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Microbial mutualism at a distance: The role of geometry in diffusive exchanges
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The exchange of diffusive metabolites is known to control the spatial patterns formed by microbial populations,
as revealed by recent studies in the laboratory. However, the matrices used, such as agarose pads, lack the structured
geometry of many natural microbial habitats, including in the soil or on the surfaces of plants or animals. Here we
address the important question of how such geometry may control diffusive exchanges and microbial interaction.
We model mathematically mutualistic interactions within a minimal unit of structure: two growing reservoirs
linked by a diffusive channel through which metabolites are exchanged. The model is applied to study a synthetic
mutualism, experimentally parametrized on a model algal-bacterial co-culture. Analytical and numerical solutions
of the model predict conditions for the successful establishment of remote mutualisms, and how this depends,
often counterintuitively, on diffusion geometry. We connect our findings to understanding complex behavior in
synthetic and naturally occurring microbial communities.
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I. INTRODUCTION

Microorganisms display a broad spectrum of interactions
that determine the behavior of microbial communities [1].
Predicting this behavior is a fundamental challenge in current
microbial ecology [2]. A wealth of experimental data on
microbial community structure and dynamics is now available
from “omics” approaches [2,3]. These, however, need to
be complemented by laboratory-based studies of synthetic
consortia and mathematical models to reach a mechanistic
understanding of microbial dynamics [1,2]. The study of
mutualistic interactions between microbial populations is an
active area of current research. Recent experimental studies
have investigated synthetic mutualisms between microbes
across the kingdoms of life. These include strains of enteric
bacteria [4–6] and yeast [7] engineered to be mutualistic, and
synthetic consortia combining wild type microbial species,
such as bacterial tricultures [8], mixed cultures of algae and
fungi [9], and algae and bacteria [10–13].

Mutualistic interactions are conventionally modelled using
Lotka-Volterra type models, with positive interaction coef-
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ficients [14]. Linear mutualistic Lotka-Volterra models are
known to display unrealistic unbounded growth [14], but
logistic versions have been used to study demographically
open mutualistic populations [15], transitions between inter-
species interactions [16,17], and the steady state dynamics of
algal-bacterial co-cultures [18]. Since the pioneering work of
May [19], such models have also been fruitfully employed
to describe mutualistic interactions in network models of
communities [20]. In such models the interaction coefficients
coupling species together define an interaction or community
matrix (for mutualistic interactions the coefficients are positive
and symmetric). Significant shortcomings of Lotka-Volterra
models have recently been pointed out. For example, when
species interact by exchanging metabolites, a metabolite-
explicit model does not in general map onto a Lotka-Volterra
implicit model [21]. Only in special instances does the micro-
bial Lotka-Volterra form provide a good description of the mi-
crobial dynamics, e.g., when a fast equilibration approximation
holds [22]. Resource-explicit models of bacterial mutualisms
compare well with experiments in which mutualists are well
mixed [5,6,23,24]. Explicitly modeling resources is critical
when studying spatially structured mutualistic systems (not
well mixed) whose interactions are controlled by metabolite
dynamics and their spatial transport.

Recent studies have considered spatial aspects of mutualis-
tic and cooperative microbial interactions. Simulations using
flux balance analysis (FBA) successfully predict the spatial
growth on agar of colonies of synthetically mutualistic enteric
bacteria [4]. The FBA approach requires explicit knowledge of
every known metabolic biochemical pathway in each mutualis-
tic species, restricting its applicability to mutualisms between
metabolically well-characterized organisms. Spatial effects on
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cheating [25] and genetic drift [26] observed in yeast colonies
growing on agarose pads have also been modelled explicitly.
In these models, coupled cells and nutrients diffusing in two
dimensions are simulated to predict how nutrient-mediated
interactions control spatial heterogeneity and survival of the
populations. In general, interactions have been shown to
control the spatial structure of laboratory biofilm communities
[27]. However, the homogeneous environments of nutrient
agarose or laboratory biofilm substrates do not possess the
intrinsic geometric or topological structure of natural microbial
environments, such as the porous matrix of soil or microfluidic
analogs [28]. Mutualistic microbial dynamics have not thus far
been studied in such structured environments, to the best of our
knowledge.

Here, we study a model of mutualistic microbial species
in a simple geometry representing a minimal unit for a struc-
tured environment: populations growing in spatially separated
reservoirs, metabolically linked by a channel. The model is
generally applicable to auxotrophs cross-feeding remotely. We
apply it to make predictions for the dynamics of mutualis-
tic populations of algae and bacteria diffusively exchanging
vitamin B12 and a carbon source, using model parameters
obtained from independent co-culture experiments on this
same mutualistic model system (see the Appendix). Such well-
mixed co-cultures have been previously studied experimentally
[11]. Our predictions provide insights into the behaviour of
microbial communities residing in structured geometries, both
within synthetic consortia in the laboratory and environmental
microbial communities.

II. MODEL

The model describes two populations of mutualistic micro-
bial species, A and B, interacting at a distance. The mutualistic
interactions are predicated on auxotrophy: A requires metabo-
lite V (for “vitamin”), excreted by B; conversely B requires
metabolite C (for “carbon”), excreted by A. In formulating the
problem we shall first use variables with an overbar to denote
dimensional quantities (concentrations, time, space), reserving
symbols without typographical modification for appropriately
rescaled variables. Populations of A and B, with densities ā(t̄)
and b̄(t̄) respectively, reside in two well-mixed reservoirs, of
equal volume �. These are spatially separated, but connected
by a cylindrical channel (length L, cross-sectional area �),
as in Fig. 1. The channel is impervious to cells, but porous
to metabolite exchange by diffusion. Population A produces
metabolite C with local concentration c̄a(t̄), which diffuses out
of the reservoir and into the channel at x̄ = 0 (with x̄ denoting
the position along the channel axis), where it develops a
spatial profile c̄(x̄,t̄) and eventually reaches the other reservoir
at x̄ = L, where its concentration is c̄b(t̄). Symmetrically,
metabolite V produced by B with concentration v̄b(t̄), diffuses
out at x̄ = L giving v̄(x̄,t̄), feeding the other reservoir at x̄ = 0,
generating a concentration v̄a(t̄).

