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This file contains additional experimental and calculational details.

Embryo Culture. Xenopus embryos were prepared
as described previously [S1]. Briefly, mature Xenopus
laevis males and females were obtained from Nasco [S2].
Females were injected with 50 units of pregnant mare
serum gonadotropin 3 days in advance and 500 units hu-
man chorionic gonadotropin 1 day in advance in the dor-
sal lymph sack to induce natural ovulation. Eggs were
laid in a 1× MMR buffer (5 mM HEPES pH 7.8, 100 mM
NaCl, 2 mM KCl, 1 mM MgSO4, 2 mM CaCl2, 0.1 mM
EDTA). Xenopus embryos were cultured at room tem-
perature or 15◦ C in the 0.1× MMR until they reached
stage 27/28. Experiments with embryos were performed
at the late tailbud stages (stages 28-30, as describe in
Faber and Nieuwkoop [S3]). Embryos were terminated
humanely immediately following the experiments.

Our work with Xenopus laevis is covered under the
Home Office Project License PPL 70/8591 and frog hus-
bandry and all experiments were performed according to
the relevant regulatory standard. All experimental pro-
cedures involving animals were carried out in accordance
with the UK Animals (Scientific Procedures) Act 1986.
Moreover, we only used surplus embryos for this study, to
conform with the NC3Rs guidance to exploit the possi-
bility to minimise the use of animals by sharing embryos
with collaborators.

Pulsatility of the flow field. Since the cilia within a
bundle do not move in phase, and the far field contribu-
tion arises from many bundles that are also not in strict
phase coherence, the pulsatility of the flow is low com-
pared to the time average ū. Examples of the velocity
signal u(t) above and between bundles (cf. Fig. 2b) are
shown in Fig. S1. The relative root mean square value of
the fluctuations (u(t)− ū)/ū is ∼0.2 at the cilia tips, and
it decays to ∼0.1 for z > 2`, as well as between bundles,
on top of non ciliated cells. The steady component of the
flow is then the most relevant, and in this study we con-
sider only u = ū. This does not exclude more intricate
synchronization phenomena between bundles.

Statistics. To fit any quantity y measured at a given
hydrodynamic load x, we assume a linear relation y =
a+ bx and find 95% confidence intervals for the averages
ā and b̄ of the parameters ai and bi given by a least-
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FIG. S1. Lateral velocity u(t) over time (raw PIV-data) sam-
pled at a point at the cilia tips (blue; x = 0, z ≈ ` ∼ 15µm);
above the cilia (yellow; x = 0, z ≈ 2`); between two bundles
(green; x = 40µm, z = `). Coordinates are those of Fig. 2(b).
Black solid lines: time averages; Dashed lines: r.m.s. of the
fluctuations around their time average.

square fit of the measured values (xi,m, yi,m) acquired
for the i-th MCC. We have [S4]:

ā =

∑N
i=1 ai/σ
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i=1(1/σ2
a,i)
± 2σµā (S1a)
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± 2σµb̄, (S1b)

The standard errors for the mean parameters are the
square roots of
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while the parameter variances for the i-th MCC are
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The prime superscript indicates that the variance of the
measurements σ2

i,m = σ2
i for the i-th MCC was assumed

to be constant. It was estimated as the variance s2 of the
sample population:

σi ≈ s2 =
1

N − 2

M∑
m=1

(ym − ai − bixm)2. (S5)

We normally imaged M = 4 conditions per MCC. For
exceptions with M = 2, s2 could not be computed di-
rectly from (S5) and was assumed to equal the largest
value from the other experiments.

