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One of simplest examples of navigation found in nature is run-and-tumble chemotaxis. Tumbles reorient
cells randomly, and cells can drift toward attractants or away from repellents by biasing the frequency of
these events. The post-tumble swimming directions are typically correlated with those prior, as measured
by the variance of the reorientation angle distribution. This variance can range from large, in the case of
bacteria, to so small that tumble events are imperceptible, as observed in choanoflagellates. This raises the
question of optimality: why is such a range of persistence observed in nature? Here we study persistent
run-and-tumble dynamics, focusing first on the optimisation of the linearised chemotactic response within
the two-dimensional parameter space of tumble frequency and angular persistence. Although an optimal
persistence does exist for a given tumble frequency, in the full parameter space there is a continuum of
optimal solutions. Introducing finite tumble times that depend on the persistence can change this picture,
illuminating one possible method for selecting tumble persistence based on species-specific reorientation
dynamics. Moving beyond linear theory we find that optimal chemotactic strengths exist, and that these
maximise reaction when swimming in a wrong direction, but have little or no reaction when swimming
with even the slightest projection along the chemoattractant gradient.
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1. Introduction

Chemotaxis, the ability to navigate concentration fields of chemicals, is a ubiquitous feature of the
microscopic world. Performed by uni- and multicellular organisms alike, it represents one of the sim-
plest forms of navigation. Within this simplicity, various strategies exist. For instance, certain sperma-
tozoa measure chemoattractant gradients by swimming in helical trajectories and bias the helical axis to
move directly towards the chemoattractant (Friedrich and Juicher, 2007; Jikeli et al., 2015). Green algae
can swim towards light-intense regions by measuring light source directions as they rotate around their
own swimming axis (Yoshimura and Kamiya, 2001; Drescher et al., 2010), but also bias their navigation
by switching between synchronous and anti-synchronous beating of their flagella (Polin et al., 2009).
The slime mould D. discoideum is large enough to measure directly the spatial concentration gradients
in cAMP, along which it navigates (Bonner and Savage, 1947). The epitome of chemotaxis is perhaps
the run-and-tumble of certain peritrichously flagellated bacteria such as E. coli (Berg and Brown, 1972).

Run-and-tumble motion is comprised of approximately straight lines (runs) interrupted by reorien-
tation events (tumbles), as shown in Fig. 1. For example, in peritrichous bacteria, the helical flagella
rotate counter-clockwise and form a coherent bundle during swimming. A tumble is induced when
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(a) (b)

FIG. 1. Run-and-tumble. (a) Swimming and tumbling of a peritrichous bacterium. During swimming the flagella rotate counter-
clockwise and form a bundle resulting in a run. Clockwise rotation one or more of the flagella breaks the bundle and results in a
tumble that reorients the cell. (b) Choanoflagellate colony reorientation event. Each cell’s flagellum beats independently of the
others. A change in the beating dynamics of one cell (green flagellum) can cause a small reorientation of the colony as a whole.

(some of) the flagella reverse their rotational direction and the bundle is disrupted (Fig. 1a). This cre-
ates a large, transient, reorientation. Navigation along a gradient of chemoattractant becomes possible
if the frequency of tumbling is biased in response to the chemoattractant distribution. This is a type of
stochastic navigation in the sense that the organisms that perform it do not swim directly in the desired
direction, but rather in a random direction and later decide whether such a turn was correct.

The tumbling frequency is modulated through measurements of the variation in concentration of
chemoattractants, illustrated by the background of Fig. 2. In an idealised scenario, the reorienting
tumbles result in unbiased new directions, uniformly chosen from the unit sphere, but this is not typically
the case. Instead, a persistence with the previous direction is present (Berg and Brown, 1972). In fact, for
some species, the individual reorientations are so small that they are hardly observable. This is the case
in colonies of choanoflagellates (Kirkegaard et al., 2016a), within which the flagella beat independently
(Kirkegaard et al., 2016b) and a reorientation event may simply arise from slight modulation of the
beating of a single flagellum (Fig. 1b). These smaller tumbles, or directionally persistent tumbles, add
up to a smoother swimming while still allowing navigation. Fig. 2 shows two realisations of run-and-
tumble swimming. In blue is the case of full-reorientation tumbles and in red is very persistent tumbles
occurring with higher frequency. Over long time-scales both of these swimmers perform random walks
biased in the direction of the chemoattractant signal.

A strong theoretical understanding of chemotaxis exists (Tindall et al., 2008a,b), including the fil-
tering of chemoattractant signals to which the cells react (Segall et al., 1986; Celani and Vergassola,
2010), the fundamental limits of measurement accuracy of such signals (Mora and Wingreen, 2010) and
the limits they impose on navigation (Hein et al., 2016). Theories of chemotaxis are typically developed
in the weak-chemotaxis limit (Celani and Vergassola, 2010; Locsei, 2007; Locsei and Pedley, 2009;
Reneaux and Gopalakrishnan, 2010; Mortimer et al., 2011), the linear theory of which provides accu-
rate explanations of many experimental observations. Theory (Locsei, 2007) and simulation (Nicolau
et al., 2009) of chemotactic bacteria have also showed that for otherwise equal chemotactic parameters,
directional persistence of tumbles, as observed in experiments, can lead to enhanced chemotaxis.
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FIG. 2. Run-and-tumble trajectories. Both simulated trajectories drift to the right, starting from the origin. Full tumbles are shown
in blue (k = 0, λ0 = 0.1s−1) and persistent but frequent tumbles in red (k = 10, λ0 = 2.0s−1). Circles indicate tumbles. Shared
parameters: Dr = 0.1s−1, β = 1/2, γ = 1s−1

This raises a more general question: could the effect of changing one parameter, such as direc-
tional persistence, be compensated by simultaneously changing another? Here, we address this question
of global optimality, and examine effects that lead to the existence of optima. For example, in lin-
earised theories, the drift velocities for large chemotactic strength and for steep gradients can become
unbounded, and thus the evaluation of one effect is done at fixed chemotactic response. But microor-
ganisms do not have the restrictions that come with choosing theories that are analytically tractable.
In real systems, the drift velocity will be limited (trivially) due to the finite swimming speed of the
organisms and (more importantly) by uncertainties of measurements in noisy environments combined
with diffusion. Throughout this study we optimise for the performance of a single organism, neglecting
population effects (Peaudecerf and Goldstein, 2015).