We first consider dynamics within the channel connecting
the reservoirs, within which metabolites obey one-dimensional
diffusion equations,

∂v̄

∂t̄
= Dv

∂2v̄

∂x̄2
and

∂c̄

∂t̄
= Dc

∂2c̄

∂x̄2
, (II.1)

FIG. 1. Diffusive cross feeding at a distance. Auxotrophic mi-
crobial populations A and B (concentrations ā and b̄) reside in
well-mixed reservoirs of equal volume � separated by a channel
of length L and cross section �. Microbe A produces a carbon
source C, of homogeneous concentration c̄a , in its reservoir. This
diffuses through the channel, forming a profile c̄(x̄,t̄), a function of
position along the channel x̄ and time t̄ . On reaching the reservoir
where microbe B resides the concentration is homogenized to c̄b.
Symmetrically, the vitamin V produced by microbe B in its reservoir
at concentration v̄b diffuses to reservoir A creating a profile v̄(x̄,t̄),
homogenized to v̄a in the reservoir. Here, this general model is applied
to an algal-bacterial partnership.

with Ds the diffusion coefficients for metabolite S = C or V .
The boundary conditions to (II.1) obtained from continuity
at the channel-reservoir interface are c̄a(t̄) = c̄(0,t̄), c̄b(t̄) =
c̄(L,t̄), v̄a(t̄) = v̄(0,t̄), v̄b(t̄) = v̄(L,t̄). Clearly, one character-
istic time scale of the problem is set by diffusive equilibration
along the length of the channel,

τdiff = L2

Ds

, (II.2)

where we anticipate that the diffusion constants of both
metabolite species are similar. From Fick’s law, the flux Js

(molecules area−1 time−1) of metabolite species S (C or V )
entering, say, the left reservoir from the channel is

J 0
s = Ds

∂s̄

∂x̄

∣∣∣∣
0

. (II.3)

The rate such molecules enter the reservoir is J 0
s �, and with

instantaneous homogenization there, the rate of change of the
reservoir concentration s̄a is J 0

s �/�. The characteristic length

� = �

�
(II.4)

will play an important role in the model. If �s̄ is a typical
difference in concentration of S between the two reservoirs,
then the typical gradient within the channel is �s̄/L, giving
rise, by the arguments above, to an associated rate of change of
reservoir concentration scaling as ds̄/dt̄ ∼ (�/�)Ds�s̄/L ∼
Ds�s̄/�L, from which we can identify a characteristic equili-
bration time

τeq = �L

Ds

. (II.5)
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We define the ratio of equilibration and diffusive time scales
to be

ζ ≡ τdiff

τeq
= L

�
. (II.6)

The regime ζ � 1 is that of fast establishment of the linear
concentration profile in the tube relative to changes of concen-
trations in the reservoirs, while for ζ � 1 the transients within
the channel are on comparable time scales to that for changes

in the reservoirs. Semianalytical solutions to the problem of
chemical diffusion between two connected reservoirs further
demonstrate the existence of these two regimes and the role of
the previously identified time scales (see Appendix).

We now turn to the population dynamics within the reser-
voirs, in which we explicitly assume that algae reside in
reservoir A and bacteria in B, and that vitamin B12 and carbon
are exchanged. The dynamics obey the ordinary differential
equations

reservoir A (x̄ = 0) : reservoir B (x̄ = L) :

dā

dt̄
= μa

v̄a

Kv + v̄a

ā

(
1 − ā

Ka

)
− δaā,

db̄

dt̄
= μb

c̄b

Kc + c̄b

b̄

(
1 − b̄

Kb

)
− δb b̄, (II.7a)

dc̄a

dt̄
= pcā + 1

�
J 0

c ,
dc̄b

dt̄
= −μb

c̄b

Kc + c̄b

b̄

Yb

+ 1

�
JL

c , (II.7b)

dv̄a

dt̄
= −μa

v̄a

Kv + v̄a

ā

Ya

+ 1

�
J 0

v ,
dv̄b

dt̄
= pvb̄ + 1

�
JL

v , (II.7c)

where JL
s = −Ds

∂s̄
∂x̄

|
L

is the flux of metabolite S = C or
V entering the right reservoir. In Eqs. (II.7a) we model
cell growth as logistic, with maximum growth rate μi and
carrying capacity Ki for species i = A or B. Growth rates
are limited by the abundance of the required metabolites.
This is modelled using Monod factors [29], e.g., for C,
μbc̄/(Kc + c̄), where Kc is the half-saturation constant (and
symmetrically for V ). Linear death terms, with mortality
rates δi for i = A or B, ensure exponential negative growth
in the absence of the limiting metabolites. Equations (II.7b)
describe the dynamics of metabolite C. This is produced by
species A in proportion to its concentration with a rate pc,
and diffuses out at 0. In the other reservoir, C, is taken up
by B. The uptake is assumed proportional to the cell growth
rate; the proportionality constant is 1/Yb, where Yb is the
yield coefficient (how much metabolite C results in a given
concentration of species B). Equations (II.7c) describe the V

dynamics, which are completely symmetric to the C dynamics.
Although inspired by bacterial-algal symbiosis, it is clear that
the structure of these dynamics is quite broadly applicable to
mutualistic systems in general.

A. Identifying the key model parameters

In order to access the general dynamics of remotely cross-
feeding monocultures, we nondimensionalize Eqs. (II.7). Be-
cause our focus is on the impact of geometry on the biological
processes, we choose a scheme accordingly. First, normalize
the bacterial and algal concentrations by their respective carry-
ing capacities, the organic carbon and vitamin concentrations
by their respective half-saturation concentrations, rescale time
by the bacterial growth rate, and rescale space by the length
scale �b = √

Dc/μb of organic carbon diffusion on the time
scale of bacterial growth, defining

a = ā

Ka

, b = b̄

Kb

, c = c̄

Kc

, v = v̄

Kv

,

t = μbt̄, x = x̄

�b

. (II.8)

The ratios of algal and bacterial growth rates and of their
diffusion constants,

ε = μa

μb

, θ = Dc

Dv

, (II.9)

are two additional parameters. With now three characteristic
lengths in the problem (L,�,�b) one can form two independent
dimensionless ratios. These can be taken to be

λ = L

�b

and η = �

�b

, (II.10)

so that the parameter ζ , defined previously in Eq. (II.6), is
ζ = λ/η.

There are three pairs of parameters remaining which capture
the relative strength of cellular death, uptake and production in
bacteria and algae respectively. They are the ratios of death rate
to maximum growth rate of bacteria and algae, which define
mortality parameters

mb = δb

μb

and ma = δa

μa

, (II.11)

which must be less than 1 for any population increase to occur;
and finally, for both carbon and vitamin, the ratios of the typical
uptake rate to the typical rate of change define the uptake
parameters

κb = Kb

YbKc

and κa = Ka

YaKv

; (II.12)

for both carbon and vitamin, the ratios of the typical production
rate to the typical rate of change define the production strengths

σc = pcKa

μbKc

and σv = pvKb

μaKv

. (II.13)

With these rescalings, the dimensionless evolution equa-
tions are

1

ε

da

dt
= va

1 + va

a(1 − a) − maa,

db

dt
= cb

1 + cb

b(1 − b) − mbb, (II.14a)
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TABLE I. Nondimensional model parameters for the mutualistic
association of M. loti and L. rostrata obtained from fitting independent
co-culture experiments we carried out, as described in the text and the
Appendix.

