby emphasizing
the tensorial nature of the shell theory. We substitute Eq. (A29) into Eq. (A58) to find

B(1) = −Z0K − 2Z0Eλ0 + Z(1)λ
0 − (Z0)2K adj λ0 + 2K0(Z0)2E − Z(1)Z0K0I
1 − 2H0Z0 + K0(Z0)2

+ O(ε). (A67a)

By assumption and definitions (A25) and (A27), tensors λ0, E, K are symmetric. We note that the curvature strain L is, from its
definition in Eq. (A27), not necessarily symmetric. Our choice to switch to a different measure of curvature strain at this stage is
therefore motivated by symmetry, and not geometric interpretation as in Sec. II. Now, using Proposition 3, it follows that

(g0)−1B�
(1)g

0 = −Z0K − 2Z0λ0E + Z(1)λ
0 − (Z0)2(adj λ0)K + 2K0(Z0)2E − Z(1)Z0K0I
1 − 2H0Z0 + K0(Z0)2

+ O(ε). (A67b)

Moreover, on substituting Eq. (A29) into Eq. (A56), and using Lemma 4, we find

Z(1) = −Z0
[
1 − H0Z0 − 1

3K0(Z0)2
]

tr E − 1
2 (Z0)2

(
1 − 4

3H0Z0
)

tr K + (Z0)2 tr Eλ0 − 1
3 (Z0)3 tr Kλ0

1 − 2H0Z0 + K0(Z0)2
+ O(ε). (A68)

We introduce the anticommutator 〈M, N〉 of two matrices M, N by setting 〈M, N〉 = (MN + NM)/2. With this notation,
substituting Eq. (A68) into Eqs. (A67) and the result into the definition of Ê in Eq. (A66b) yields

Ê = [1 − 2H0Z0 − K0(Z0)2] E − Z0K + 2Z0〈E, λ0〉 + (Z0)2〈K, adj λ0〉
1 − 2H0Z0 + K0(Z0)2

+ Z0
[
1−H0Z0 − 1

3K0(Z0)2
]

tr E − 1
2 (Z0)2

(
1 − 4

3H0Z0
)

tr K + (Z0)2 tr 〈E, λ0〉 − 1
3 (Z0)3 tr 〈K, λ0〉

[1 − 2H0Z0 + K0(Z0)2]2
(λ0−K0Z0I) + O(ε).

(A69a)

For the axisymmetric deformations in Sec. II, using the identifications (A31c) and (A32b) of the axisymmetric shell and
curvature strains in terms of the components of the general shell and curvature strain tensors used here and Eq. (A29) to
switch between curvature strains, we find that Ê s

s = a(1) and Êφ
φ = b(1), where a(1), b(1) are defined in Eqs. (47). Comparing

Eqs. (A66b) and (55) then shows that the general result derived here is consistent with the result for axisymmetric deformations
obtained in Sec. II.

The next step in the derivation is to substitute Eq. (A69a), finally, into Eq. (A66b) and hence Eqs. (26). To express the resulting
expansion of the energy density e in terms of the first- and second-order invariants that can be constructed from λ0, E, K only,
we need to make two more general observations:

Lemma 5. Let U, V, W be 2×2 matrices. Then

2 tr (〈U, V〉W) = tr (〈U, V〉) tr W + tr (〈V, W〉) tr U + tr (〈W, U〉) tr V − tr U tr V tr W.

Proof. The proof proceeds by direct calculation. We write

U =
(

U11 U12

U21 U22

)
, V =

(
V11 V12

V21 V22

)
, W =

(
W11 W12

W21 W22

)

and compute

2 tr (〈U, V〉W) = 2U11V11W11 + U21V12W11 + U12V21W11 + U21V11W12 + U11V21W12 + U22V21W12 + U21V22W12 + U12V11W21

+ U11V12W21 + U22V12W21 + U12V22W21 + U21V12W22 + U12V21W22 + 2U22V22W22

= (U11V11 + U21V12 + U12V21 + U22V22)(W11 + W22) + (V11W11 + V21W12 + V12W21 + V22W22)(U11 + U22)

+ (U11W11 + U21W12 + U12W21 + U22W22)(V11 + V22) − (U11 + U22)(V11 + V22)(W11 + W22)

= tr (UV) tr W + tr (VW) tr U + tr (UW) tr V − tr U tr V tr W.

By the symmetry of trace, this completes the proof. �
Corollary 4. Let U, V, W be 2×2 matrices. Then

tr (〈UV, WV〉) = tr (〈U, V〉) tr (〈V, W〉) − det V [tr (〈U, W〉) − tr U tr W].
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Proof. Using Lemmata 4 and 5, we find

tr (〈UV, WV〉) = 2 tr [(〈U, V〉)WV] − tr [V2(UW)]

= {tr (UV) tr (WV)+tr [U(WV)] tr V+tr [V(WV)] tr U−tr U tr V tr (WV)}−{tr V tr [V(UW)]− det V tr (UW)}
= tr (UV) tr (WV) + [tr V tr (VW)−det V tr W] tr U − tr U tr V tr (WV) + det V tr (UW)

= tr (UV) tr (WV) + det V[tr (UW) − tr U tr W],

which, again by the symmetry of trace, finishes the proof. �
To simplify expressions in subsequent calculations, it will be convenient to rewrite the expression for the effective strain Ê in