Confocal imaging and cell density To estimate
density in the ventral region of the same embryos where
we performed PIV measurements we proceeded as fol-
lows. Bright field images, as presented in the main text,
allow us to estimate the distance d11 ≈ 70 ± 15µm be-
tween bundles in the same focal plane, that is, along
the streamflow direction. As the high-speed camera used
for the PIV analysis discussed in the main text was
mounted on a Zeiss CellObserver SD spinning disk sys-
tem, we could locate bundles along the y-direction by
sequentially performing confocal imaging of the fluores-
cent beads used for the PIV analysis. Particle traces from
overexposed images were obtained by setting the expo-
sure time to 20 ms. These appear as straight segments
outside the bundle, while bundles can be identified as vor-
tical structures. The distance d22 between bundles along
the y-direction was then estimated by stacks of images
acquired at y positions spaced apart by 2µm. Density
was then estimated as P = d11d22. For the embryo which
data are illustrated in Fig. 2 we obtain d22 ≈ 54.3±8µm,
and P ≈ 2.6± 0.5× 10−4 µm−2.

To estimate the density of multiciliated cells, we also
analyzed confocal images of embryos injected at one-
cell stage with membrane-RFP (marking cell membrane),
at times co-injected with CLAMP-GFP (marking the
rootlets of the basal bodies) [S5]. Plasmids expressing
Clamp were kind gifts from Dr John Wallingford [S6].
This analysis was mostly performed for regions in the
lateral side of the embryos, which is closer to the objec-
tive and more suitable for confocal imaging. We obtain

P ≈ 2.75± 0.7× 10−4µm−2, with ±0.7 the standard de-
viation between experiments. The typical cell area was
also estimated from those images.

Fitting the near flow-field by the singularity
method. The flow uc driven by the cilia in Ωc is mod-
elled as the superposition of the flows arising from local
point forces (Stokeslets) fn applied at sn ∈ Ωc. The val-
ues of fn are found by fitting uc at M collocation points
bi, solving the linear system

uc(bi) =

N∑
n=1

fn·S(bi, sn). (S6)

The Blake tensor S is the well-known, exact solution for a
point force (or Stokelset) next to a no-slip plane at z = 0
[S7]. As no-slip boundary conditions uc = 0 at z = 0 are
implicitly satisfied, walls do not need to be discretized.
The linear system (S6) is then simply recast in its matrix
form Af = ub, with the 3M × 2N matrix

A =

 Sxx(bi, sj) Sxz(bi, sj)
Syx(bi, sj) Syz(bi, sj)
Szx(bi, sj) Szz(bi, sj)


the 2N×1 vector f = {f1,x, . . . , fN,x, f1,z, . . . , fN,z}, and
the 3M × 1 vector ub = {uc,1(bi), uc,2(bi), uc,3(bi)}. We
set fn,y = 0, assuming the solution to be symmetric in
y. To avoid numerical instabilities, we take M > 2N
[S8], and then solve for f using the backslash operator
of Matlab. Once the fn are known, (S6) can be used to
evaluate the fitted solution not only at x = bi, but at
any position x.

Similar solutions can be obtained for different sets of
source and collocation points. For the results shown, the
flow field measured in the y plane was extruded by repli-
cations at 13 planes evenly spaced between −10µm <
y < 10µm. We used 15 Stokeslets for each plane about
the fictitious boundary ∂Ωc.

To account for uncertainties related to the location
of collocation and source points, fittings were repeated
for several configurations. For a given set of colloca-
tion and source points, the uncertainty in the effective
force F is estimated as σF = F ||Af − ub||L2/||ub||L2.
This calculation was repeated for each of the T config-
urations tested. The i-th configuration gives the effec-
tive force Fi and uncertainty σF,i. Then we calculate

the weighted average F =
∑T
i=1 Fiσ

2
F,i/

∑T
i=1 σ

2
F,i, and

variance σ2
F = T/

∑T
i=1 σ

−2
F,i. In a similar way, the prop-

agation of uncertainties about d, when fitting u− ua(d),
are estimated by repeating the analysis for several values
of d within the range d ± σd, and averaging as above.
Uncertainties in the main text are given as F ± σF .