Nondimensional parameter Symbol Value

Biological parameters
Uptake parameter for algae κa 1.3
Uptake parameter for bacteria κb 2.2
Algal mortality to growth rate ratio ma 0.024
Bacterial mortality to growth rate ratio mb 0.014
Carbon production strength sc 0.018
Vitamin production strength sv 3.2
Algal to bacterial growth rate ratio ε 0.72
Physical parameters
Ratio of metabolite diffusivitiesa θ 2.5
Channel length λ 1–30
Equilibration length η 3–100

aObtained considering carbon with diffusivity Dc = 5 ×
10−6 cm2 s−1 as metabolite C and B12 vitamin with diffusivity
Dv = 2 × 10−6 cm2 s−1 as metabolite V .

dca

dt
= σca + 1

η
j 0
c ,

dcb

dt
= −κb

cb

1 + cb

b − 1

η
jλ
c , (II.14b)

1

ε

dva

dt
= −κa

va

1 + va

a + 1

εθη
j 0
v ,

1

ε

dvb

dt
= σvb − 1

εθη
jλ
v , (II.14c)

where now the dimensionless fluxes are ja
s = (∂s/∂x)x=a .

These equations are to be solved together with the diffusion
equations

∂v

∂t
= 1

θ

∂2v

∂x2
and

∂c

∂t
= ∂2c

∂x2
(II.15)

for c and v on the interval x ∈ [0,λ], ensuring continuity
of fluxes and concentrations at the ends of the tube. Equa-
tions (II.14) were solved numerically to explore the role of
diffusive geometry on mutualistic coexistence. We used the
nondimensional parameters shown in Table I, corresponding
to the mutualistic association between Lobomonas rostrata,
a B12-requiring green alga, and Mesorhizobium loti, a B12-
producing soil bacterium [11]. These parameter values were
obtained by fitting growth and vitamin B12 assay data (Fig. 7)
from independent co-culture experiments we carried out with
this model mutualistic system, as described in the Appendix.

Before discussing the results from numerical solutions of
the dynamical system of our model, we note that it supports a
trivial set of fixed points corresponding to reservoirs with no
cells (a = b = 0) and any combination of residual concentra-
tions of metabolites. The nontrivial fixed point is given by

a∗ = σcσv − κaκbmamb

σc(σv + κama)
, b∗ = σcσv − κaκbmamb

σv(σc + κbmb)
,

(II.16a)

c∗
a = c∗

b + λη

2

(
σca

∗ + κb

c∗
b

1 + c∗
b

b∗
)

,

c∗
b = σv(σc + κbmb)

(1 − mb)κbσv + κamaκb − σcσv

, (II.16b)

v∗
a = σc(σv + κama)

(1 − ma)κaσc + κambκb − σcσv

,

v∗
b = v∗

a + λεθη

2

(
σvb

∗ + κa

v∗
a

1 + v∗
a

a∗
)

. (II.16c)

For the fixed point given by Eqs. (II.16) to be physically
relevant, the concentrations it describes must be positive.
Therefore, the parameters must satisfy the following con-
straints:

σcσv − κaκbmamb > 0, (II.17a)

(1 − mb)κbσv + κamaκb − σcσv > 0, (II.17b)

and (1 − ma)κaσc + κambκb − σcσv > 0. (II.17c)

The first condition requires production strength to be strong
enough to overcome cell mortality. This guarantees the ex-
istence of positive equilibrium algal and bacterial concentra-
tions. The second and third conditions guarantee this positivity
for carbon and vitamin concentrations, respectively. They re-
quire that microbial consumption be high enough to overcome
production. When these conditions are satisfied, the mutualistic
microbes can reach a steady state of coexistence. Note that in
this steady state, linear gradients of metabolite concentrations
are present in the connecting tube.

B. Feeding on a distant passive source

Before considering the fully coupled system dynamics, we
consider the case of a single auxotrophic species B, concentra-
tion b, residing in a reservoir initially free of a growth-limiting
metabolite coupled by the channel (also initially nutrient free)
to a strong source of the metabolite with initial concentration
c0
a . This source consists of a reservoir filled with limiting

metabolite. The long time steady state for the model is always
extinction of B once it has exhausted the remote resource.
However, separation of the microbial population from the
source modifies the transient population dynamics. Recalling
the nondimensional channel length λ = L/�b and equilibration
length η = �/�b, we can define the nondimensional time scales
tdiff = λ2 and teq = λη as the ratios between the typical times
of diffusion and of equilibration between reservoirs, and the
biological growth time scale τb = 1/μb. These ratios gauge
the relative rates of diffusion or equilibration and growth. We
require teq and tdiff ∼ 1 for diffusion to transport metabolites
to species B, stimulating its growth.

We have solved the remotely fed single microbe limit of the
model numerically (see the Appendix) to predict the dynamics
of the rhizobial bacterium Mesorhizobium loti fed from a
remote glycerol carbon source. Figure 2 shows the transient
growth dynamics in the regime for which both geometric
parameters λ and η impact the dynamics. We first consider
the effect of diffusive reservoir equilibration, quantified by η

for a fixed channel length λ. For large η, teq is large: diffusive
equilibration in the reservoir is much slower than growth. Thus,
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FIG. 2. Transient dynamics of a bacterial population fed through a
channel that allows metabolite diffusion from a remote carbon source.
The diffusive exchange geometry controls the dynamics through the
nondimensional channel length λ and reservoir equilibration length η.
Model solutions predict that (a) for fixed λ = 3, increasing η delays
the time of peak bacterial growth and curtails growth due to a limited
carbon-source flux; (b) for fixed η = 10, increasing λ significantly
delays peak growth, with an impact on the maximum bacterial
concentration attained. The delay as measured by τmax, the time of
maximal growth rate, is proportional to λ2 (inset). For all simulations,
initial nondimensional bacterial and carbon concentration are b0 =
5 × 10−4 and ca(t = 0) = 10; other parameters are from Table I.

the instantaneous flux from the carbon source reservoir to the
bacterial reservoir is below what the bacteria need to grow to
carrying capacity. As a result, increasing η decreases the value
of the peak bacterial concentration (preceding the inevitable
decay), as well as delaying the onset of growth [Fig. 2(a)]. Next
we fix η and vary λ. Since the diffusive time scale scales like λ2,
increasing λ progressively delays the onset of bacterial growth
[Fig. 2(b), inset]. Large λ values also correspond to weaker car-
bon source gradients across the tube, and thus a “slow-release”
nutrient flux. Consequently, a less concentrated population can
be sustained for longer by the remote source [Fig. 2(b)]. The
passive source case we have just considered demonstrates the
critical role played by both geometric parameters λ and η in
setting the time scale of transients, but also the peak microbial
numbers achievable on a finite resource.