Eq. (A69a) as

Ê = e1E + e2K + e3〈E, λ0〉 + e4〈K, adj λ0〉 + E (λ0 − K0Z0I) + O(ε), (A69b)

in which e1, e2, e3, e4 are functions of Z0 and H0,K0 only, and E additionally depends on tr E, tr K, tr〈E, λ0〉, tr〈K, λ0〉. Explicit
expressions for e1, e2, e3, e4 are easily extracted from Eq. (A69a). It follows that

tr Ê = e1 tr E + e2 tr K + e3 tr 〈E, λ0〉 + e4 tr 〈K, adj λ0〉 + 2E (H0 − K0Z0) + O(ε), (A70a)

tr Ê2 = e2
1 tr E2 + e2

2 tr K2 + e2
3 tr 〈E, λ0〉2 + e2

4 tr 〈K, adj λ0〉2 + E2[tr (λ0)2 − 4H0K0Z0 + 2(K0Z0)2] + 2e1e2 tr 〈E, K〉
+ 2e1e3 tr 〈E, 〈E, λ0〉〉 + 2e1e4 tr 〈E, 〈K, adj λ0〉〉 + 2e1E (tr 〈E, λ0〉 − K0Z0 tr E) + 2e2e3 tr 〈K, 〈E, λ0〉〉
+ 2e2e4 tr 〈K, 〈K, adj λ0〉〉 + 2e2E (tr 〈K, λ0〉 − K0Z0 tr K) + 2e3e4 tr 〈〈E, λ0〉, 〈K, adj λ0〉〉
+ 2e3E (tr 〈λ0, 〈E, λ0〉〉 − K0Z0 tr 〈E, λ0〉) + 2e4E (tr 〈λ0, 〈K, adj λ0〉〉 − K0Z0 tr 〈K, adj λ0〉) + O(ε). (A70b)

Expressing Eqs. (A66b) and hence (26) in terms of first- and second-order invariants only requires simplifying the different
traces of higher-order expressions appearing in Eqs. (A70). We do so by applying Lemmata 3, 4, 5, and Corollary 4 repeatedly
to find

tr 〈K, adj λ0〉 = 2H0 tr K − tr 〈K, λ0〉, tr (λ0)2 = 4(H0)2 − 2K0, (A71a)

tr 〈E, 〈E, λ0〉〉 = tr E tr 〈E, λ0〉 + H0[tr E2 − (tr E)2], tr 〈K, 〈K, adj λ0〉〉 = H0[tr K2 + (tr K)2] − tr K tr 〈K, λ0〉, (A71b)

tr 〈λ0, 〈E, λ0〉〉 = 2H0tr 〈E, λ0〉 − K0 tr E, tr 〈λ0, 〈K, adj λ0〉〉 = K0 tr K, (A71c)

and

tr 〈E, λ0〉2 = (H0)2 tr E2 + H0 tr E tr 〈E, λ0〉 − [
(H0)2 + 1

2K
0
]
(tr E)2 + 1

2 [tr 〈E, λ0〉]2, (A71d)

tr 〈K, adj λ0〉2 = (H0)2 tr K2 − 3H0 tr K tr 〈K, λ0〉 + [
3(H0)2 − 1

2K
0
]
(tr K)2 + 1

2 [tr 〈K, λ0〉]2, (A71e)

tr 〈E, 〈K, adj λ0〉〉 = H0(tr 〈E, K〉 + tr E tr K) − 1
2 (tr 〈E, λ0〉 tr K + tr 〈K, λ0〉 tr E), (A71f)

tr 〈K, 〈E, λ0〉〉 = H0(tr 〈E, K〉 − tr E tr K) + 1
2 (tr 〈E, λ0〉 tr K + tr 〈K, λ0〉 tr E), (A71g)

tr 〈〈E, λ0〉, 〈K, adj λ0〉〉 = [(H0)2 + K0] tr 〈E, K〉 − [
(H0)2 + 1

2K
0
]

tr E tr K + 1
2H

0(tr 〈E, λ0〉 tr K + tr 〈K, λ0〉 tr E)

− 1
2 tr 〈E, λ0〉 tr 〈K, λ0〉. (A71h)

Inserting Eqs. (A71) into Eqs. (A70), and the result into Eqs. (A66b) and (26) as announced, we finally obtain

e =Cε2{(α1 tr E2 + α2(tr E)2 + α3 tr E tr 〈E, λ0〉 + α4[tr 〈E, λ0〉]2) + (β1 tr 〈E, K〉 + β2 tr E tr K + β3 tr E tr 〈K, λ0〉
+ β4 tr K tr 〈E, λ0〉 + β5 tr 〈E, λ0〉 tr 〈K, λ0〉) + (γ1 tr K2 + γ2(tr K)2 + γ3 tr K tr 〈K, λ0〉 + γ4[tr 〈K, λ0〉]2)} + O(ε3),

(A72)

in which the stretching coefficients α1, α2, α3, α4, the cou-
pling coefficients β1, β2, β3, β4, β5, and the bending coeffi-
cients γ1, γ2, γ3, γ4 are rational functions of Z0 and H0,K0,
so depend on the intrinsic configuration only. Explicitly,

α1 =
[

1 − K0(Z0)2

1 − 2H0Z0 + K0(Z0)2

]2

, (A73a)

γ1 =
[

Z0(1 − H0Z0)

1 − 2H0Z0 + K0(Z0)2

]2

. (A73b)

The much more complicated explicit expressions for the
remaining coefficients in Eq. (A72) are not edifying, and
therefore not presented here.

