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The equilibrium shapes of biological structures as diverse as plant tendrils and bacterial filaments can be
altered by externally imposed stresses of sufficient duration. We study the simplest model for this
morphoelasticity—a filament whose intrinsic curvatures relax to the local curvatures—and illustrate its prop-
erties in the context of dynamic Euler buckling and writhing. When a thrust or twist is ramped in time the
effective elastic properties of the filament depend on the load rate. Slow ramps interrupted by removal of the
external forces can leave in equilibrium any of a whole continuum of buckled shapes. Morphoelastic relaxation
can also allow a filament to bypass a bifurcation.
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It is a familiar feature of plants that they can be trained to
grow into a desired shape by external forces of sufficient
duration. Viewed from the perspective of the theory of elas-
ticity �1�, this training corresponds to a change in the con-
figuration of vanishing elastic moments. The simplest elastic
energy of filaments is quadratic in the local curvatures, with
a straight ground states; bent equilibria are described by in-
troducing “intrinsic curvatures,” which feature in theories of
lipid membranes �2� and bacterial flagella �3,4�. The process
of training may thus be viewed as the evolution of the pre-
ferred curvatures to those encouraged by the forces. These
changes arise from the addition of new material to the walls
of plant cells �5� or to the peptidoglycan network of bacterial
cell walls �6�, or from rearrangements of interconnections
within a membrane, as in the echinocytosis of erythrocytes
�7�. Such structural rearrangements result in mechanical
properties of these morphoelastic objects which depend on
the dynamics of time-dependent loads, much as measure-
ments of the strength of molecular bonds depend on the dy-
namics of time-dependent forces �8�.

Figure 1 shows a phenomenon motivating important ques-
tions about morphoelasticity. As many climbing vines grow
they produce thin, nearly straight tendrils which precess
slowly around their base in a dance known as circumnutation
�9,10�, ready to grasp objects in their path. Within hours after
its end loops around an object, a tendril develops helical
regions of both hands connected by perversions. Existing
models �11,12� view perversions as heteroclinic connections
between two helical ground states in which external tension
and intrinsic curvature balance. Yet, if at some intermediate
time one severs the connection between the evolving fila-
ment and the plant �Fig. 1�, thus removing the tension, the
shape differs little from the intact one, showing that the ten-
dril actually passes slowly through a continuum of quasi-

equilibrium states. The stability of such intermediate states
without external constraints has remained unexplained. More
generally, it is natural to ask: How should elasticity theory be
formulated to describe morphoelasticity? How are bifurca-
tions, such as Euler buckling and twist-induced writhing
�13,14�, altered by the relaxation processes? What are the
effective elastic properties of such filaments under time-
dependent loads? How can filament growth �15,16� be incor-
porated?

We study here the simplest phenomenological model of
morphoelasticity, with the feature termed “viscoelasticity”
�17� in the formal mechanics literature �18–23�. It has a
single time scale for the relaxation of an intrinsic curvature
to the actual curvature of the filament. Our focus is on shape
evolution under time-dependent loads to illustrate how a fila-
ment is trained and to analyze the effective spring constant of
buckled filaments as a function of load rate, a quantity ame-
nable to direct measurement.

Consider a filament of length L and bending modulus A
confined to a plane, whose shape is given by the tangent
angle ��s� as a function of arc length s, and with clamped
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FIG. 1. �Color online� A tendril of the genus Passiflora. An
intact tendril �a� with perversions �i�, �ii� maintains its shape when
its connection to the plant is cut �b, arrow�. Scale bar is 1 cm.
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boundary conditions; ��0�=��L�=0. Let a thrusting force
of magnitude F act at the two ends. With �=�s� and
�0�s�=�s�

0 the signed local and intrinsic curvatures, the elas-
tic energy is �1�

E��� = �
0

L

ds�1

2
A�� − �0�2 + F cos���� . �1�

If the filament shape is (x�s� ,y�s�), with xs=cos���, the end-
to-end displacement along x is L=�0

L ds cos���, and the sec-
ond term in �1� is FL, the work done by the force.