C. Remotely cross-feeding populations

Next, we consider auxotrophic populations in separate
reservoirs, exchanging limiting metabolites through a con-
necting channel. As mentioned earlier, we apply the model
to an algal-bacterial system, obtaining our parameters from
experiments where the phototrophic alga L. rostrata, aux-
otrophic for vitamin B12, is grown in co-culture with the
heterotrophic bacterium M. loti. The algal and bacterial popu-
lations in their reservoirs have initial concentrations, a0 and b0,
respectively. Neither carbon source nor vitamin (the limiting
metabolites) are initially present in the reservoirs and channel.
The coexistence diagrams in Figs. 3(a) and 3(b) show what
values in the initial concentration parameter space give rise to
long-term mutualistic coexistence or a population crash due to
metabolite deprivation. These fates are the possible fixed points
of our model, which we shall also refer to as model equilibria.
Figure 3(a) displays the boundary between these two regions
for different values of the channel length λ for a fixed value
of the equilibration length η. In Fig. 3(b) crash-coexistence
boundaries are instead shown for different equilibration lengths
η at fixed λ. Also shown on both diagrams is the membrane
limit (bottom-left grey line). In this limit the distance between
reservoirs vanishes (λ → 0) and they are simply separated by
a membrane impervious to cells, as has been demonstrated
experimentally in metabolomic experiments with co-cultures
[30]. We assume instantaneous equilibration of metabolite
concentrations across the membrane in this limit. It is thus
an ideal case in which exchanges are not limited by diffusion
dynamics along the tube nor by the geometry of the problem,
and as such represents an interesting common reference case
to understand the impact of both the channel length λ and the
equilibration length η.

We see that increasing the channel length has the effect of
pushing the crash-coexistence boundary toward higher initial
microbial concentrations [Figs. 3(a) and 3(c)]. Coexistence
is achieved in the membrane limit for initial concentrations
lower than those for finite λ. The boundary between crash and
coexistence regions shifts quantitatively with λ, but does not
change significantly qualitatively. Its shape is revealing: if the
initial concentration of bacteria b0 is not too large, coexistence
depends weakly on b0, and very strongly on the initial algal
concentration a0. For low enough bacterial concentrations,
the smallest critical initial algal concentration for which
coexistence will occur increases with λ. These features are
reasonable considering that there is a diffusive delay in the
metabolite exchange between reservoirs: if the delay is too
long, auxotrophs will difficultly recover in the absence of a
limiting nutrient. However, we note that the model does not
predict any critical length above which recovery is impossible:
longer separations will simply restrict the establishment of
coexistence to cases with very high initial populations.

The effect of the reservoir equilibration length η on the
coexistence diagrams is more subtle. Recall η is the nondi-
mensional ratio of growing volume to metabolite exchange
area, which controls diffusive equilibration in the reservoirs.
For small η, the crash-coexistence boundary sits above the
membrane limit boundary toward higher initial concentrations.
This boundary is then pushed toward lower initial concentra-
tions for intermediate values of η while still sitting above the
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FIG. 3. Coexistence diagram illustrating the long-time fate of mutualistic populations in terms of initial concentrations. (a) At a fixed
equilibration length η = 3, increasing channel length λ causes the coexistence region to shrink progressively. (b) On the other hand, the
response to an increase in η for fixed channel length λ = 3 is nonmonotonic. The coexistence initially contracts, then expands, and finally
contracts again. The grey lines in both plots corresponds to the membrane limit for which λ → 0 and equilibration of metabolite concentrations
between the two flasks is instantaneous. This provides the maximum possible concentration parameter space for mutualistic coexistence. The
coexistence boundaries were determined by solving Eqs. (II.14) and (II.15) numerically using the parameters in Table I (see the Appendix).
(c) Along the transect (dotted red line) in (a) corresponding to a conserved ratio of initial concentrations b0/a0 = 20.0, the critical initial algal
concentration ac

0 above which coexistence occurs is an increasing monotonic function of the length of tube λ. (d) Using the same transect in
(b), the nonmonotonic behavior of the critical algal concentration ac

0 with η is clearly revealed.

membrane limit (as expected given that the membrane limit
corresponds to the ideal case of instantaneous equilibration for
no separation length), before rising to higher initial values for
high values of η [Figs. 3(b) and 3(d)]. The general shape of the
boundary is preserved for all η. To understand the nonmono-
tonic dependence of the boundary shift with η, we note η/λ

is the ratio between the reservoir and channel volumes. Thus,
with λ fixed, changing η takes the populations through three
regimes: (i) the reservoir volume is small compared to that of
the channel,η/λ � 1; (ii) the volumes are the same size,η/λ ∼
1; (iii) the channel volume is smaller than that of the reservoir,
η/λ 	 1. In regime (i), the equilibration time teq = λη is small,
but a large channel volume relative to the reservoirs dilutes
any metabolite produced, making metabolites inaccessible to
the microbial partner and preventing coexistence. In regime
(iii), the relative channel volume is small, but coexistence is
impeded due to the long equilibration time teq 	 1, which
slows down significant metabolite exchanges between reser-
voirs. Finally, in regime (ii), where reservoirs and channel have
similar volume and teq ∼ 1, mutualistic coexistence is favored.

Aside from the coexistence or crash fixed points just dis-
cussed, we can use the model to analyze the transient dynamics

leading to these equilibria. In particular, it is illuminating to
evaluate the relaxation time taken for remote populations to
reach the fixed points for a given initial microbial concentration
in reservoirs assumed initially devoid of metabolites, as previ-
ously. Numerical solutions of the model equations show that
this time varies as λ is increased across the coexistence or crash
boundary for given η, as shown in Fig. 4(a). It is clear that the
time to relax to the equilibrium rises sharply on either side of
the critical λ at the boundary. This slow relaxation for λ values
close to the bifurcation between extinction or coexistence is
accompanied by oscillatory transients (see Fig. 9). Similar
considerations apply to the dependence of this time on the
equilibration length η for a given λ, within that case there
is the possibility of two boundaries between extinction and
survival; see Fig. 4(b). We thus predict a complex behavior
of the time needed to reach steady state in such connected
mutualistic systems, with the potential for slow relaxation if
geometrical parameters are close to critical values between
extinction and coexistence.

Interestingly, the algal and bacterial concentration fixed
points, a∗,b∗ respectively, are independent of λ and η,
as already mentioned [see Eqs. (II.16)]. Larger separation
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FIG. 4. The time taken for the populations to relax to equilibrium
(crash or coexistence) depends on the geometric parameters λ and
η. Here, we plot these times for fixed initial microbial concentra-
tions (a0,b0) (assuming, as before, no initial metabolites within the
diffusion geometry). Times for populations reaching coexistence are
shown in white up-pointing triangles, and those for populations that
will crash in black down-pointing triangles. (a) For fixed η = 3,
the relaxation time increases with λ up to the critical value at
the coexistence boundary (where it diverges). On the other side of
this critical value it decreases. (b) For fixed λ = 3, the dependence
of the time as a function of η shows a similar divergence when
approaching a transition between extinction and survival. For the
initial concentrations (a0,b0) here chosen, two of these transitions are
possible, with extinction for low and high values of η and coexistence
for intermediate values. Both panels correspond to a0 = 2 × 10−2 and
b0 = 3 × 10−4.