We have been able to use tensor traces rather than
matrix traces in this expressions since λ0, E, K represent
λ0, E, K with respect to B0 ⊗ (B0)∗. This stresses the ten-
sorial invariance of the theory. The anticommutators in
Eq. (A72) could of course be simplified using the symme-
try of trace, but we have not done so to emphasize their
symmetry.
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f. Averaging over the transverse coordinate

The volume element in the intrinsic configuration V0 is,
by definition and using intrinsic volume conservation and
Eq. (A35b),

dV 0 =
√

det G0

det G
dV

=
√

det G0

(
dS√

g

)
dζ

= ε[1 + 2H0Z0 + K0(Z0)2] dS dZ0 + O(ε2), (A74)

where dV is the volume element of the undeformed config-
uration V and dS is the surface element of the undeformed
midsurface S . From Eq. (26), the elastic energy of the shell is
therefore

E =
∫∫

S
ê dS, (A75a)

in which, at leading order,

ê = ε

∫ H0/2

−H0/2
e(Z0)[1 + 2H0Z0 + K0(Z0)2] dZ0 (A75b)

is the effective two-dimensional energy density. In the integral
limits, H0 is determined in terms of the undeformed thickness
h of the shell by Eq. (A37b).

Since the coefficient functions α1, α2, α3, α4,
β1, β2, β3, β4, β5, and γ1, γ2, γ3, γ4 that appear in Eq. (A72)
are rational functions of Z0, the integral with respect to Z0 in
Eq. (A75b) can be performed in closed form. However, even
the integrals of the “simple” coefficients given in Eqs. (A73)
are extremely cumbersome, so the closed-form expression
of Eq. (A75b) is not given here. For this reason, the theory
for large bending deformations is likely to be most useful
for deformations with some additional symmetry, such as the
axisymmetric deformations discussed in Sec. II.

3. Limit of small bending deformations

We conclude our calculations by discussing the limit of
small bending deformations. In this limit, λ0 → O, and hence
H0,K0 → 0, and the effective strain in Eq. (A69a) reduces to
the rather simpler form

Ê = E − Z0K + O(ε), (A76)

and so Eqs. (A66b) and (26) yield

e =Cε2{[tr E2 + (tr E)2] − 2Z0(tr 〈E, K〉 + tr E tr K)

+ (Z0)2[tr K2 + (tr K)2]} + O(ε3), (A77)

where we have again replaced matrix traces with the corre-
sponding tensor traces. Moreover, Eq. (A37b) shows that, in
this limit, H0 = h, and so Eq. (A75b) becomes

ê = ε

∫ h/2

−h/2
e(Z0) dZ0

= ε3

{
Ch[tr E2+(tr E)2]+ Ch3

12
[tr K2+(tr K)2]

}
+ O(ε4),

(A78)

which recovers the tensorial form of the incompressible limit
of Koiter’s shell theory [57].

APPENDIX B: DERIVATION OF THE GOVERNING
EQUATIONS FOR AXISYMMETRIC DEFORMATIONS

In this Appendix, we derive the governing equations for ax-
isymmetric deformations by varying the elastic energy (57a).
Similar derivations are given in our previous work [9,10] for
the elastic theories considered there, but here, we will keep the
explicit asymptotic scalings in the derivation. From Eq. (63)
and considering leading-order terms only,

δê = ε(ns δEs + nφ δEφ ) + ms δKs + mφ δKφ, (B1)

wherein the shell stresses and shell moments are

ns = Cε2h[ᾱssEs + ᾱsφEφ + h(β̄ssKs + β̄sφKφ )], (B2a)

nφ = Cε2h[ᾱφsEs + αφφEφ + h(βφsKs + βφφKφ )], (B2b)

ms = Cε3h2[β̄ssEs + βφsEφ + h(γssKs + γsφKφ )], (B2c)

mφ = Cε3h2[β̄sφEs + βφφEφ + h(γφsKs + γφφKφ )], (B2d)

since ᾱsφ = ᾱφs, γsφ = γφs. Now, from the definitions of the
shell and curvature strains in Eqs. (60) and (62),

δEs = sec ψ̃ δr̃′ + f̃s tan ψ̃ δψ̃

ε f 0
s

, δEφ = 1

ε f 0
φ

(
δr̃

r

)
, (B3a)

and

δKs = δψ̃ ′(
f 0
s

)2
f 0
φ

, δKφ = 1

f 0
s

(
f 0
φ

)2

(
cos ψ

r
δψ

)
. (B3b)

Hence, on letting

Ns = ns

f̃φ f 0
s

, Nφ = nφ

f̃s f 0
φ

, (B4a)

Ms = ms

f̃φ
(

f 0
s

)2
f 0
φ

, Mφ = mφ

f̃s f 0
s

(
f 0
φ

)2 , (B4b)

we obtain, from Eq. (57a) and using Eqs. (12),

δE
2π

= �r̃Ns sec ψ̃ δr̃ + r̃Ms δψ̃�

−
∫
C

[(
d

ds
(r̃Ms) − r̃ f̃sNs tan ψ̃ − f̃sMφ cos ψ̃

)
δψ̃

]
ds

−
∫
C

[(
d

ds
(r̃Ns sec ψ̃ ) − f̃sNφ

)
δr̃

]
ds, (B5)

from which we read off the governing equations and boundary
conditions.

As in standard shell theories [26], the apparent singular-
ity in the resulting equations is removed by introducing the
transverse shear tension, T = −Ns tan ψ̃ , and we obtain, using
Eqs. (13) and (16),

dNs

ds
= f̃s

(
Nφ − Ns

r̃
cos ψ̃ + κ̃sT

)
, (B6a)

dMs

ds
= f̃s

(
Mφ − Ms

r̃
cos ψ̃ − T

)
. (B6b)
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Moreover, by differentiating the definition of T and using
Eq. (B6a), we find

dT

ds
= − f̃s

(
κ̃sNs + κ̃φNφ + T

cos ψ̃

r̃

)
. (B6c)

Together with the relations

dr̃

ds
= f̃s cos ψ̃,

dψ̃

ds
= f̃sκ̃s (B7)

from Eqs. (13) and (16), Eqs. (B6) determine the deformed
configuration of the shell. Having solved these equations, in-
tegrating the otherwise redundant shape equation z̃′ = f̃s sin ψ̃

from Eqs. (13) determines the shape of the shell completely.