2. Model

The model of chemotaxis used here assumes that organisms determine concentration gradients by com-
paring their concentration measurements at different times as they move through the medium, rather
than detecting gradients over their own body, as is possible for organisms considerably larger than bac-
teria (Berg and Purcell, 1977). To be precise, we assume that as a cell swims it measures only the local
chemoattractant concentration c(xxx, t) at its present position xxx. Moreover, in this section the concentra-
tion is taken to be linear in position, c(xxx) = c0 +α x, allowing the notation c(t) = c(xxx(t)) for a given
trajectory xxx(t). Cells are thought to store the history of these measurements, and use this to bias their
tumbling frequency λ . In the present model, this is embodied by the relationship λ = λ0 b1+qc, where
b·c= max(0, ·). Here, q is the biaser, determined by a linear convolution of c,

q(t) =
∫

∞

0
c(t− t ′)κ(t ′)dt ′. (2.1)
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We take the kernel to be one studied previously and which corresponds well to experimental measure-
ments (Segall et al., 1986; Celani and Vergassola, 2010),

κ(t) =
βγ2

α v
e−γt

[
(γ t)2

2
− γ t

]
, (2.2)

where v is the swimming speed and γ is the memory time scale of past measurements. The normalisation
is chosen such that max |q| = β in the absence of noise, and hence β solely specifies the chemotactic
strength. The kernel satisfies

∫
κ(t)dt = 0 which gives perfect adaptation to any background chemoat-

tractant concentration. This criteria arises naturally from maximising the minimum chemotactic effi-
ciency over all chemoattractant profiles (Celani and Vergassola, 2010). In particular, this is an important
feature that will not arise from maximising drift velocity alone and which we thus impose a priori here.

We consider cells swimming in two dimensions in an instantaneous direction θ(t) with velocity v,
and discuss the three-dimensional case in Appendix D. This direction is modulated by both rotational
diffusion as dθ =

√
2Dr dW , where W is a standard Wiener process, and by tumbles, the size of which

are chosen from a von-Mises distribution with parameter k, p(∆θ) = exp(k cos(∆θ))/2πI0(k), where
In are the modified Bessel functions of the first kind. Thus k specifies the persistence of the tumbles,
k = 0 corresponding to full tumbles.

3. Measurement Time-scale

If the time 1/λ0 between tumbles is too long compared to the rotational diffusion time 1/Dr, the tra-
jectories will be reoriented by rotational diffusion and the organism will have lost the ability to bias
its motion in any useful way. Thus, the biasing of tumbles must outcompete rotational diffusion and
we expect λ0 & Dr. In the absence of measurement noise, and if the organism can make instantaneous
measurements (γ → ∞), increasing the chemotactic strength will monotonically increase the chemotac-
tic drift, and in the limit β → ∞ chemotaxis becomes perfect, despite the hindering effects of rotational
diffusion. But, we emphasise that this is only possible in the absence of measurement noise. Here,
in contrast, we are interested in the noise-limited situation, and with noise comes another time scale,
that over which accurate measurements can be made (see Appendix F for a simple lattice calculation
illustrating this point).

To illuminate this situation we perform simulations in which cells are placed in a constant gradi-
ent (linear increase) of discrete chemoattractants. In a periodic 2L× 2L box, N molecules are placed,
decreasing linearly in concentration from x = 0. This is achieved by choosing each molecule’s posi-
tion as x = L

√
|U1|sign(U1), y = LU2, where Ui is uniformly distributed on [−1,1]. Here, c(t) is then

defined to be the number of molecules within a cell’s area. This can be evaluated efficiently by storing
the molecules in a k-D tree (a data structure for fast neighbour lookups), allowing for simulations with
billions of molecules.

For the purposes of the present discussion, we define the chemotactic efficiency proportional to the
average value of the concentration experienced by the organism in steady state

η ∝ 〈c〉=
∫

c(xxx)P(xxx)dxxx, (3.1)

where P(xxx) is the steady-state probability distribution. The normalisation is chosen such that η = 1
corresponds to perfect chemotaxis.
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FIG. 3. Chemotactic efficiency as a function of γ . Each curve corresponds to different concentration levels; at the lowest con-
centration (blue data) each cell senses on average n ∼ 1.5 molecules, while at the highest (red), n ∼ 2000 are sensed. Shaded
background indicates standard error of the simulations. Inset shows optimal γ as a function of n for λ0 ∈ {0.1,1.0,5.0}s−1.
Dr = 0.1s−1, γ = 1s−1.

Fig. 3 shows η as function of the measurement rate γ for various molecular concentrations. The
curves clearly reveal the existence of an optimal γ for each choice of the (average) number of molecules
sensed. Choosing γ too low means slow reaction, but with γ too high the organism does not have time to
make an accurate measurement before previous information is forgotten. Varying the chemoattractant
concentration (but not the gradient) shifts the optimal γ . At higher concentrations, the measurement
noise is lower (Mora and Wingreen, 2010), and thus less time is needed to make an accurate measure-
ment. The inset of Fig. 3 shows how the optimal γ varies with the concentration, and further shows that,
within the resolution of our simulations, this optimum is independent of the base tumbling frequency
λ0. This independence means that we can fix γ to its optimal value without specifying the value of λ0.