(increasing λ) or weaker diffusive coupling to the reservoirs
(increasing η) increases delays in chemical exchanges and
reduces the extent of the mutualistic coexistence region.
However, these geometric changes do not alter the microbial
concentration fixed points, which have the same values as in
the membrane limit: high densities of mutualistic microbes
can be achieved even with weak or slow diffusive coupling.
This equilibration is possible thanks to supply of metabolites
[whose concentrations are also geometry independent; see
Eqs. (II.16)] from the partner reservoir. A sufficiently large
metabolite gradient across the channel is required to support
the equilibrium metabolite and cell concentrations. Indeed, the
model predicts an increase in the metabolite concentration
at the production reservoir. For example, if the equilibrium
concentration of vitamin B12 in the algal reservoir is v∗

a , then
at the bacterial reservoir we predict v∗

b = v∗
a + ληf (a∗,b∗,v∗

a ),
where the function f can be obtained by comparison with
Eq. (II.16). The same applies for carbon. This metabolite
enrichment is an interesting prediction of the model. The
concentration excess at the production reservoir is linear in
both separation λ and equilibration length η: two parameters
with which enrichment could be experimentally controlled.
As an example, for the L. rostrata and M. loti mutualism using

λ = 1.25 and η = 2 (all other parameters as before) our model
predicts a sevenfold enrichment of vitamin B12 in the bacterial
reservoir compared to the algal side.

III. DISCUSSION

Microbial populations often interact by diffusive exchange
of metabolites in structured environments, such as the porous
matrix of soil. Metabolite diffusion is known to play an impor-
tant role in determining microbial dynamics in unstructured
environments [4,7,9,25,27]. Current models of microbial in-
teractions, however, do not explicitly model diffusive transport
in geometrically confining habitats. A recent theoretical study
has investigated microbial invasion in soil networks [31], but
interactions were modelled stochastically, without considering
diffusive exchanges. How the geometry of diffusive exchanges
constrains microbial interactions remains an important open
question. We have addressed this here by modeling a minimal
geometrical unit of microbial interaction: two mutualistic
populations in finite volume reservoirs linked by a diffusive
channel. The model was solved to predict the diffusively
mediated interactions of mutualistic algae and bacteria, whose
dynamics in co-culture have been experimentally characterized
[11]. Two key geometrical parameters control the diffusive ex-
change of metabolites between the populations: the separation
λ (the nondimensional channel length) and the equilibration
length η (the nondimensional ratio of growing volume to
metabolite exchange area). Model solutions allow prediction
of whether initial concentrations of algae and bacteria will
result in mutualistic coexistence or population crash (the model
equilibria) for given values of the geometrical parameters λ and
η. In particular, we can draw the boundary between regions
exhibiting these two equilibria for given initial microbial
concentration, and predict how this boundary shifts when the
values of the geometrical parameters are changed.

The model makes several interesting predictions. For
instance, coexistence between mutualistic partners can be
achieved only if the numbers of one or both partners are abun-
dant; low initial numbers will lead to a crash. This feature is
qualitatively independent of diffusive geometry (λ or η), like
the shape of the coexistence boundary itself (approximately
flat for a broad range of bacterial concentrations, falling very
rapidly thereafter; see Fig. 3). It has an intuitive explanation:
an initially high concentration of one of the two species will
produce a large initial amount of metabolite, which allows the
partner species to grow and recover, even from initially very
low numbers. A more surprising result is that mutualistic popu-
lations at a distance can achieve as high a steady concentration
as in a mixed environment. The effect of the diffusive geometry
is only to modify the transient dynamics and raise the initial
cell concentration values required to avoid a crash. The fact
that, given enough time, separated cross-feeding mutualists
might reach as high numbers as populations in proximity
is a counterintuitive result of great potential significance for
microbial ecology. This contrasts with the case of a population
feeding from a distant passive resource (Fig. 2), for which
maximum achievable concentrations do depend strongly on
geometric coupling.

A final prediction of the model to highlight is the nonmono-
tonic dependence of the boundary position as the equilibration
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length η is varied. As one might expect, increasing the
channel length λ (at fixed equilibration length η and bacterial
concentration b0) increases the critical concentration of algae
that will support coexistence with bacteria. On the other hand
(for fixed λ and b0) the critical algal concentration varies
nonmonotonically, falling and then rising again with increasing
η. The dependence on λ is intuitive: separating the partners
further increases a diffusive delay, which we recall scales like
λ2, so that more algae are required to support coexistence at a
distance. The nonmonotonic behavior with η is less obvious.
It results from a dilution of metabolites in the volume of the
channel for low values of η, requiring higher initial densities for
successful coexistence, and from weak fluxes of metabolites
into the homogenization volume when η is large. With respect
to these two extremes, coexistence is more easily achieved
at intermediate values of η. This is another counterintuitive
prediction, which highlights the value of explicitly accounting
for diffusive transport in modeling mutualistic interactions.

Our findings have implications for the microbial ecology of
synthetic consortia. This is an active area of investigation, with
several recent studies on microbial mutualisms [4–9,11–13].
None thus far have addressed the role of diffusive geometry
on these interactions, which could test the predictions of our
model. A preliminary experiment in which batch cultures of
algae and bacteria grow linked by a channel allowing metabo-
lite diffusion (filled with a hydrogel to prevent cross contam-
ination) demonstrates the possibility of establishing remote
mutualisms; see the Appendix. Further, it provides preliminary
confirmation that vitamins accumulate in the B12 producer
(bacteria) flask, as predicted by our model [Eq. (II.16)]. The
experiment provides a “proof of concept” and a blueprint for
further experiments using our connected flasks setup. These
should explore how the population behavior varies with the
geometrical parameters, and if the stark predictions of the
model, such as the nonmonotonicity of the crash-coexistence
boundary with η, are borne out experimentally. Alternatively,
experiments using diffusively coupled microfluidic chambers
[8,32] could be used, noting that modifications would be neces-
sary to account for stochastic effects associated with the small
cell numbers in such systems [33]. As well as being tested,
the model could be used to describe other synthetic consortia
in which populations also interact diffusively across porous
hydrogels [4,11] or microfluidic structures [8]. It is straight-
forward to extend the model to account for two- or three-
dimensional diffusive exchanges appropriate to these systems.

The present model may also provide the foundation for a
physical description of microbial networks, e.g., consortia for
cooperative biosynthesis [34,35] or microbial communities in
soil, or spatially coupled biofilms [36]. Indeed, as mentioned
earlier, at the microbial scale, soil can be approximated as a
physical network of growth chambers linked by channels [31].
In establishing the key geometric parameters that govern the
most elementary unit in a network, namely two diffusively
linked nodes (reservoirs), the present work provides a basis for
describing population dynamics in a two- or three-dimensional
network of coupled nodes (Fig. 5). It is left to future work to
take up the significant challenge of studying such networks,
particularly when there is inhomogeneity in the diffusive
couplings and stochasticity in the populations themselves.
This view of microbial networks centering on the physics

FIG. 5. Schematic of a diffusively coupled microbial network
representing (a) a structurally and microbially heterogeneous network
as a realistic representation of soil [31]; (b) a crystalline network that
can be engineered in the laboratory. The nodes of this physically
structured network represent reservoirs of different volumes filled
with different growing microbial species diffusively exchanging
metabolites via porous channels, as described in the model formulated
in this work. Diffusive exchanges are parameterised by sets of
geometric parameters, as such as the lengths λij of the channels
connecting nodes.

of diffusion could also help refine interaction matrix models
of microbial communities and extend them beyond contact
interactions [37]. An interesting possibility is that interaction
networks could be simplified by constraints deriving from
diffusion geometry.