Numerical solution of Eqs. (B6)

We conclude the derivation of the governing equations for
axisymmetric deformations with two remarks on the numeri-
cal solution of Eqs. (B6).

First, we note that Eqs. (B6) are singular where r̃ = 0.
At such a point, geometric continuity implies ψ̃ = 0. Hence
T = 0 there by definition, and Nφ = Ns for regularity in
Eq. (B6a). Moreover, by applying l’Hôpital’s rule to the
definitions in Eqs. (12) and (16), f̃s = f̃φ , κ̃s = κ̃φ . Hence
Eqs. (B6) are replaced with

dNs

ds
= 0,

dMs

ds
= 0,

dT

ds
= − f̃sκ̃sNs, (B8)

of which the first two follow by reflection across the axis of
symmetry, and the last follows by applying l’Hôpital’s rule to
Eq. (B6c) and using the previous observations and Eqs. (B7).

Second, as discussed in Refs. [9,10], too, at each stage of
the numerical solution, f̃s, f̃φ, κ̃s, κ̃φ must be determined from
r̃, ψ̃, Ms, Ns. To begin with, f̃φ, κ̃φ and hence Eφ, Kφ are com-
puted directly from r̃, ψ̃ using their definitions (60) and (62).
We can then compute f̃s, κ̃s by noting that, once f̃φ, Eφ, Kφ

are known, the definitions of Ns, Ms in Eqs. (B2a), (B2c), and
(B4) define a system of linear equations for Es, Ks. Its solution
and definitions (60) and (62) yield f̃s and finally κ̃s. We can
then compute Nφ, Mφ using Eqs. (B2b), (B2d), and (B4), and
thus continue the numerical integration. Moreover, if r̃ = 0,
we similarly obtain two linear equations for f̃ = f̃s = f̃φ and
k̃ = f̃sκ̃s = f̃φκ̃φ , from the solution of which the numerical
integration can be continued.

Varying the energy with respect to geometric variables, as
we have done above, obviates the problem of elastic com-
patibility. This is the question—independent of the problem
of incompatibility of the intrinsic configuration [17] that we
have discussed when setting up the geometry of the intrinsic
configuration—whether a deformation exists that produces a
given set of strains and that provides one of the Föppl–von

Kármán equations of plate theory [15]. In this context, this
discussion of the numerical approach to solving Eqs. (B6)
shows explicitly how they give rise to a compatible config-
uration and therefore how they avoid the problem of elastic
compatibility.

APPENDIX C: NEO-HOOKEAN RELATIONS AS THE THIN
SHELL LIMIT OF GENERAL CONSTITUTIVE RELATIONS

In this final Appendix, we show that the effective two-
dimensional constitutive relations resulting from Eq. (A66b),

e = Cε2[(tr Ê)2 + tr Ê2] + O(ε3), (C1)

are general and therefore do not only apply to the incompress-
ible neo-Hookean three-dimensional constitutive relations
assumed in Eqs. (26). To prove this, we consider, following
Ref. [21], incompressible isotropic energy densities express-
ible as a general power series

e = 1

2

∞∑
m=0

∞∑
n=0

Cmn(I1 − 3)m(I2 − 3)n, (C2)

where I1 = tr C and I2 = (I2
1 − tr C2)/2 are the first two

invariants of the Cauchy–Green tensor C = F�F. We may set
C00 = 0 without loss of generality. The requirement that e � 0
for small, linearly elastic deformations [32] then leads to
C10 + C01 � 0. For C10 + C01 = 0, the material has no linear
elastic response (i.e. zero bulk modulus); we do not consider
that case, and therefore assume that C10 + C01 > 0.

Using a result of Ref. [21] and the notation of Appendix A,
the Cauchy stress tensor for this material is

T = 2[e,I1 F + e,I2 (I1F − FC)]F� − PI, (C3a)

and hence the morphoelastic Piola–Kirchhoff tensor intro-
duced in Eq. (28) is

P = TF̃
−� = 2[e,I1F + e,I2 (I1F − FC)](F0)−� − PF̃

−�
.

(C3b)

In Eqs. (C3), F̃, F0, and F = F̃(F0)−1 are given by
Eqs. (A14b), (A17b), and (A22), respectively, and
P = P(0) + O(ε) is pressure. (We now use an uppercase letter
to denote pressure to emphasize that it is scaled differently to
Appendix A; in the notation used there, P = C p.)