In this noise-dominated regime, γ is thus set by the chemoattractant concentration. If cells are kept
in a chemostat with fixed concentration and gradient, as is the case considered here, the optimal γ is thus
indicative of the underlying noise levels. In the following sections we fix γ , thus implicitly defining the
noise levels. The goal then becomes to find the optimal choice of the remaining parameters for a given
γ . Our approach ignores spatial variations in noise, but conclusions made are confirmed by checking
them against the full simulation setup used in this section.

4. Tumbling Frequency & Persistence

In earlier theoretical work, persistence of tumbles has been shown to enhance the chemotactic drift
velocity (Locsei, 2007; Nicolau et al., 2009). Possible rationalizations for this effect include the idea
of information relevance; for persistent tumbles, the gradient information (stored in q, Eq. 2.1) remains
more relevant than for full tumbles, where a completely random direction is chosen. It has also been
shown that an optimum base tumbling frequency λ0 exists (Celani and Vergassola, 2010). Intuitively,
in the low-noise limit, this optimum should be set by the rotational diffusion constant Dr, in order to
dominate rotational diffusion but not hinder drift. Intuitively, one expects that introducing persistence,
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which results in smaller angular deflections from tumbles, would shift the optimal tumble frequency to
higher values. So while it is clear that persistence can increase the chemotactic drift for a given base
tumble frequency, it is not clear what the effect is if variations in λ0 are also allowed.

To study this, we simulated cells performing chemotaxis in a constant gradient for various persis-
tence parameters k, while varying λ0. The results shown in Fig. 4 confirm the intuition outlined above;
for large base tumbling frequency λ0, increasing the persistence k leads to increased chemotactic drift,
as previously found. However, for low values of λ0 the opposite effect is found. There is thus a trade-off
between frequency and persistence of tumbles.

To gain further insight we study the relevant Fokker-Planck equation. As shown previously (Celani
and Vergassola, 2010), the dynamics of the biaser q can be made Markovian by introducing three internal
variables (moments of c)

m j =
∫ t

−∞

e−γ(t−t ′)(t− t ′) jc(t ′)dt ′, (4.1)

which obey a coupled system of differential equations

∂tm j = c(t)δ j0− γm j + jm j−1 (4.2)

It follows that the distribution function P(x,θ ,{m j}, t), describing the probability density that a cell at
time t is at position x, swimming in direction θ , and has internal variables with values {m j}, obeys the
Fokker-Planck equation

∂P
∂ t

+ vcosθ
∂P
∂x

= Dr
∂ 2P
∂θ 2 +λ0b1+q(t)c

[∫ ek cos(θ−θ ′)

2πI0(k)
P(θ ′)dθ

′−P

]
(4.3)

−∑
j

∂m j [δ j,0 c(x) + jm j−1− γm j]P,

where

q(t) =
βγ2

α v

(
1
2

γ
2m2− γm1

)
. (4.4)

The left-hand side of Eq. (4.3) is the advective derivative, with vcosθ being the instantenous velocity
in the x-direction. On the right-hand side, the first term describes rotational diffusion. The second
term describes tumbling with frequency λ0b1+q(t)c. The first term in the square bracket describes the
probability mass gained by tumbles resulting in final angle θ and the second term describes probability
mass lost by tumbles that start with angle θ . Finally, the last term of Eq. (4.3) implements the dynamics
of the internal variables defined in Eq. (4.2).

We begin by solving this system analytically for small β . Later we will argue that our conclusions
remain qualitatively correct also for large β . In steady state, we find (Appendix A)

〈cosθ〉= βγ3λk

2(Dr +λk)(Dr + γ +λk)3 +O(β 2), (4.5)

where λk = λ0 [1− I1(k)/I0(k)]. Note that the only place λ0 enters is through the quantity λk, which has
the optimal value

λ
∗
k =

1
3

(√
4D2

r +3γDr−Dr

)
. (4.6)
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FIG. 4. Drift efficiency as a function of tumble frequency. Data from direct simulation of full model are shown for k = 0 (blue),
k = 3 (red), and k = 6 (green). Each data point is the result of 10,000 simulations and shaded background indicates standard error,
with Dr = 0.1s−1, β = 1/2, γ = 1s−1. Linearised theory is indicated by dashed lines.

From this fact, we conclude that the trade-off between tumbling frequency and tumble persistence is
perfectly balanced; changes in k can be precisely compensated by changes in λ0.

Fig. 4 shows how this small-β result accurately matches the full numerical results even for β = 1/2.
So while persistence can lead to enhanced chemotaxis, we find that this has nothing inherently to do with
the persistence of the tumbles themselves, as the same increase can be achieved simply by lowering the
base tumbling frequency.

With constant λ0, letting k→ ∞ results in negligible drift. For large k, [1− I1(k)/I0(k)]
−1 ∼ 2k.