Coarse-graining the bundle. The flow uc driven
by the forces in the bundle can be coarse-grained fur-
ther, with a smaller number of Stokes flow singularities,
moving away from the bundle. We compare the fitted
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FIG. S2. Comparison of experimental and theoretical flow profiles near an MCC. (a) Lateral velocity u0, with reference to Fig.
2(d), above the bundle as a function of z, and (b) between bundles at z = `, as a function of x. The flow arising from a single
bundle of cilia decays as that of an effective force F (Stokeslet) or moment 2`F (rotlet), while the measured flow profile (exp)
decays much more slowly due to the contributions from other MCCs.
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FIG. S3. Supplement to Fig. 2 of main text. (a) Measured lateral velocity u(z) above and between bundles. For z > d, u(z)
becomes independent of x, while for z > 2d, it matches the ambient flow ua = U [G(z/Λ) − G(2z/d)] arising from a uniform
distribution of point forces. The dashed line is the asymptotic solution ua ≈ UG(z/Λ) for large values of z. Different colours
correspond to velocity profiles at various values of |x| < 35 µm. (b) Linear dependence of the near-field uc(z) above a bundle
(x = 0) on the effective force F , for z > `. The numerical solution u0(z) corresponding to the effective force F0, can be
approximated by re-scaling the solution uc(z) by a factor F0/F .

flow uc, made up of N point forces as discussed above,
with the flow driven by the effective force Fex applied
at (0, 0, `). The flow driven by the entire bundle decays
as 1/z3, as for a single singularity, for z > 2` (Fig. S2).
Results are shown for the velocity component u0 with
reference to Fig. 2, and us = F0Sxx.

Very similar results arise if the flow is driven by an ef-
fective torque (giving a rotlet) 2`Fey applied at (0, 0, `/2)
next to a no-slip wall. The fact that the near field of
a point torque is a swirling flow, but the far-field flow
∼ zx2/(ρ2 + z2) is the same as for a point force, reflects
what was discussed for the cilia driven flow uc, which in-
deed appears as an active vortex within the bundle, but
decays as a point force in the far field.

Far Field fitting. The flow u0 gives a first approxi-
mation of the flow velocity driven by a single bundle. As

discussed above and in the main text, it decreases much
faster than the measured velocity u(z). For z > 2d, we
have u0/u < 0.02 and G(2z/d)/G(z/Λ) < 0.003, such
that in the far-field u ≈ UG(z/Λ). The parameters Λ
and U can then be obtained by using ua to fit the PIV
measurements for z > 2d (Fig. S3).

The velocity ua(z) depends linearly on U , but non-
linearly on Λ. For a given value of Λ, we find U(Λ)
by a linear least-squares fit of the data. We then re-
peat this linear fit for candidate values in the range
30µm < Λ < 1 mm, with increment ∆Λ = 1µm,
and select the value of Λ that minimize the error σ =∑M
m=1(V G(z/Λ)−u)2/(M − 1) at M collocation points.

Relative fitting errors remain below 0.005%. Uncertain-
ties σΛ and σU of the best fitting parameters Λ and U
are estimated from the relationships σ2 = f(Λ + σΛ)2,
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FIG. S4. The lateral velocity of a two-dimensional array of Stokeslets of radius Λ ∼ 300, falls off as in experiments (exp), as
shown for: (a,b) above and between bundles, respectively, as a function of z; (c) between bundles as a function of x. Results
are obtained by direct summation of the exact solution of each point force, all of strength Fex and z-offset `.

and σ2
U = f(Λ + σΛ)2, which are computed numerically.

Two-dimensional array of Stokeslets. Results
similar to those presented in Fig. 2 for a uniform distribu-
tion of forces can be obtained by positioning point forces
Fex on a lattice with cut-off radius Λ. Each element sij
of the lattice is positioned at (xij = id11 + jd12, yij =
jd22, zij = `). From confocal imaging of the closest
neighboring cells of the bundle in Fig. 2, we estimate
d11 ∼ 70µm, d12 = 40.5µm, d22 = 53µm.