Recall the Euler buckling found when �0	0. Lineariza-
tion of the Euler-Lagrange equation A�ss=−F sin���
shows that the mode ��s�=a sin�2�s /L� sets in at a
critical force Fc=4�2A /L2. Setting F=Fc�1+ f�, with f �1,
defining the energy e=2�E−FL� /FcL, and expanding, we
obtain e
−�1/2�fa2+ �1/32�a4+¯. Minimizing e yields
fa− �1/8�a3=0, so a±
 ± �8f�1/2: the usual pitchfork bifurca-
tion. Just beyond buckling the fractional compression is

X 	
L − L

L



a2

4
, �2�

which, for this ordinary buckling problem, yields X
2f .
This is Hookean elasticity, f =kX, with an ideal spring con-
stant k=1/2, or 4�2A /L3 in dimensionful units.

Now we generalize this problem by letting the force f be
ramped in time as f =rt, and reintroduce the intrinsic curva-
ture �0 and its relaxation time �,

�
��0

�t
= � − �0. �3�

The strong separation of time scales between the relaxation
of the filament geometry and the internal stresses implies that
the shape can be solved in a quasistatic approximation,
through the Euler-Lagrange equation

A��ss − �ss
0 � = − F sin��� . �4�

We first solve the coupled system �3� and �4� numerically,
ramping from f =0 to 0.1 �an upper limit within the scaling
region when �→��, with initial amplitude a0=0.01. A se-

quence of shapes is shown in Fig. 2, and a convenient order
parameter, the amplitude a of the tangent angle, is shown in
Fig. 3 as a function of f for various relaxation times. Figure
3�a� shows that the amplitude at a given f increases as �
decreases, indicating “softening” of the filament. All curves
�Fig. 3�b�� eventually display the f1/2 behavior of the pitch-
fork bifurcation, but with ever larger prefactors as �→0. At
very small f there is a crossover associated with the finite
initial value a0.

An effective spring constant keff of the buckled filament
can be estimated from the linear region of the f-X curves �see
Fig. 4�. As �→0, keff→0; if the force ramp is infinitely slow
compared to the relaxation time the intrinsic curvature re-
laxes to the actual curvature and there is no restoring force.
To understand this, we analyze the region close to the bifur-
cation using �
a�t�sin�2�s /L� and �0
b�t�sin�2�s /L�,
leading to the system

rta + b −
a3

8
= 0, �

db

dt
= a − b , �5�

with a�0�=a0 and b�0�=0. In the fast ramp regime, r�	1,
we let 
=rt and set �=1/r�, and �5� becomes


a + b −
a3

8
= 0,

db

d

= ��a − b� . �6�

Assuming regular expansions, a�
�=a�0�+�a�1�+¯ and
b�
�=b�0�+�b�1�+¯, Eq. �6� yields b�0�=0 and a�0�= �8
�1/2

as before, and

FIG. 2. �Color online� Filament shapes during a force ramp. The
force f varies from 0 to 0.1, with r�=0.2, displayed at equal inter-
vals. Dashed lines show analytical approximation.

FIG. 3. Numerical results on dynamic buckling. Linear �a� and
logarithmic �b� plots of mode amplitude a vs ramped force f for
r�=0.05, 0.1, 0.2, 0.5, 1, 2, 5, and � �dashed�.

FIG. 4. Effective spring constant. Asymptotic forms �10� and
�14� derived in text �dashed� compared with numerics �solid circles�
and interpolating formula �solid� from Eq. �16�.
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db�1�

d

= a�0� − b�0�, 
a�1� + b�1� −

3a�0�2a�1�

8
= 0. �7�

Since b�0�=0, we can solve immediately for b�1�,

b�1��
� = �
0




d
�a�0��
�� =
2�8

3

3/2. �8�

This yields a�1�=b�1� /2
= �8
�1/2 /3, and thus

a�
� 
 �1 +
1

3r�
+ ¯ ��8
�1/2. �9�

Using Eq. �2�, the spring constant has the asymptotic form

keff =
1

2
�1 −

2

3r�
+ ¯ � . �10�

In the extreme morphoelastic limit, r��1, we define �
= t /� with the small parameter =r�. Then the pair �5� be-
comes