Thus we see that a continuous version of run-and-tumble (Kirkegaard et al., 2016a) emerges in the limit
k→ ∞ if λ0 is scaled linearly with k, and we conclude that such a strategy is equally optimal to any
other persistence of tumbles with the correct choice of tumble frequency. These results arise because
we allow λ0 to be chosen independently of γ . Without persistence, chemotaxis is optimised for λ0 and γ

of similar order. For cells with large persistence, however, optimisation leads to λ0 much larger than γ .
The above conclusions of perfect trade-off between λ0 and k are made for 〈cosθ〉 using equations

where second-order moments are neglected. By considering higher-order closures and by comparing to
numerical simulations, we have found that the expansion P(x,θ ,{m j})= a0(x,{m j})+a1(x,{m j})cosθ

captures the full steady state distribution well, without the need for higher order Fourier terms. The form
of λk can only change if higher order Fourier modes become important. This is not the case even in the
high β regime, and so these conclusions are also valid there. Second order effects such as small depen-
dencies of the optimal γ on λ0 and k could also perturb the result of perfect trade-off between tumble
frequency and persistence. Furthermore, although we only considered the steady state here, the conclu-
sions apply to the transient behaviour of the system. Our conclusions also hold in three dimensions as
demonstrated in Appendix D.

Real bacteria are observed to have an angular distribution of tumbles with a non-zero mode (Berg and
Brown, 1972). To model this, we consider the reorientation distribution g(θ ,θ ′) = ∑± ek cos(±µ+θ−θ ′)/
4πI0(k). This results in the substitution I1(k)/I0(k)→ I1(k)/I0(k)cos µ in Eq. (4.5) (see Appendix B),
leaving unchanged our conclusions. If the turns are biased in one direction (e.g. turning more clockwise
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than counter-clockwise), such that g(θ ,θ ′) = ek cos(µ+θ−θ ′)/2πI0(k), the efficiency can surpass that of
unbiased cells. In this case the optimum strategy involves cells that continuously rotate, modulating
their rotation speed as they swim (Appendix C). While this is interesting behaviour, such a bias is a 2D
phenomenon, although a related optimality may exist in 3D.

The fact that no single persistence value is globally preferable fits well with the experimental varia-
tions seen between biological species. The question still remains, however, if there are other effects that
could induce a preferred tumble persistence. So far we have assumed the tumbles to be instantaneous.
Including a finite tumble time can change the conclusions. In particular, since the optimal tumbling fre-
quency for persistent tumbles is large, adding a constant time for each tumble results in large amounts
of time in which no chemotactic progress is made, hence disfavouring persistence, On the other hand,
one would expect a persistent tumble to take less time than a full tumble. The average tumble time 〈τ〉
should depend on the average angle turned. The precise form of this dependence will change with reori-
entation method. If the tumbling rotation is ballistic, the mean reorientation time should be proportional
to the mean angle turned. If, on the other hand, the cell relies on a diffusive method (which includes
simply not swimming), the reorientation time will be proportional to the mean of the squared angle. We
parametrise this with the exponent ζ , with ζ = 1 for ballistic reorientations and ζ = 2 for diffusive and
a mixture for values in-between. The mean tumbling time is thus

〈τ〉= τ0

πI0(k)

∫
π

0
δ

ζ ek cosδ dδ . (4.7)

The insets of Fig. 5 show trajectories for ballistic diffusive and intermediate exponents. For small
chemotactic strength it is easy to incorporate this effect. The fraction of time spent swimming will be
1/(1+ 〈τ〉λ0), so we find

〈cosθ〉 → 1
1+ 〈τ〉λ0

βγ3λk

2(Dr +λk)(Dr + γ +λk)3 . (4.8)

Crucially, λ0 now appears alone, and we thus expect a global optimum to appear. Fig. 5 shows 〈cosθ〉
evaluated for various exponents. For ballistic (ζ = 1) we find that full tumbles (k = 0) are optimal. For
diffusive ζ = 2, the continuous dynamics (k→ ∞) become optimal. In-between, as shown in Fig. 5b, a
finite k optimum appears. A finite non-zero persistence also appears for diffusive scaling with an added
constant, i.e. for Eq. (4.7) plus a constant.

5. Chemotactic Strength

We now ask whether optimality exists for the chemotactic strength parameter β . Of course, in models
linearised in β no such optimality can appear, and we must seek a different approach. Averaging over
many numerical realisations of the model would allow these effects to be captured, but a large number of
realisations is needed to gain accurate statistics, rendering parameter space exploration hard. Hence, we
begin this section by gaining intuition through a more tractable model, which gives a good qualitative
understanding of the problem.

The crucial insight for this simplified model is that in a constant gradient there is nothing to dis-
tinguish one value of the position variable x from another. In our full model, the biaser q(t) relaxes to
−β times the cell’s estimate of cosθ on a time scale ∼ γ . Such a behaviour can be modelled by the
Langevin equation

dq =−γ

4
(q+β cosθ)dt +β

√
2σ dW , (5.1)
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FIG. 5. Drift efficiency 〈cosθ〉 with finite tumbling time. Panels correspond to different tumble time exponents: (a) ζ = 1.0, (b)
1.7, and (c) 2.0. Colour scale shows the top 20% range of drift velocities. Insets show examples of reorientation trajectories for
with exponent ζ , the angle on the circle indicating the orientation and the radial distance indicating time. Common parameters:
Dr = 0.1s−1, β = 1/2, γ = 1s−1, τ0 = 1s.

where we now consider q as an effective representation of the internal parameters, instead of modelling
the dynamics of internal parameters directly (and they, in turn, defining q). The prefactor of 1/4 is
chosen so that the effective relaxation time matches that of the kernel κ used in the full model, and we
have introduced a noise term (such a noise term plays no role in the linearised system). We can specify
this system fully through a Fokker-Planck equation for P(θ ,q, t),

∂ P
∂ t

=
γ

4
∂

∂q
(q+β cosθ)P+σβ

2 ∂ 2P
∂q2 +Dr

∂ 2P
∂θ 2 +λ0b1+qc

[∫ ek cos(θ−θ ′)

2πI0(k)
P(θ ′)dθ

′−P

]
. (5.2)

Again we consider the steady-state behaviour. The optimal behaviour of the original system is well-
captured by this reduced model (Appendix E). Crucially, equation (5.2) is simple enough to be solved
numerically using a hybrid spectral-finite difference method. We discretise q into {qi} and expand
P(θ ,qi) = ∑n ani cosnθ . The differential q-operators in Eq. (5.2) are approximated by fourth-order
central-difference schemes, and by orthogonality of cosθ and the linearity of Eq. (5.2) we can numeri-
cally solve directly for the coefficients ani. We find that for all parameters the same efficiency (〈cosθ〉)
can be obtained for any k by a simple rescaling of λ0. We thus set k = 0 in the remainder of this section
without loss of generality.