Using the effective force F estimated by the near field
fitting, and summing up the exact contribution of each
MCC, we retrieve the slow decay rate observed in vivo
[Figs. 2(e,f)] for Λ ∼ 300µm (Fig. S4). This is the same
result found by fitting the far-field flow with Eq. (2).

Resistive force theory estimate of the effective
force applied by a single cilium. We adopt a sim-
plified view of the power stroke of a cilium as a straight
rod that pivots around its base. Let s ∈ [0, `] be ar-
clength along a cilium, with s = 0 at the base and
s = ` at the tip, and let φ be the angle between the
cilium and the wall. The lateral component of the RFT
force density at s is f ′ ∼ (s/`)ζ⊥Vc sinφ, and the re-
sulting far field velocity, given by Eq. (1), is propor-
tional to hf ′ds with h = s sinφ. Accordingly, the ef-

fective force fφ = `−1
∫ `

0
h(s, φ)f ′(s, φ)ds, matches the

overall far field fφS̃xx when applied at `. We obtain
fφ = sin2 φ ζ⊥`Vc/3. Through the entire stroke, a cilium
cycles through an angle ∆φ = 2π, and we assume that
the recovery stroke does not contribute to the force, so
fφ = 0 for π < θ < 2π. Averaging fφ gives the effec-
tive force f = ζ⊥`Vc(6π)−1

∫ π
0

sin2 φdφ, which gives the
expression f = ζ⊥`Vc/12 used in the main text.

Additional results from self-consistent model.
The self-consistent model in Eq. (5) [Fig. S5(a)] can be
used to investigate several aspects of the phenomenology
of sparse cilia driven flow. To improve the near-field ap-
proximations at larger values of φ = (`/d)2, we find the

exact shear rate γ̇a driven by a uniform distribution of
point forces Fex applied at z = `, with density P = 1/d2:

γ̇a(F,P) = PF
∫ 2π

0

∫ ∞
d/2

ρ dρ dθ
∂Sxx
∂z

(ρ, θ, z = 0), (S7)

where we consider the exact Blake tensor Sxx rather than
its far field approximation. We obtain

γ̇a(F, d) =
F`

2µd2

2`2 + 3d2/4

(`2 + d2/4)3/2
, (S8)

and the relationship between F and F0 becomes:

F = F0

[
1 + λ

`3

2d2

2`2 + 3d2/4

(`2 + d2/4)3/2

]−1

, (S9)

which for large d tends to (3) (Fig. S5). The forces Fw
and Fa computed using (S8,9) are shown in Fig. 4 of the
main text.

Additional comments on the efficiency of mo-
saic ciliated tissues. Here we elucidate the relation
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FIG. S5. Supplement of Fig. 4. Contour plot of F/F0 for
(a) the asymptotic result [Eq. (3)], and (b) the more accurate
solution [Eq. (S9)].
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FIG. S6. Computational model of arrays of finite-size bundles. (a) and (b): lateral views of the velocity field (vectors) predicted
at coverage fractions φ ≈ 0.07 and φ ≈ 0.34, respectively; dashed lines indicate the fictitious boundaries ∂Ωc of the vortexes
driven by the bundles, where velocity is prescribed. (c) Effective force F , limit velocity U ∝ F/d2, extra pumping force per
bundle Fa =

√
FV µ`, and (d) extra shearing force per bundle Fw as a function of the coverage fraction (non dimensional

density) φ. Forces are normalized by the effective force F0 computed at φ = 0. The velocity U is normalized by the cilia
tip velocity V , taken as the maximum velocity magnitude prescribed at ∂Ωc. Results of numerical simulations (circles) for
finite-size bundles are compared with analytic results (solid lines) for the point force distribution discussed in the main text,
with F given by (S9) and λ = 8.6.

between the metrics for the efficiency of mosaic patterns
discussed in the main text and the collective efficiency
of cilia carpets ε = µPQ2/`E introduced elsewhere [S9],
where Q =

∫
x=0

u dA is the volume flow rate through
any zy-plane and E is the energy dissipated by the cil-
ium. The goal in that earlier work was to optimize the
cilia waveform.