Aside from the microbial networks mentioned above, the
model may also be a relevant interpretative tool to understand
the behavior of structured environmental communities with
diffusive exchanges, such as river biofilms [38] or sediment
layers [39]. Moreover, knowledge of the mechanisms for
metabolite exchange between spatially separated organisms is
important to gain insight into how such communities initiate
in the natural environment, and the drivers and constraints on
the evolution of mutualisms within them [40].
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APPENDIX

1. Diffusive reservoir equilibration (no microbes)

We consider here the purely physical equilibration between
two diffusively connected reservoirs to reveal the interplay
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between the diffusive time and the equilibration time in such a
system. This setup utilizes the same geometry as in Fig. 1,
with the reservoir at x̄ = 0 having an initial concentration
c̄0(t̄ = 0) = c̄init of a chemical species, and the reservoir at
x̄ = L having an initial concentration c̄L(t = 0) = 0 of the
same species. The chemical concentration along the tube is
initially equal to zero, and has diffusivity D. Since our focus
here is purely on the different physical time scales independent
of biological processes, we choose a nondimensionalization
scheme restricted to this section only that differs from the main
body of the paper. Rescaling chemical concentrations by cinit,
lengths by L and time by L2/D, we obtain

∂c

∂t
= ∂2c

∂x2
,

dc0

dt
= ζ

∂c

∂x

∣∣∣∣
x=0

,
dcL

dt
= −ζ

∂c

∂x

∣∣∣∣
x=1

, (A1)

where we recognize the nondimensional parameter ζ = L/�,
the ratio of tube length L to equilibration length � = �/�.
These equations are subject to initial conditions c0(0) =
1, cL(0) = 0, c(x,0) = 0 and boundary conditions c0(t) =
c(0,t) and cL(t) = c(1,t). Despite the fact that this is a linear
partial differential equation (PDE) with apparently simple
boundary conditions, the fact that it exists on a finite domain,
and is coupled to the reservoir dynamics, makes it difficult to
obtain an explicit analytical solution for general values of ζ .

a. Approximate solution for ζ � 1

When ζ � 1, the time evolution of the reservoir concentra-
tions is much slower than the establishment of a concentration
gradient in the tube. Thus, the diffusive dynamics within the
tube reach a quasi-steady-state distribution between the two
reservoir concentrations c0(t) and cL(t). In this approximation,
the solution to the diffusion equation in the tube is the linear
profile c(x,t) ≈ [cL(t) − c0(t)]x. Substituting this solution
into the reservoir dynamics and solving the resulting two
ordinary differential equations (ODEs) yields (in dimensional
units)

c̄L(t) ≈ c̄init

2
[1 − exp(−t̄/τeq)]. (A2)

We thus deduce that in the limit ζ = L/� � 1, the time scale
of exchanges is purely dominated by the equilibration time
τeq = L�/2D, as argued previously. The same time scale plays
a role when the biological dynamics of growth and production
are considered, as discussed in the main text.

b. General solution from Laplace transform

To find the general solution of this problem, we examine
the Laplace transforms of the nondimensional concentrations
L(c0)(s) = f0(s), L(cL)(s) = fL(s), andL(c)(x,s) = f (x,s).
Laplace transforming the diffusion equation in the tube we find
the general solution

f (x,s) = M(s) exp(x
√

s) + N (s) exp(−x
√

s) (A3)

with M(s) and N (s) functions of the Laplace variable to be
determined. Imposing boundary conditions at the tube ends
gives

f0(s) = M(s) + N (s) (A4a)

and

fL(s) = M(s) exp(
√

s) + N (s) exp(−√
s). (A4b)

Finally, Laplace transforming the dynamical equations for
the reservoir concentrations yields

f0(s) = 1

s
+ ζ√

s
[M(s) − N (s)] (A5a)

and

fL(s) = − ζ√
s

[M(s) exp(
√

s) − N (s) exp(−√
s)]. (A5b)

Combining the above we obtain explicit solutions for M(s)
and N (s), thus entirely determining the solutions f0(s), fL(s),
and f (s) to the problem in the Laplace space. In particular, for
the concentration in the reservoir initially devoid of chemical,
we obtain

fL(s)

= 2ζe
√

s

√
s[(−1 + e2

√
s)s + 2ζ (1 + e2

√
s)

√
s + ζ 2(−1 + e2

√
s)]

.

(A6)

This solution in Laplace space is not easily inverted into
an analytical expression for the evolution in time of cL(t) =
L−1(fL)|(t). In order to access its time evolution, we adapted
a numerical inverse Laplace code in Python [41] which imple-
ments the Zakian method [42,43]. The numerical evaluation of
cL(t), as a function of the characteristic nondimensional param-
eter ζ = L/�, is shown in Fig. 6. It reveals the typical nondi-
mensional time scale of equilibration 1/2ζ , which in dimen-
sional form becomes the previously discussed equilibration
time τeq = L�/2D. At steady state, the concentration equili-
brates between the two reservoirs and the tube at a final uniform
value cf = 1/(2 + ζ ). Finally, for ζ � 1, the validity of the
approximations of the concentration cL(t) as a saturating expo-
nential in Eq. (A2) is clearly demonstrated (Fig. 6, right panel).

2. Mathematical model of remote mutualistic
cross-feeding and numerical methods

a. Membrane limit

The first natural limit of the model is that of zero channel
length λ → 0, in which the reservoirs are in contact, but
separated by a porous membrane. We call this the membrane
limit because the membrane setup is as in membrane exper-
iments [30], and we consider instantaneous equilibration of
concentrations across the membrane as a good approximation.
Fixed points for this limit are obtained trivially by letting
λ → 0 in Eqs. (II.16b) and (II.16c), which confirms that
metabolite concentrations are equalized between reservoirs at
steady state. We note that the membrane limit is identical to a
mixed co-culture, where A and B grow mixed together in the
same reservoir, except for the dilution effect associated with the
segregation of the two species on either side of the membrane.
The corresponding dynamical system for a mixed co-culture
also admits a positive fixed point (a∗,b∗,c∗,v∗) under the same
conditions (II.17), with a∗ and b∗ given by (II.16a), c∗ = c∗

b

from Eq. (II.16b) and v∗ = v∗
a from Eq. (II.16c). As mentioned

earlier, such a co-culture model is fundamentally different from
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FIG. 6. Evolution of the concentration cL, in a reservoir initially devoid of chemical, diffusively coupled to a reservoir filled with initial
concentration c0(0) = 1. The concentration was evaluated numerically from the inverse Laplace transform of fL, given in Eq. (A6). Each red
curve in panels (a)–(c) corresponds to a numerical evaluation for value of the parameter ζ equal to 1, 0.1, and 0.01 respectively. Dash-dotted
lines are the corresponding nondimensional versions of the approximation of cL as a saturating exponential as given in Eq. (A2), while dashed
lines correspond to the linear approximation cL = ζ t . Note the change of scale of the time axis for different values of ζ , where time itself has
been rescaled by L2/D.