(i) Expansion and partial solution at order O(1). From
the leading-order expansion of F in Eq. (A40) and using
Corollary 2 and g̃ = g0 + O(ε) from Eq. (A26b), we compute

F� =
(

(g0)−1B�g0 (g0)−1w

v�g0 c

)
+ O(ε), (C4)

in which B, v, w, c are given by Eqs. (A41), and thence

C =
(

(g0)−1B�g0B + (g0)−1ww� (g0)−1B�g0v + c(g0)−1w

v�g0B + cw� v�g0v + c2

)
+ O(ε), (C5)

In particular,

I1 = tr
(
(g0)−1B�g0B

) + w�(g0)−1w + v�g0v + c2 + O(ε). (C6)

Since the incompressibility condition is independent of the constitutive relations, its leading-order expansion (A42) still holds
true. Using this and the leading-order expansions (A43) and (A44b) and writing e,I1 = E1 + O(ε), e,I2 = E2 + O(ε), Eq. (C3b)
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yields

P = 1

ζ 0
,ζ

⎛
⎜⎝ O(1)

2
{
E1 + E2

[
tr

(
(g0)−1B�g0B

) + w�(g0)−1w
]}

v
− 2E2

[
B(g0)−1B�g0v + cB(g0)−1w

] + P(0)(det B)(g0)−1B−�w

O(1) 2c
[
E1 + E2tr

(
(g0)−1B�g0B

)] − 2E2w�(g0)−1B�g0v − P(0) det B

⎞
⎟⎠ + O(ε). (C7)

Writing P = P(0) + εP(1) + O(ε2), the leading-order boundary condition is P(0)n ≡ 0, similary to Appendix A. Hence, from
Eqs. (A42) and (C7), the leading-order problem is

c − w�B−1v = (det B)−1, (C8a)

2
{
E1+E2

[
tr

(
(g0)−1B�g0B

)+w�(g0)−1w
]}

v− 2E2
(
B(g0)−1B�g0v+cB(g0)−1w

)+P(0)(det B)(g0)−1B−�w=0, (C8b)

2c
[
E1 + E2 tr

(
(g0)−1B�g0B

)] − 2E2w�(g0)−1B�g0v − P(0) det B = 0. (C8c)

These equations have a trivial solution

Z(0) ≡ Z0, S(0) ≡ 0, P(0) = C10 + 2C01, (C9)

analogous to the leading-order solution found in Appendix A and for which, from Eqs. (A41), B = I, v = w = 0, c = 1, and
hence C = I + O(ε), so I1 = I2 = 3 + O(ε) and thus E1 = C10/2, E2 = C01/2 from Eq. (C2). We were not, however, able to
show that this is the only solution of the nonlinear first-order differential equations for Z(0), S(0) as functions of Z0 provided
by Eqs. (C8) that satisfies the conditions Z(0) = 0, S(0) = 0 on the midsurface Z0 = 0. In this respect, our solution of the
leading-order problem remains partial.

Our failure to solve Eqs. (C8) emphasizes once again that what distinguishes these problems of large bending deformations
from classical problems in elastic shell theories is the fact that the leading-order problem for large bending deformations is not
trivial. In fact, were a second solution of Eqs. (C8) to exist, global energy considerations would select the solution; this would
open a new can of worms in the analysis.

(ii) Expansion at order O(ε). At this stage, we take Eqs. (C9) as the solution of the leading-order problem (C8) and proceed
thence. In particular, the deformation gradient still has an expansion of the form in Eq. (A57). Hence Eq. (A64) still holds true,
and we compute

C =
(

I + ε
[
2E+B(1)+(g0)−1B�

(1)g
0
]

ε
[
v(1)+(g0)−1w(1)

]
ε
[
v�

(1)g
0 + w�

(1)

]
1 + 2εc(1)

)
+ O(ε2), (C10a)

C2 =
(

I + 2ε
[
2E + B(1) + (g0)−1B�

(1)g
0
]

O(ε)

O(ε) 1 + 4εc(1)

)
+ O(ε2), (C10b)

whence

I1 = 3 + ε[2(tr E + tr B(1) + c(1) )] + O(ε2), (C11a)

I2 = 3 + ε[4(tr E + tr B(1) + c(1) )] + O(ε2). (C11b)

The incompressibility condition being independent of the constitutive relations, Eq. (A59b) and hence the first of Eqs. (A63a)
still hold. The latter implies I1 = I2 = 3 + O(ε2). Thus

e = 1
2 [C10(I1 − 3) + C01(I2 − 3)] + O(ε4), (C12)

and, in particular, e,I1 = C10/2 + O(ε2), e,I2 = C01/2 + O(ε2). In this way, the constitutive relations have reduced, up to smaller
corrections, to those of a Mooney–Rivlin solid [17]. Moreover, Eq. (A60a) and hence Eqs. (A60b) and (A61b) still hold. Since
P = C10 + 2C01 + O(ε), it follows that

P =

⎛
⎜⎝ O(ε) ε

C10 + C01

c0
(0)

[
v(1) + (g0)−1w(1)

] + O(ε2)

O(ε) O(ε)

⎞
⎟⎠ �⇒ P(0) = O, P(1)n =

⎛
⎜⎝

C10 + C01

c0
(0)

[
v(1) + (g0)−1w(1)

]
O(1)

⎞
⎟⎠.

(C13)

Similarly to Appendix A, the boundary conditions now imply P(1)n ≡ 0, so, noting that c0
(0) > 0 and C10 + C01 > 0, the second

of Eqs. (A63a) also still holds.
(iii) Expansion at order O(ε2). Since the expansion (A59b) of the incompressibility condition still holds, Eqs. (A63a) still

imply Eq. (A63b) and hence Eq. (A66a). Meanwhile, Eqs. (A63a) and (C10a) show that the off-diagonal terms in Eq. (A65) are
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in fact of order O(ε2), so it follows from Eq. (A65) that

tr C2 = tr
{
I + ε

(
2E + B(1) + (g0)−1B�

(1)g
0) + ε2

[
2
(
EB(1) + (g0)−1B�

(1)g
0E

) + B(2) + (g0)−1B�
(2)g

0 + (g0)−1B�
(1)g

0B(1)

+ (g0)−1w(1)w�
(1)