Fig. 6a shows the resulting chemotactic drift under variation of the chemotaxis strength β and
the base tumbling frequency λ0. For a given λ0, an optimal chemotactic strength does indeed exist.
Choosing the chemotactic strength too high, evidently, also results in too many tumbles. Fig. 6a also
shows, however, that under variations of both β and λ0, the optimal is found for β →∞. For large β the
optimum lies on a straight line (power law) relating β to λ0.

To understand what sets the optimal chemotactic strength, we seek an analytical approach, but since
there is no perturbative small parameter we examine instead a Fourier-Hermite expansion of the form

p(θ ,q) =
N

∑
n=0

M

∑
m=0

anm cos(nθ)Hm(q/ζ )e−q2/ζ 2
, (5.3)

where Hm are the Hermite polynomials. The choice of this expansion arises from the fact that q resem-
bles an Ornstein-Uhlenbeck process, the solution of which is Gaussian, with a scale ζ , which, for
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FIG. 6. Drift efficiency as a function of chemotactic strength. (a) Variations in β and λ0 reveal a maximum as β → ∞, λ0 → 0.
Dashed curve is analytical approximation to optimum region. (b) Chemotactic drift with modulation of the form β̃bqc. Curves
vary from σ = 0.15 (red) to σ = 1.0 (blue). (c) Full particle simulations with average molecules sensed by cells varying from 0.5
(blue) to 3 (red). Common parameters: Dr = 0.1s−1, β = 1/2, γ = 1s−1.

a true Ornstein-Uhlenbeck process would be ∼
√

4σ/γ . Presently, cosθ also contributes to varia-
tions in q, and so ζ ∼

√
1+4σ/γ . Here, we truncate at N = M = 1, which, while yielding numeri-

cally inaccurate results nevertheless reveals the key dynamics. Higher-order terms can easily be cal-
culated, but the expressions become lengthy. Exploiting orthogonality, the steady state coefficients
{anm}= (a00,a10,a01,a11) are found as the null space of

0 0 0 0
0 − γ

4 − γ

8ζ
0

0 0 λ0
2 erfc( 1

ζ β
)− λ0ζ β

2
√

π
exp( −1

ζ 2β 2 )−λ0−Dr − 1
2 λ0ζ β (1+ erc( 1

ζ β
))

−γ

4β
0 − 1

4 λ0ζ β (1+ erf( 1
ζ β

)) 1
2 λ0 erfc( 1

ζ β
)−λ0(1+

ζ β√
π

exp( −1
ζ 2β 2 )

 ,

(5.4)

whence 〈cosθ〉 = a10/(2a00). Optimising this for λ0 we obtain the dashed white curve in Fig. 6a. In
the limit β → ∞ this has the form

λ0 ∼

√
Dr(Dr + γ/4)

1+4σ/γ

1
β
. (5.5)

Although the expansion does not quite capture the location of the optimum, the correct scaling is
obtained. The global optimum is found at β → ∞ and we learn that λ0β tends to a finite value in
that limit. In detail, the optimisation tries to diminish the base tumbling contribution in the expres-
sion λ0b1+ qc and the optimum is found in limit where λ0b1+ qc → λ0bqc. Explicitly making this
substitution in Eq. (5.2) and defining β̃ = λ0β , we obtain a system that has a finite optimal value of
chemotactic strength. This is shown in Fig. 6 for various noise strengths σ . To verify our conclusions
based on this model we turn to the full simulation. Exactly as in the simplified model, we find optimum
behaviour after making the substitution λ0b1+qc → λ0bqc. This is shown in Fig. 6c for various levels
of chemoattractant concentrations, confirming our conclusions.

It is perhaps surprising that the optimum is found in this limit, since no modulation of tumbling
frequency then can occur if q < 0, which is the case when the cell swims just slightly in the correct
direction, and thus in the limit of no noise, the angular distribution will be governed simply by rotational
diffusion on θ ∈ [−π/2,π/2]. In this optimal limit, the cells have minimised the time they spend
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swimming in any wrong direction, which, evidently, even though it leads to no active modulation for
q < 0, is also the optimum for the total chemotactic drift. For stochastic taxis to work, the modulation
must necessarily be a monotonically increasing function of q. Strong reaction when swimming in the
wrong direction (q > 0) is thus typically coupled will smaller reaction when swimming in the correct
direction (q < 0). Our results show, at least for the presently chosen form of modulation, that with this
trade-off the best choice is to react very strongly when swimming in the wrong direction, even though
this reduces the effectiveness of chemotaxis while swimming in the right direction.

6. Conclusions

In this study we have taken an approach to understanding run-and-tumble chemotaxis based on simulta-
neous parameter optimisation. For the specific system studied here, cells in constant gradients, we have
focused on the base tumbling frequency λ0, tumbling persistence k, and chemotactic strength β as key
parameters. Varying any one parameter alone, there is a unique value that optimises the chemotactic
drift, but when all parameters are free there is a higher-dimensional optimal locus.