models considering mutualistic nutrient exchanges implicitly
[14,17,18,44].

b. Remotely fed monoculture

Another interesting limit is one in which a species in
one of the reservoirs is replaced by a fixed concentration of
metabolite. For example, we could have species B growing
on C diffusing through the channel from the remote reservoir.
In this limit, the model on the side of C reduces to passive
diffusion from a source, which provides a useful control on
the mutualistic dynamics, as mentioned in Sec. II B. The
mathematical model for such a remotely fed monoculture is
directly obtained from the remotely cross-feeding populations
model [Eqs. (II.7)] by setting one microbial species and the
metabolites it produces to zero.

c. Numerical methods

The system of nondimensional equations (II.14) is solved
numerically through a custom finite difference solver using
Python and Cython, based on an explicit centered scheme for
the diffusion PDEs and an improved Euler scheme for the
integration of the ODEs. The map in Fig. 3 was drawn by setting
a minimum threshold concentration of cells below which the
mutualistic co-culture is considered crashed, here set at 1 cell
mL−1 for both species. The coexistence area corresponds to
initial concentrations that give rise to a time evolution towards
the positive fixed point with cell numbers keeping above the
minimum threshold at any time.

3. Parametrization for specific microbial associations

The results presented in this paper were obtained from
numerical studies of the mathematical model with parame-
ter values corresponding to the mutualistic association be-
tween Lobomonas rostrata, a B12-requiring green alga, and
Mesorhizobium loti, a B12-producing soil bacterium [11]. The
following procedure was used to obtain these parameter values.
First, physiologically relevant ranges for each parameter were
collected by direct measurement (see next section) or from the

published literature. Then, specific parameters—both nondi-
mensional parameters of the reduced model and dimensional
parameters to convert experimental data to nondimensional
units—were obtained by minimizing the squared distance
between simulated time evolution, obtained through a custom
finite difference solver in Python, and experimental results on
mixed cultures, while searching within domains of parameter
values which contain the physically relevant ones, and validat-
ing the fixed-point conditions in Eq. (II.17). The basin-hopping
minimization procedure gives local optima which capture well
the observed dynamics of mixed co-cultures of L. rostrata and
M. loti (see Fig. 7). The range of physiologically relevant
parameters used to constrain the search of parameters for
the association of M. loti and L. rostrata are presented in
Table II, while the fitted parameters, both dimensional and
nondimensional, are given in Tables III and I.

4. Estimation of biological parameters

a. Monoculture experiments: Carrying capacities
of M. loti and L. rostrata

Liquid cultures of M. loti were grown for 3 days (33 ◦C,
shaken at 240 rpm) in TY medium (tryptone 5 gL−1, yeast
extract 3 gL−1, CaCl2 · 2H2O 0.875 gL−1) and washed in
TP+ before serialw dilution for counting of colony form-
ing units. The postwash concentration was estimated to be
5–10 × 108 cells mL−1. Given the existing loss of cells during
washing, we therefore allow the bacterial carrying capacity
of our model Kb to be in the range 5–50 × 108 cells mL−1.
Similarly, we estimated the carrying capacity of L. rostrata
by growing these algae in TP+ with 100 ngL−1 of vitamin
B12 for 6 days to saturation (22 ◦C, shaken at 200 rpm,
day/night cycle of 14h/10h), and plating them after washing
in TP+ and serial dilution on TY agar plates for colony
forming unit counting. We recorded saturation concentration
∼2 × 106 cells mL−1, which, allowing for losses during cell
washing, results in an accepted range of 1–10 × 106 cells mL−1

for the algal carrying capacity Ka in our model.
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FIG. 7. Experimental results and theoretical fits on growth of co-cultures. Rows (a)–(f) display results from six independent growth
experiments for M. loti and L. rostrata co-cultures, for different starting values and ratios of the two species. For each experiment, from left
to right, the panels show the algal concentration ā, the bacterial concentration b̄, and, when data are available, the vitamin concentration v̄.
Continuous thick lines show the average value over a set of replicates, with the interval of +/− one standard deviation shown as a shaded
area. The fits from the model with parameters from Table I are shown with dashed black lines. Number of replicates per experiment from (a)
to (f) is n = 6, 3, 5, 5, 4, and 4. Large downward shaded areas represent on this logarithmic scale time points for which standard deviation is
comparable to the mean.

b. Monoculture experiments: Death rate of M. loti

A preculture of M. loti in TY as above was washed
in fresh TP+ and inoculated at a concentration b0 =
3.2 × 108 cells mL−1 in 70 mL of TP+ without carbon source.
Every two days, a 100-μL sample was taken to determine a live
cell concentration through counting of colony forming units
(CFUs) on TY agar. After a 2-day lag period, we measured an
exponential decay of the bacterial population with death rate
δb ≈ 5 × 10−2 h−1 over the next 6 days.

c. Co-culture experiments: Global fit of model parameters

The experiments whose outcomes were used to fit the model
parameters utilized the following protocol. L. rostrata and M.
loti were grown in TP+ medium at 25 ◦C on a 12h (12h) day
(night) cycle, with 100 microeinsteins of light and shaking at
120 rpm. Bacterial concentrations were estimated with counts
of CFUs on TY agar, and algal concentrations were obtained
with a Coulter counter. In some experiments, B12 concentration
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TABLE II. Physiologically relevant parameter ranges for the mutualistic association of M. loti and L. rostrata.