]+O(ε3)
}2+[

1+2εc(1)+ε2
(
2c(2)+c2

(1)+v�
(1)g

0v(1)
)+O(ε3)

]2+O(ε4)

= 3 + 4ε(c(1) + tr E + tr B(1) ) + 2ε2 [
2 tr E2 + 4 tr (EB(1) ) + 4 tr

(
E(g0)−1B�

(1)g
0) + tr B2

(1) + 2 tr
(
B(1)(g0)−1B�

(1)g
0)

+ 2 tr B(2) + w�
(1)(g

0)−1w(1) + 3c2
(1) + 2c(2) + v�

(1)g
0v(1)

] + O(ε3)

= 3+4ε2{2(tr E+tr B(1) )
2+2 tr E2+ tr B2

(1) + tr
(
(g0)−1B�

(1)g
0B(1)

) + 2
[
tr (EB(1) ) + tr

(
E(g0)−1B�

(1)g
0)]} + O(ε3),

(C14)

using Eqs. (A63) and Lemma 4, similarly to the calculations leading up to Eq. (A66a).
Finally, if we write I1 = 3 + ε2I(2) + O(ε3) using Eq. (A66a), then Eq. (C14) shows that tr C2 = 3 + 4ε2I(2) + O(ε3). These

expansions imply that I2 = 3 + ε2I(2) + O(ε3). Equivalently, I2 − 3 = I1 − 3 + O(ε3). Hence, from Eq. (C12),

e = C

2
(I1 − 3) + O(ε3), with C = C10 + C01 > 0. (C15)

Up to smaller corrections, these are the neo-Hookean constitutive relations assumed in Eqs. (26) and throughout Sec. II and
Appendix A, and which, as shown there, indeed reduce at order O(ε2) to the effective two-dimensional constitutive relations in
Eq. (C1). Assuming that the trivial solution (C9) of the leading-order problem defined by Eqs. (C8) is unique, this proves our
claim in Sec. IV, that these effective two-dimensional constitutive relations are general.

[1] R. Keller, L. A. Davidson, and D. R. Shook, How we are
shaped: The biomechanics of gastrulation, Differentiation 71,
171 (2003).

[2] M. Leptin, Gastrulation movements: The logic and the nuts and
bolts, Dev. Cell 8, 305 (2005).

[3] T. Lecuit and P.-F. Lenne, Cell surface mechanics and the con-
trol of cell shape, tissue patterns and morphogenesis, Nat. Rev.
Mol. Cell Biol. 8, 633 (2007).

[4] R. Keller and D. Shook, The bending of cell sheets—From
folding to rolling, BMC Biol. 9, 90 (2011).

[5] T. Lecuit, P.-F. Lenne, and E. Munro, Force generation, trans-
mission, and integration during cell and tissue morphogenesis,
Annu. Rev. Cell Dev. Biol. 27, 157 (2011).

[6] M. Tada and C.-P. Heisenberg, Convergent extension: Using
collective cell migration and cell intercalation to shape em-
bryos, Development 139, 3897 (2012).

[7] S. Höhn, A. R. Honerkamp-Smith, P. A. Haas, P. Khuc Trong,
and R. E. Goldstein, Dynamics of a Volvox Embryo Turning
Itself Inside Out, Phys. Rev. Lett. 114, 178101 (2015).

[8] P. A. Haas and R. E. Goldstein, Elasticity and glocality: Initia-
tion of embryonic inversion in Volvox, J. R. Soc. Interface 12,
20150671 (2015).

[9] P. A. Haas, S. S. M. H. Höhn, A. R. Honerkamp-Smith,
J. B. Kirkegaard, and R. E. Goldstein, The noisy basis of
morphogenesis: Mechanisms and mechanics of cell sheet fold-
ing inferred from developmental variability, PLoS Biol. 16,
e2005536 (2018).

[10] P. A. Haas and R. E. Goldstein, Embryonic inversion in Volvox
carteri: The flipping and peeling of elastic lips, Phys. Rev. E 98,
052415 (2018).

[11] N. C. Heer, P. W. Miller, S. Chanet, N. Stoop, J. Dunkel,
and A. C. Martin, Actomyosin-based tissue folding requires
a multicellular myosin gradient, Development 144, 1876
(2017).

[12] H. G. Yevick, P. W. Miller, J. Dunkel, and A. C. Martin, Struc-
tural redundancy in supracellular actomyosin networks enables
robust tissue folding, Dev. Cell 50, 586 (2019).

[13] P. W. Miller, N. Stoop, and J. Dunkel, Geometry of Wave
Propagation on Active Deformable Surfaces, Phys. Rev. Lett.
120, 268001 (2018).

[14] P. G. Ciarlet, An introduction to differential geometry
with applications to elasticity, J. Elasticity 78, 1
(2005).

[15] B. Audoly and Y. Pomeau, in Elasticity and Geometry (Oxford
University Press, Oxford, UK, 2010), Chap. 6, pp. 159–213;
Chap. 12, pp. 35–453; and App. D, pp. 571–581.

[16] D. J. Steigmann, Koiter’s shell theory from the perspective
of three-dimensional nonlinear elasticity, J. Elasticity 111, 91
(2013).

[17] A. Goriely, in The Mathematics and Mechanics of Biological
Growth (Springer, Berlin, Germany, 2017), Chap. 11, pp. 261–
344 and Chap. 12, pp. 345–373.

[18] D. Ambrosi, M. Ben Amar, C. J. Cyron, A. De Simone, A.
Goriely, J. D. Humphrey, and E. Kuhl, Growth and remodelling
of living tissues: Perspectives, challenges and opportunities,
J. R. Soc. Interface 16, 20190233 (2019).