Recalling that U = πQ/d2 [S9], we also have ε =
FU/πE. Assuming E is the constant total energy up-
take by the MCC, FU gives the pattern efficiency as the
contribution per bundle to the power generated in the
outer region. In the far field limit, FU ≈ F 2

w/9µ`, with
Fw ≈ µγ̇ad2 = 3F`/d the collective contribution to force
applied to the wall.

For large coverage fractions, the far field approxima-
tion of γ̇a becomes inaccurate, and the finite size of the
bundle becomes important, and the shearing efficiency
F 2
w of the pattern decreases faster than its pumping effi-

ciency FU with φ. Therefore, we define the extra shear-

ing force as Fw = µγ̇a(d2− `2), and use the exact formu-
lation of γ̇a (S8) to improve its near field approximation.
For comparison, we find useful to define the extra force
Fa =

√
µ`FU , which we interpret as the extra force per

bundle driving fluid transport in the outer region.

Two-dimensional array of finite-size bundles.
Fig. S4(c) shows how the approximation of bundles

through single point forces can quite conveniently cap-
ture the lateral flow velocity measured between bundles,
up to their proximity. Yet, at large coverage fractions,
this approximation may become inaccurate. To support
our results for a uniform distribution of point forces (Fig.
4), we report here results from a numerical study of finite-
size bundles of prescribed kinematics positioned on a lat-
tice. We build on (S6) and the configuration presented in
Fig. 2(d): Each bundle ξ is modelled by N point forces
fn applied at sξ,n within the bundle domain Ωc,ξ, which
are determined by enforcing kinematics measured about
the trajectory of the cilia tips.
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The lattice is regular and all the bundles identical, such
that the corresponding forces fn and prescribed velocities
are the same in any bundle. For simplicity, we take as
reference the bundle at the origin c0 = (0, 0, 0). The cor-
responding point forces are applied at s0,n. For the other
bundles, centered at cξ = (xξ, yξ, 0), the corresponding
forces are applied at sξ,n = cξ + s0,n. The flow driven by
such an array of in-silico bundles is

u(x) =

N∑
n=1

fn·
Ξ−1∑
ξ=0

S(x, sξ,n). (S10)

We find fn by fitting u(bi) to the velocity measured at
M collocation points bi at the fictitious boundary ∂Ωc of
a reference bundle. The resulting linear system is similar
to (S6), but summed over Ξ bundles as in (S10).

The positions of the bundles are given by the lattice
positions (xij = id11 + jd12, yij = jd22). We present re-
sults for the typically observed ratios d22/d11 ≈ 0.76 and
d12/d11 ≈ 0.58. We keep the cut-off radius Λ = 300µm
as found previously. Computations were repeated for var-
ious values of d11, corresponding to a coverage fraction
φ = `2/d11d22. We tested other lattice configurations
and they did not change the observed phenomenology.

The effective force F of each bundle decreases with
φ. The comparison with predictions from (S9) for a
point force distribution and λ = 8.6 is excellent, as
well as for the force density and related limit velocity
U ∝ Fφ, and the extra force per bundle Fa =

√
FUµ`.

The extra shearing force per bundle Fw applied to non-
ciliated tissue by ua is computed numerically. We com-
pute the ambient flow as ua(x, y) = u − uc, where uc is
the contribution of the bundle at the origin, and then
integrate γ̇a(x, y) = ∂ua(x, y, z)/∂z|z=0 on the domain
(max bx,i < |x| < d11,max by,i < |y| < d22), which ex-
cludes the area below the volume spanned by the cilia
bundle. For the point force distribution, we used the
simple estimate Fw = γ̇a(d2− `2), such that larger quan-
titative discrepancies are observed, but qualitatively we
obtained similar results.