�a + b −
a3

8
= 0 and

db

d�
= a − b . �11�

In the limit →0 we have b=a3 /8, hence �3/8�a2da /d�
=a−a3 /8, which yields

a��� = 81/2�1 − �1 −
a0

2

8
�e−2�/31/2

. �12�

As �→0, with �	a0
2 /8, we find

a��� 

4

31/2�1/2, �13�

which yields the spring constant vanishing as �→0,

keff 

3

4
r� + ¯ . �14�

Figure 4 shows good agreement with these two limiting
cases. Inspection of these asymptotic formulas reveals that
the amplitudes a and b have the same power-law time de-
pendence in the two regimes, suggesting that an interpolating
formula can be obtained through the ansatz

a = �t1/2 + O�t�, b = �t3/2 + O�t2� . �15�

One then deduces �2=8r+16/3� and thus

keff =
3r�

4 + 6r�
, �16�

which reproduces the limits �10� and �14� and nicely matches
the numerical results over the full range of r�. This simple
approximation to the mode dynamics also quite accurately
reproduces the buckled filament shapes even far beyond the
bifurcation �Fig. 2�.

If the thrusting force is gradually removed at some point
following a ramp, then the filament shape will soon adapt to
the evolving preferred curvature and it will then be at the
minimum of the elastic energy, with ��s�=�0�s� everywhere.
Figure 5 shows five sequences of trained shapes which result

from a protocol of the force consisting of a ramp followed by
exponential relaxation �with varying decay rates� down to
f =−1, where the total thrust vanishes. As the force is re-
moved ever more slowly, the filament remains in a more
highly bent shape. Each final trained shape is typically very
close to that of a nonmorphoelastic filament subjected to
some particular external force, but of course the latter would
not remain in place after the removal of that force. Clearly,
there is no simple variational principle governing the final
�history-dependent� shapes.

While the analysis above focused on properties of fila-
ments beyond a bifurcation, morphoelasticity can also allow
a system to bypass a bifurcation. A simple example is pro-
vided by the writhing instability of a twisted filament,
wherein a filament of length L, bending modulus A, and
twisting modulus C, clamped at both ends, is subjected to a
twist � in the presence of a preferred twist �0. If the filament
is aligned along the z axis and the perpendicular displace-
ments of the rod centerline are X�z� and Y�z�, then the equi-
librium relation for the complex displacement 
=X+ iY is �1�

A
zzzz − iC�� − �0�
zzz = 0, �17�

with boundary conditions 
�0�=
z�0�=
�L�=
z�L�=0.
Stability analysis shows �1� there is a critical twist
�c−�0
8.98A /C beyond which a writhing instability will
occur. Suppose now that the twist is increased gradually in
time as �=�crt, and also that the material of the filament
morphoelastically adjusts to the imposed twist by developing
a preferred twist �0. A simple dynamics for �0 is like that for
the intrinsic curvature �3�,

�
��0

�t
= � − �0. �18�

A simple calculation shows that �−�0=�cr��1−e−t/��; in the
long-time limit, the intrinsic twist lags behind the imposed
twist by �cr�. It follows that the writhing instability will

FIG. 5. Filaments trained with time-dependent forces. For each
of the force-time profiles shown in �a� is the corresponding se-
quence of filament shapes �b� shown at intervals of �t=0.01.
Dashed line indicates end of linear ramp.
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only occur if r��1, i.e., if the twist is ramped sufficiently
fast or the relaxation time is sufficiently long. Otherwise, the
writhing instability is completely suppressed.

The results presented here provide a basic framework for
analyzing the morphoelastic properties of various biological
structures. While our analysis was confined to a few particu-
lar protocols for application of time-dependent forces or
torques, it is clear that a wide range of monotonic or oscil-
latory loading sequences, or, alternatively, specified end
point positions or lateral constraints, can be explored to ex-
amine the internal relaxation rates of the intrinsic curvatures
and the long-time dynamics of buckled shapes �24�. Among
the most promising candidates for detailed study of this be-
havior are bacterial filaments �6�, linear concatenations of
mutant bacterial cells which fail to separate after cell divi-
sion and thus remain attached end-to-end. Their relatively
large lengths �exceeding hundreds of micrometers� and slow
growth dynamics �hours� makes them ideally suited to study

various aspects of cell wall elasticity �25�, including in par-
ticular how external forces affect the growth morphology.
Such forces can be supplied by optical traps, micropipets, or
confinement. Plant tendrils constitute a second important
type of morphoelastic filament suited to experimental study.
It is of interest to generalize the present approach to include
not only uniform but also differential filament growth, with
azimuthal variations in cell size around the filament cross
section. This is suspected of playing a role in specific fea-
tures of tendril perversions �26�, and may manifest itself as
intrinsic curvatures which grow in time.
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