[19] E. K. Rodriguez, A. Hoger, and A. D. McCulloch, Stress-
dependent finite growth in soft elastic tissues, J. Biomech. 27,
455 (1994).

[20] J. Dervaux and M. Ben Amar, Morphogenesis of Growing Soft
Tissues, Phys. Rev. Lett. 101, 068101 (2008).

[21] J. Dervaux, P. Ciarletta, and M. Ben Amar, Morphogenesis
of thin hyperelastic plates: A constitutive theory of biological
growth in the Föppl–von Kármán limit, J. Mech. Phys. Solids
57, 458 (2009).

[22] J. McMahon, A. Goriely, and M. Tabor, Nonlinear morphoelas-
tic plates I: Genesis of residual stress, Math. Mech. Solids 16,
812 (2011).

022411-28

https://doi.org/10.1046/j.1432-0436.2003.710301.x
https://doi.org/10.1016/j.devcel.2005.02.007
https://doi.org/10.1038/nrm2222
https://doi.org/10.1186/1741-7007-9-90
https://doi.org/10.1146/annurev-cellbio-100109-104027
https://doi.org/10.1242/dev.073007
https://doi.org/10.1103/PhysRevLett.114.178101
https://doi.org/10.1098/rsif.2015.0671
https://doi.org/10.1371/journal.pbio.2005536
https://doi.org/10.1103/PhysRevE.98.052415
https://doi.org/10.1242/dev.146761
https://doi.org/10.1016/j.devcel.2019.06.015
https://doi.org/10.1103/PhysRevLett.120.268001
https://doi.org/10.1007/s10659-005-4738-8
https://doi.org/10.1007/s10659-012-9393-2
https://doi.org/10.1098/rsif.2019.0233
https://doi.org/10.1016/0021-9290(94)90021-3
https://doi.org/10.1103/PhysRevLett.101.068101
https://doi.org/10.1016/j.jmps.2008.11.011
https://doi.org/10.1177/1081286510387233


MORPHOELASTICITY OF LARGE BENDING … PHYSICAL REVIEW E 103, 022411 (2021)

[23] E. Efrati, E. Sharon, and R. Kupferman, Elastic theory of un-
constrained non-Euclidean plates, J. Mech. Phys. Solids 57, 762
(2009).

[24] S. Sadik, A. Angoshtari, A. Goriely, and A. Yavari, A geometric
theory of nonlinear morphoelastic shells, J. Nonlinear Sci. 26,
929 (2016).

[25] E. Ventsel and T. Krauthammer, in Thin Plates and Shells:
Theory, Analysis, and Applications (Marcel Dekker, New York,
NY, 2001), Chap. 12, pp. 325–347.

[26] A. Libai and J. G. Simmonds, in The Nonlinear Theory of Elas-
tic Shells, 2nd ed. (Cambridge University Press, Cambridge,
UK, 2005), Chap. V, pp. 159–342.

[27] A. Hallmann, Morphogenesis in the family Volvocaceae: Dif-
ferent tactics for turning an embryo right-side out, Protist 157,
445 (2006).

[28] S. Höhn and A. Hallmann, There is more than one way to
turn a spherical cellular monolayer inside out: Type B embryo
inversion in Volvox globator, BMC Biol. 9, 89 (2011).

[29] V. Conte, F. Ulrich, B. Baum, J. Muñoz, J. Veldhuis, W.
Brodland, and M. Miodownik, A biomechanical analysis of
ventral furrow formation in the Drosophila melanogaster em-
bryo, PLoS ONE 7, e34473 (2012).

[30] M. Janet, Sur la possibilité de plonger un espace riemannien
donné dans un espace euclidien, Ann. Soc. Pol. Math. 5, 38
(1926).

[31] É. Cartan, Sur la possibilité de plonger un espace riemannien
donné dans un espace euclidien, Ann. Soc. Pol. Math. 6, 1
(1927).

[32] R. W. Ogden, in Non-linear Elastic Deformations (Dover,
Mineola, NY, 1997), Chap. 1, pp. 1–72; Chap. 2.2, pp. 83–121;
Chap. 3.4, pp. 152–155; and Chap. 6.1, pp. 328–351.

[33] Expansions were carried out using MATHEMATICA (Wolfram,
Inc.) to assist with manipulating the complicated algebraic ex-
pressions that arise in these calculations.

[34] M. Pezzulla, N. Stoop, X. Jiang, and D. P. Holmes, Curvature-
driven morphing of non-Euclidean shells, Proc. R. Soc. A 473,
20170087 (2017).

[35] J. N. Reddy, in Theory and Analysis of Elastic Plates and
Shells, 2nd ed. (CRC Press, Boca Raton, FL, 2007), Chap. 10,
pp. 359–402.

[36] D. L. Kirk, Volvox: Molecular-Genetic Origins of Multicellular-
ity and Cellular Differentiation (Cambridge University Press,
Cambridge, UK, 1998).

[37] D. L. Kirk, A twelve-step program for evolving multicellularity
and a division of labor, BioEssays 27, 299 (2005).

[38] M. D. Herron, Origins of multicellular complexity: Volvox and
the volvocine algae, Mol. Ecol. 25, 1213 (2016).

[39] R. E. Goldstein, Green algae as model organisms for bi-
ological fluid dynamics, Annu. Rev. Fluid Mech. 47, 343
(2015).

[40] D. L. Kirk and I. Nishii, Volvox carteri as a model for study-
ing the genetic and cytological control of morphogenesis,
Dev. Growth Differ. 43, 621 (2001).