The extra contributions per bundle Fa and Fw have a
maximum at φ ≈ 0.07 and φ ≈ 0.09, respectively, which
is close to the results from the point force distribution and
the coverage fractions observed in Xenopus. A larger cov-
erage would reduce the overall contributions per bundle,

both because adding extra bundles will be less effective,
with small increments of U per bundle, and there is less
space for non-ciliated cells. Decreasing the coverage frac-
tion will on the other end reduce long range transport, as
reflected in U ; γ̇a will tend to zero with decreasing φ, such
that the flow will decay as fast as 1/ρ3, as for isolated
bundles, and regions in between will not be sheared.

As we concluded for a distribution of point forces, ac-
counting for the finite size of the bundle also leads us to
infer that the low coverage fraction observed in Xenopus
is close to optimal.

Supplementary video. Movie of a cilia bundle and
0.2µm diameter tracers, acquired at 2, 000 frames/s, and
shown at 30 frames/s. Some larger beads are also present
to help visualize the flows.

∗ fb448@cam.ac.uk
† jerome.jullien@inserm.fr
‡ e.lauga@damtp.cam.ac.uk
§ R.E.Goldstein@damtp.cam.ac.uk

[S1] E. Hörmanseder, A. Simeone, G.E. Allen, C.R. Brad-
shaw, M. Figlmüller, J. Gurdon, and J. Jullien, H3K4

methylation-dependent memory of somatic cell iden-
tity inhibits reprogramming and development of nuclear
transfer embryos, Cell Stem Cell. 6, 135 (2017).

[S2] www.enasco.com.
[S3] J. Faber and P.D. Nieuwkoop, Normal Table of Xeno-

pus laevis (Daudin) (Garland Publishing Inc., New York,
1994).

[S4] P.R. Bevington and D.K. Robinson, Data Reduction and
Error Analysis for the Physical Sciences (McGraw-Hill,
1993), 3rd edition.

[S5] M.E. Werner, B.J. Michael, Using Xenopus Skin to
Study Cilia Development and Function, Methods Enzy-
mol. 525, (2013).

[S6] T. J. Park B. J. Mitchell, P. B. Abitua, C. Kintner, J.
B. Wallingford, Dishevelled controls apical docking and
planar polarization of basal bodies in ciliated epithelial
cells, Nat. Genet. 40, 7 (2008)

[S7] J.R. Blake, Note on the image system for a stokeslet in a
no-slip boundary, Math. Proc. Camb. Phil. Soc. 70, 303
(1971).

[S8] F. Boselli, D. Obrist, L. Kleiser. A multilayer method of
fundamental solutions for Stokes flow problems, J. Com-
put. Phys. 231, 6139 (2012).

[S9] N. Osterman and A. Vilfan, Finding the ciliary beating
pattern with optimal efficiency, Proc. Natl. Acad. Sci.
USA 108, 15727 (2011).

mailto:fb448@cam.ac.uk
mailto:jerome.jullien@inserm.fr
mailto:e.lauga@damtp.cam.ac.uk
mailto:R.E.Goldstein@damtp.cam.ac.uk
https://doi.org/10.1016/j.stem.2017.03.003
https://www.enasco.com
https:////doi.org/10.1016/B978-0-12-397944-5.00010-9
https:////doi.org/10.1016/B978-0-12-397944-5.00010-9
https://doi.org/10.1038/ng.104
https://doi.org/10.1017/S0305004100049902
https://doi.org/10.1017/S0305004100049902
https://doi.org/10.1016/j.jcp.2012.05.023
https://doi.org/10.1016/j.jcp.2012.05.023
https://doi.org/10.1073/pnas.1107889108
https://doi.org/10.1073/pnas.1107889108

	Supplemental Material:  Fluid mechanics of mosaic ciliated tissues
	Abstract
	References