Parameter Symbol Value Unit Source

Death rate of M. loti δb 5×10−2 /h a

Diffusivity of carbon (25◦)b Dc 1.8–3.6×10−2 cm2/h [45]
Diffusivity of vitamin B12 (25 ◦C) Dv 1.0×10−2 cm2/h [45]
Carrying capacity of L. rostrata Ka 1–10×106 cells/ml a

Carrying capacity of M. loti Kb 5–50×108 cells/ml a

Growth affinity constant of bacteriac Kc 1–30 000×10−10 mol/cm3 [47,48]
Growth affinity constant of algaed Kv 1–100×10−16 mol/cm3 [47,49]
Maximum growth rate of L. rostrata μa 1.25×10−2 /h [11]
Maximum growth rate of M. loti μb 1–2×10−1 /h a

Release rate of carbon by algaee pc 1–100×10−16 mol/cells/h [50–52]
Release rate of vitamin by bacteriaf pv 1–50×10−23 mol/cells/h [10,53]
Yield of algae over B12 Ya 1–100×1020 cells/mole Ka/Kv

Yield of bacteria over organic carbon Yb 1–106 ×1013 cells/mole Kb/Kc, [54]

aThis work (see SI estimation of biological parameters).
bConsidering glycerol or small sugars such as glucose and sucrose.
cObtained considering E. coli and species of rhizobia growing on different sugars. The range of values is quite wide due to the ability of bacteria
to tune their affinity constant depending on the environmental conditions [46].
dObtained considering L. rostrata and other B12-dependent species.
eObtained considering two species belonging to the same family (Chlamydomonadaceae) as L. rostrata, and arabinose molar mass.
fObtained considering two B12-producing bacterial species, Azobacter vinelandii and Halomonas sp.

was estimated with bioassays [55]. Figure 7 shows the results
for a set of six independent experiments [(a)–(f)] along with
global fits to the model, corresponding to the values shown in
Table I.

5. Mutualism at a distance: Experimental proof of concept

To test experimentally the predictions of the mathematical
model, we developed a system to culture mutualistic microbial
species exchanging metabolites diffusively over a finite dis-
tance. Briefly, each of two 100-mL conical Erlenmeyer flasks
was modified (Soham Scientific Ltd.) to have a side arm (8 mm
long, outside diameter 11 mm, inside diameter 9 mm) in which
a small glass tube could be inserted (25 mm long, outside
diameter 8.65 mm, inside diameter 7.45 mm). Sealing of the
tube-flask junction was achieved by compression of O rings
on each side of a metal washer glued onto the glass tube [see
Figs. 8(a) and 8(b)]. The force of compression was established
and maintained by mounting the flasks on custom sliding plat-
forms [Figs. 8(b) and 8(c)]. To prevent contamination, flasks
were capped with silicon plugs (Hirschmann Silicosen type
T-22) and aluminium foil, while the middle area of the flasks
and tube assembly was also further covered with aluminium

foil. The central glass tube connecting the inside of both flasks
was filled with a polyacrylamide (PAM) gel (4% acrylamide
w/v with a relative concentration of bis-acrylamide of 2.7%,
filter sterilized before pouring, BioRad). Once polymerized,
the gels in their tubes were put in a bottle of sterile water
and left to soak for 6 days to allow for any of the toxic
nonpolymerized monomer to diffuse out of the gel. We verified
the very weakly hindered diffusion of B12 through this gel by
colorimetry, measuring a reduction of ∼10% of diffusivity
with respect to B12 diffusion in water, which validates the
chosen gel pore size as allowing the diffusive transport of
small metabolites. We also performed a test to check for cross
migration of the mutualistic species. Both flasks were filled
with a rich bacterial medium for soil bacteria (TY), but only
one side was inoculated with M. loti (see below for strain
details). These bacteria reached a saturation density within
a few days, but over a time scale of 2.5 months no bacteria
were detected in the first flask, proving the PAM gel is not
penetrable by bacteria (and by inference by the algae, which
are larger).

In such connected flasks, we inoculated one side with
the B12-dependent green alga Lobomonas rostrata (SAG 45-
1, wild type strain) and the other with the B12 producing

FIG. 8. Chambers for proof-of-principle experiments. (a) Sketch of the platform holding the modified flasks during assembly. (b) Sketch
of the diffusive plug filled with polyacrylamide (PAM) gel, used to connect the two flasks in experiments of mutualism at a distance.
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TABLE III. Fitted parameters for the mutualistic association of
M. loti and L. rostrata.

Fitted dimensional parameter Symbol Value

Algal carrying capacity Ka 3.0 × 106 cells mL−1

Bacterial carrying capacity Kb 5.8 × 108 cells mL−1

Growth affinity constant of algae Kv 1.2 × 10−14 mol cm−3

Maximum growth rate of M. loti μb 1.9 h−1

bacterium Mesorhizobium loti (MAFF 303099, wild type
strain, original gift from Professor A. Downie, John Innes
Centre, UK). Both inocula were diluted with TP+ medium
[11] to the desired starting concentrations of microbes. The
L. rostrata preculture was grown in TP+ with 100 ng L−1 of
vitamin B12 from colonies picked from a slant, while the M.
loti preculture was grown in TY medium. Both precultures
were washed in fresh TP+ before inoculation in the assembly
in order to remove any organic carbon and B12 in the initial
growth media. The initial concentrations of M. loti and L.
rostrata were b0 = 2.2 × 108 cells mL−1 and a0 = 5.3e4 ×
cells mL−1, inferred from viable counts. To ensure culture
sterility, flask assembly and inoculation were carried out in a
laminar biosafety cabinet (PURAIR VLF 48). The connected
flasks were mounted on a shaking platform (120 rpm) within an
incubator for 50 days, at 25 ◦C, with continuous illumination
(80 μmol m−2 s−1). After this period, these assemblies were
left in static incubation at 20 ± 2 ◦C and at ambient day/night
light levels.

Viable counts and B12 concentration measurements

Algal and bacterial populations were sampled 55 and
230 days after inoculation. No contamination (external or
between species) was detected, and PCR screening was used
to confirm species identity as Mesorhizobium loti bacteria
and Lobomonas rostrata algae. This confirms the ability of
the PAM gel to prevent cells from crossing, while allowing
metabolites to be exchanged.

10−3

10−1

a(t)

b(t)

0.00 0.02 0.04 0.06
Time t

10−1

101

(a)

(b)

vλ(t)

c0(t)

FIG. 9. Example of oscillations of (a) concentrations of cells and
(b) concentration of metabolites during the time evolution of a co-
culture at a distance system before convergence. Initial parameters are
close to the boundary between survival and extinction (λ = 2, η =
3, a0 = 2 × 10−2, b0 = 3 × 10−4, and no initial nutrients).

Viable counts revealed that the population of bacteria
55 days after inoculation was ∼103 smaller than the inoculum.
At the same time point the algae had grown little: the cell
concentration was only 1.3 times larger than the inoculum.
After 230 days the bacteria had recovered, and the algae had
grown significantly. At this time the algal concentration from
two replicates was a = 7.8 ± 0.3 × 105 cells/cm3 (where the
uncertainty is the standard error in the mean), about 15 times
the inoculation concentration and close to the carrying capacity
they reach in well-mixed co-cultures (see Table II). While
slight initial growth of the algae might be attributed to internal
reserves of vitamin B12, it is difficult to account for growth 230
days after inoculation in the absence of the vitamin. Indeed,
using bioassays [55] we measured a B12 concentration of
24 ± 3 pg/ml in the medium on the side of the algae. On the
side of the bacteria, we found 132 ± 7 pg/ml. This implies the
existence of a concentration gradient across the tube between
the two flasks. This is required for the supply of the B12 to the
algae, as predicted by the model [see Eq. II.16c].
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