[41] G. Matt and J. Umen, Volvox: A simple algal model for embryo-
genesis, morphogenesis and cellular differentiation, Dev. Biol.
419, 99 (2016).

[42] A. G. Desnitskiy, Comparative analysis of embryonic inversion
in algae of the genus Volvox (Volvocales, Chlorophyta), Russ. J.
Dev. Biol. 49, 129 (2018).

[43] E. J. Doedel, B. E. Oldman, A. R. Champneys, F. Dercole,
T. Fairgrieve, Y. Kuznetsov, R. Paffenroth, B. Sandstede, X.
Wang, and C. Zhang, AUTO-07P: Continuation and Bifurca-
tion Software for Ordinary Differential Equations, Tech. Rep.,
Concordia University, Montreal, Canada (2012).

[44] W. J. Cooper and R. C. Albertson, Quantification and variation
in experimental studies of morphogenesis, Dev. Biol. 321, 295
(2008).

[45] A. C. Oates, N. Gorfinkel, M. González-Gaitán, and C.-P.
Heisenberg, Quantitative approaches in developmental biology,
Nat. Rev. Gen. 10, 517 (2009).

[46] L. A. Mihai, L. Chin, P. A. Janmey, and A. Goriely, A compar-
ison of hyperelastic constitutive models applicable to brain and
fat tissues, J. R. Soc. Interface 12, 20150486 (2015).

[47] L. A. Mihai, S. Budday, G. A. Holzapfel, E. Kuhl, and A.
Goriely, A family of hyperelastic models for human brain tis-
sue, J. Mech. Phys. Solids 106, 60 (2017).

[48] S. Budday, G. Sommer, C. Birkl, C. Langkammer, J. Haybaeck,
J. Kohnert, M. Bauer, F. Paulsen, P. Steinmann, E. Kuhl, and
G. A. Holzapfel, Mechanical characterization of human brain
tissue, Acta Biomater. 48, 319 (2017).

[49] H. A. Erbay, On the asymptotic membrane theory of thin hy-
perelastic plates, Int. J. Eng. Sci. 35, 151 (1997).

[50] P. A. Haas and R. E. Goldstein, Nonlinear and nonlocal elas-
ticity in coarse-grained differential-tension models of epithelia,
Phys. Rev. E 99, 022411 (2019).

[51] E. Kreyszig, in Introduction to Differential Geometry and Rie-
mannian Geometry (University of Toronto Press, Toronto, ON,
1968), Chap. 4, pp. 78–99 and Chap. 6, pp. 125–136.

[52] Block matrices will represent tensors with respect to tensor
products of a left tangent basis and right dual basis, so can
be multiplied without incurring metric factors and traces can
be computed without raising or lowering indices. In fact, the
indices of the entries of these block matrices (and also of the
matrices that appear as their components) will never be raised
or lowered. In particular, transposes are understood to be matrix
transposes, so do not change the covariant or contravariant
nature of indices.

[53] D. S. Bernstein, in Matrix Mathematics: Theory, Facts, and
Formulas, 2nd ed. (Princeton University Press, Princeton, NJ,
2009), Chap. 2.8, pp. 115–119 and Chap. 4.4, pp. 261–267.

[54] This result is doubtless known in the solid mechanical literature:
e.g., it appears without proof as Eq. (5.8) of A. Yavari and
A. Goriely, Riemann–Cartan geometry of nonlinear dislocation
mechanics, Arch. Ration. Mech. Anal. 205, 59 (2012).

[55] The indices in Eq. (A28) are raised or lowered with different
metrics, g̃ and g0, which are asymptotically close to each other
by Eq. (A26b). Hence taking tensor transposes explicitly by
multiplying matrices by the appropriate metrics enables us to
impose the asymptotic scaling (A26b) during the asymptotic
expansion. This is the reason why transposes in our block
matrix notation [52] are matrix transposes rather than tensor
transposes.

[56] R. A. Horn and C. R. Johnson, in Matrix Analysis (Cambridge
University Press, Cambridge, UK, 1985), Chap. 1.3, pp. 44–57;
Chap. 4.1, pp. 169–176; and Chap. 7.2, pp. 402–411.

[57] A. L. Gregory, J. Lasenby, and A. Agarwal, The elastic theory
of shells using geometric algebra, R. Soc. Open Sci. 4, 170065
(2017).

022411-29

https://doi.org/10.1016/j.jmps.2008.12.004
https://doi.org/10.1007/s00332-016-9294-9
https://doi.org/10.1016/j.protis.2006.05.010
https://doi.org/10.1186/1741-7007-9-89
https://doi.org/10.1371/journal.pone.0034473
https://doi.org/10.1098/rspa.2017.0087
https://doi.org/10.1002/bies.20197
https://doi.org/10.1111/mec.13551
https://doi.org/10.1146/annurev-fluid-010313-141426
https://doi.org/10.1046/j.1440-169X.2001.00612.x
https://doi.org/10.1016/j.ydbio.2016.07.014
https://doi.org/10.1134/S1062360418030025
https://doi.org/10.1016/j.ydbio.2008.06.025
https://doi.org/10.1038/nrg2548
https://doi.org/10.1098/rsif.2015.0486
https://doi.org/10.1016/j.jmps.2017.05.015
https://doi.org/10.1016/j.actbio.2016.10.036
https://doi.org/10.1016/S0020-7225(96)00068-7
https://doi.org/10.1103/PhysRevE.99.022411
https://doi.org/10.1007/s00205-012-0500-0
https://doi.org/10.1098/rsos.170065