In particular, the trade-off in optimality between the base tumbling frequency and tumble persistence
is “perfect” in the sense that any increase, say, in persistence can be countered by an increase in base
tumble frequency. After a persistent tumble, it would seem that the current value of q would stay
more relevant than for a full tumble, indicating that persistence could lead to enhanced chemotaxis.
The intuition behind this argument is based on comparing a single full tumble to a single persistent
tumble, but a more appropriate comparison would be to a series of persistent tumbles. And as evident
by our calculations, comparing in this way the argument of preservation of information leads to similar
behaviour for all persistence parameters. One might also argue for the opposite: after a full tumble
(or a series of persistent tumbles) there is a high risk that the new direction is wrong. Therefore, one
could argue that keeping q large is a desirable strategy, since it increases the probability of correcting
the tumble quickly. Our results show that both of these arguments are incorrect. Although one could
imagine a model in which q is explicitly altered after each tumble, say q→ aq, the study of this variant
would require relaxing the assumption of fixed γ in order to find global optima.

Introducing a finite tumble time moves the model away from the perfect trade-offs described above.
We have shown that an optimum persistence emerges that depends on the manner in which the tumble
time depends on reorientation angle. For ballistic tumbles, zero persistence is optimal, while continuous
tumbling is optimal for diffusive tumbles. A finite persistence emerges for exponents in-between, i.e. for
tumbles that are superdiffusive, but not ballistic. Such a tumble could simply be a mixture of ballistic and
diffusive reorientations that when taken together have a super-diffusive behaviour. Diffusive tumbles are
easy to generate: a cell can do so by simply not swimming, and more generally by wiggling its flagella
in random directions. Ballistic tumbles require directed motion of the flagella (even though the actual
direction is chosen randomly). Actual tumbles might be a combination of a fixed tumble time plus a
diffusive scaling, which would favour a finite tumble persistence (non-zero and non-infinite). One could
furthermore imagine minimising tumble times by maintaining a finite swimming speed during tumbles,
e.g. via polymorphic transformations of the flagella (Goldstein et al., 2000).

In addition to studying the weak chemotaxis limit, we have also investigated the effects of strong
chemotaxis. While this is, naturally, dependent on the precise functional form chosen for the biasing of
tumbles, we have shown that optima in chemotactic strength can also emerge. Through an analytical
approximation we found that the form λ0b1+qc has an optimal value of β for constant λ0. Allowing for
variations in λ0 the optimum shifts to β →∞, and instead β̃ = βλ0 as β →∞ has an optimal value. This
naturally leads to the question of the optimal form of the modulation. Preliminary results have shown
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that other simple choices, e.g. λ0 eq, do not perform better than the form studied here. In general such
problems can be considered partially observable Markov decision processes, and a potential optimal
functional form could be found by methods such as reinforcement learning. Results from such analysis,
however, will probably be strongly dependent on the model setup, and a form that optimises for drift in
constant gradients will not necessarily do well in other gradients.

Comparing to experimental systems, our result that persistence does not have a unique optimum
when allowing for variations in base tumble frequency fits well with the variation that exists between
species. The chemotactic strength result that the optimum is found as λ0 → 0 is a special outcome of
maximising the drift velocity in a constant gradient. In more complex domains, the cells will need to
react also to spatial variations (Appendix E) and thus need a finite λ0 and smaller β . Maximising the
minimum chemotactic efficiency over many chemoattractant profiles reveals the experimental values
associated with the kernel κ and base tumbling frequency (Celani and Vergassola, 2010). A linear
approach cannot, however, reveal an optimal chemotactic strength. An interesting question for future
research is thus: can maximising the minimum chemotactic efficiency over suitably chosen noise models
reveal an optimal finite chemotactic strength? While difficult to tackle analytically, numerical methods
may be able to answer such questions.
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A. Linearised drift

To find the drift 〈cosθ〉 linearised in β , we multiply

∂P
∂ t

+ vcosθ
∂P
∂x

=Dr
∂ 2P
∂θ 2 +λ0b1+q(t)c

[∫ ek cos(θ−θ ′)

2πI0(k)
P(θ ′)dθ

′−P

]
(A.1)

−∑
j

∂m j [δ j,0 c(x) + jm j−1− γm j]P,

by cosθ , whereafter integration yields

∂t〈cosθ〉=−Dr〈cosθ〉−λ0

(
1− I1(k)

I0(k)

)
(〈cosθ〉+ 〈qcosθ〉) , (A.2)

using ∫
ek cos(θ−θ ′) cosθ dθ = 2πI1(k)cosθ

′. (A.3)

The last terms disappear by partial integration of m j.

Since q(t) = βγ2

α v (γ
2m2/2− γm1) we continue, neglecting quadratic terms

∂t〈m0 cosθ〉=−(Dr +λk + γ)〈m0 cosθ〉+α〈xcosθ〉, (A.4)
∂t〈m1 cosθ〉=−(Dr +λk + γ)〈m1 cosθ〉+ 〈m0 cosθ〉, (A.5)
∂t〈m2 cosθ〉=−(Dr +λk + γ)〈m2 cosθ〉+2〈m1 cosθ〉, (A.6)
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∂t〈xcosθ〉= v
2
− (Dr +λk)〈xcosθ〉. (A.7)

Solving these equations for the steady state, one finds the result of the main text.

B. Linearised with mean tumble angle

The reorientation distribution is now

gk(θ ,θ
′) =

1
4πI0(k)

(
ek cos(θ−θ ′−µ)+ ek cos(θ−θ ′+µ)

)
(A.1)

such that

∂t〈cosθ〉=−Dr〈cosθ〉−λ0

(
1− I1(k)

I0(k)
cos µ

)
(〈cosθ〉+ 〈qcosθ〉) , (A.2)

where we used that cos µ is an even function and sin µ odd. So having a finite µ corresponds to changing
the persistence. At precisely µ =±π/2, persistence no longer changes the behaviour.

C. Linearised with mean tumble angle — biased direction

Here we take

gk(θ ,θ
′) =

1
2πI0(k)

ek cos(θ−θ ′−µ). (A.1)

We now have

∂t〈cosθ〉=−Dr〈cosθ〉−λ0

(
1− I1(k)

I0(k)
cos µ

)
(〈cosθ〉+ 〈qcosθ〉)

−λ0
I1(k)
I0(k)

sin µ (〈sinθ〉+ 〈qsinθ〉) . (A.2)

And then

∂t〈m0 cosθ〉=−Dr〈m0 cosθ〉−λ0

(
1− I1(k)

I0(k)
cos µ

)
〈m0 cosθ〉

−λ0
I1(k)
I0(k)

sin µ〈m0 sinθ〉+α〈xcosθ〉− γ〈m0 cosθ〉, (A.3)

∂t〈m1 cosθ〉=−Dr〈m1 cosθ〉−λ0

(
1− I1(k)

I0(k)
cos µ

)
〈m1 cosθ〉

−λ0
I1(k)
I0(k)

sin µ〈m1 sinθ〉+ 〈m0 cosθ〉− γ〈m0 cosθ〉, (A.4)

∂t〈m2 cosθ〉=−Dr〈m2 cosθ〉−λ0

(
1− I1(k)

I0(k)
cos µ

)
〈m2 cosθ〉

−λ0
I1(k)
I0(k)

sin µ〈m2 sinθ〉+2〈m1 cosθ〉− γ〈m2 cosθ〉, (A.5)

∂t〈xcosθ〉= v
2
−Dr〈xcosθ〉−λ0

(
1− I1(k)

I0(k)
cos µ

)
〈xcosθ〉
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−λ0
I1(k)
I0(k)

sin µ〈xsinθ〉 (A.6)

and similarly for the sinθ terms, except no v/2 term appears in the equation for ∂t〈xsinθ〉.
This can be solved for the steady solution of 〈cosθ〉, but the expression is quite lengthy. Analysing

it, we find that the optimum is found for k→ ∞. Taking this limit we find

〈cosθ〉 →βγ
3
λ0

[
λ

2
0 (cos(2µ)(3(γ +Dr +λ0)(γ +2(Dr +λ0))+λ0(3γ +4(Dr +λ0))) (A.7)

+λ0(cos(3µ)(−3γ−4Dr−5λ0)+λ0 cos(4µ)))− cos µ(γ +Dr +λ0)
(
λ

2
0 (10γ +17Dr)

+λ0(γ +Dr)(2γ +7Dr)+Dr(γ +Dr)
2 +11λ

3
0
)
+(γ +Dr +λ0)

2((Dr +λ0)(γ +Dr +λ0)

+λ0(γ +4(Dr +λ0)))

]/[
2
(
−2λ0(Dr +λ0)cos µ +(Dr +λ0)

2 +λ
2
0
)

(
−2λ0 cos µ(γ +Dr +λ0)+(γ +Dr +λ0)

2 +λ
2
0
)3
]
.

The optimum is found at µ → 0, λ0 → ∞, keeping λ0µ constant. The motion is thus continuously
rotating cells, where the rotation speed is modulated by the chemoattractants.

D. Persistence in 3D

The linearised calculation is very similar in 3D. Defining p as a unit vector in the swimming direction,
we can write the Fokker-Planck equation with von-Mises tumbles as

∂P(t,x, p,m)

∂ t
+ v px

∂P
∂x

=Dr∇
2
pP+λ0b1+q(t)c

[∫ k ek p·p′

4π sinhk
P(p′)dΩ

′−P

]
(A.1)

−∑
j

∂m j [δ j,0 c(x) + jm j−1− γm j]P,

where ∇2
p is the angular Laplacian.

This leads to

∂t〈px〉=−2Dr〈px〉−λ0

[
1+

1
k
− 1

tanhk

]
(〈px〉+ 〈q px〉) , (A.2)

showing an only slightly altered persistence modification to λk compared to 2D, and thus leading to
similar conclusions as in 2D.

E. Simplified effective model

Fig. A.7 shows the performance of the simplified model of Eq. (5.2) compared to the simulations shown
in Fig. 4.

F. Run-and-tumble in discrete 1D

In this section we study run-and-tumble in one spatial dimension. Such simplifications have proven
to yield much insight in the case of no noise (Rivero et al., 1989). For the present purpose we will
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FIG. A.7. Similar to Fig. 4, but with theoretical curves (dashed) obtained from the analysis of Eq. (5.2).

consider the case of a very noisy signal. To simplify further we put the cells and chemoattractants on an
equilateral grid. We assume that each measurement carries the same error σ . In reality, the measurement
of a concentration c has an error ∝

√
c, but such effects are expected to be second order. Thus at each

grid position i, the cell measures a concentration ci ∼N (c(xxxi),σ
2), where c(xxxi) is the time-average of

the signal at that position.
In particular, a cell will swim n lattice points and calculate Q = ∑ j k jci( j), where k j is some kernel,

reminiscent of the continuous kernel used in the main text. In the simplest model, if Q > 0 the cell will
keep going in the same direction, but turn if Q < 0. We begin by determining the optimal {k j}.

F.1 Optimal kernel

We determine {k j} in such a way that Q makes the best estimate of a constant gradient. Thus we
consider ci = N (c0 +αi), σ2). Then Q = ∑k jc j is an unbiased estimator of α if

〈Q〉= ∑k j〈c j〉= ∑k j(c0 +α j) = c0 ∑k j +α ∑k j j = α, (A.1)

so we must require ∑k j = 0 and ∑k j j = 1. The variance becomes

VarQ = 〈Q2〉−〈Q〉2 = σ
2
∑k2

j . (A.2)

Writing Q = ∑kici, minimising the variance subject to the unbiased estimation yields

ki =
6(2i−n1−n2)

(n2−n1 +2)(n2−n1 +1)(n2−n1)
(A.3)

for a measurement on [n1,n2]. Thus

k j =
6(2 j−n)

(n+2)(n+1)n
, (A.4)
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where n = n2−n1. Assuming a Gaussian distribution we thus have

Q∼N
(
α,σ2

∑k2
j
)
= N

(
α,

12σ2

(n+2)(n+1)n

)
≡N (α,σ2

n ). (A.5)

F.2 Chemotaxis in a constant gradient

The probability that Q < 0 after a swim of n lattice points follows a geometric distribution with param-
eter

q =
1√

2πσ2

∫ 0

−∞

e−(x−α)2/2σ2
n dx =

1
2

erfc

(
α√
2σ2

n

)
. (A.6)

After a run left and right, the cell will have travelled on average

n
q
− n

1−q
, (A.7)

while in that time it could have travelled on average the distance

n
q
+

n
1−q

. (A.8)

The efficiency is thus η = 1− 2q, which is maximised for q→ 0, corresponding to n→ ∞. This is in
the absence of spatial variations and diffusion effects.

F.3 Effective rotational diffusion

We now add the feature that after each jump the particle will flip either because Q < 0 or another
process R < 0, which has parameter Dr for a single jump. The probability R < 0 after n jumps will thus
be r = 1− (1−Dr)

n. Thus the probability of a turn after the n jumps is q̃ = q+ r−qr when going right,
and when going left p̃ = (1−q)+ r− (1−qr). Calculating the efficiency we thus find

η =
(1−2q)(1−Dr)

n

2− (1−Dr)n , (A.9)

where q is defined as in Eq. (A.6). This defines an optimal n as shown in Fig. A.8. The emergence of
an optimal n corresponds to the emergence of an optimum γ in the main text.

F.4 Chemotaxis in a spatially varying gradient

Spatial variation from linear concentration profiles can also affect the optimal choice of n. Consider
cells swimming in a gradient being held to a fixed value c0 > 0 at the origin. The diffusion equation
allows for linear steady state solutions. We thus consider 1D swimmers in

c(x) = c0−α|x|. (A.10)

We again discretise space and allow the cells to choose an n, the number of lattice points to swim before
making a decision on whether to change direction. This n determines σn and thus q. This also makes
the cells only visit sites that are multiples of n and we thus reindex by that. We further note that a state
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FIG. A.8. Efficiency η as a function of n as in Eq. (A.9). Noise varies from σ/α = 1 (blue) to σ/α = 10 (red). Dr = 0.1s−1.

moving right at position i is by symmetry the same as moving left at site −i. We exploit this symmetry
and consider only i > 0. Our states are then called

(i, s) ∈ N0×{+,−}=
{
(0,+), (0,−), (1,+), (1,−), (2,+), (2,−), · · ·

}
. (A.11)

The jumps form an infinite dimensional Markov chain with transition matrix

T=



0 0 0 p 0 0 0 0 0 · · ·
0 0 0 q 0 0 0 0 0 · · ·
p q 0 0 0 p 0 0 0 · · ·
q p 0 0 0 q 0 0 0 · · ·
0 0 p 0 0 0 0 p 0 · · ·
0 0 q 0 0 0 0 q 0 · · ·
0 0 0 0 p 0 0 0 0 · · ·
0 0 0 0 q 0 0 0 0 · · ·
0 0 0 0 0 0 p 0 0 · · ·
0 0 0 0 0 0 q 0 0 · · ·
...

...
...

...
...

...
...

...
...

. . .



, (A.12)

where p = 1−q. The steady state distribution is found by solving

p = Tp. (A.13)

To solve this infinite set of equations, we truncate in an appropriate manner at m equations and then let
m→ ∞. We assume m even and to conserve probability, for finite m set Tm−1,m−1 = p and Tm,m−1 = q.
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FIG. A.9. Average |x| for as a function of n, the number of jumps before deciding to change direction, as described by Eq. (A.16).
Chemotaxis is optimal when 〈|x|〉 is minimised, since the chemoattractant concentration decreases from x = 0. Parameters as in
Fig. A.8.

This leads to

pi,s =
1
A
·



qk

pk−2(1−2q+2q2)
(0,+)

qk+1

pk−1(1−2q+2q2)
(0,−)

qk−i

pk−i (i > 1,+)

qk

pk−2(1−2q+2q2)
(1,−)

qk−i+1

pk−i+1 (i > 2,−)

(A.14)

where k = m/2−2 and A is a normalisation constant determined by

∑
i,s

pi,s = 1. (A.15)

After a long calculation we find (for q > 1/2) in the limit m→ ∞,

〈|x|〉= ∆xn
2

(
2− 1

q(n)
+

1
2q(n)−1

)
. (A.16)

Fig. A.9 shows a minimum appearing for large noise. Thus we see that an optimal measurement distance
must also be balanced with potential spatial variations, not just with rotational diffusion.
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