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In a variety of one-dimensional nonequilibrium systems, there exist uniform states that may un-
dergo bifurcations to spatially periodic states. The long-wavelength dynamics of these spatial pat-
terns, such as an array of convective rolls or a driven interface between two thermodynamic phases,
can often be derived on the basis of the symmetries of the physical system. Secondary bifurcations
of these patterns may be associated with the subsequent loss of remaining symmetries. Here, we
study the transition that results from the loss of reflection symmetry (parity) and show that observa-
tions made in several recent experiments appear to be signatures of this bifurcation. Most of the
common features seen in the disparate experiments follow from the simplest Ginzburg-Landau
equations covariant under the remaining symmetries. It is shown that nucleated localized regions of
broken parity travel in a direction determined by the sense of the asymmetry, and the passage of a
localized inclusion of broken parity leads to a change in the wavelength of the underlying modulat-
ed state, and leaves the system closer to an invariant wavelength. Such behavior is in close
correspondence with the properties of “solitary modes” seen in experiment. When a system sup-
ports extended regions of broken parity, a boundary between those of opposite parity can be con-
sidered as a source or sink of asymmetric cells and a “spatiotemporal grain boundary.” The
creation or destruction of cells at the interface is reminiscent of ‘“phase slip centers” in one-
dimensional superconductors. The simplest dynamics consistent with the symmetries are identical
to those of the time-dependent Ginzburg-Landau equation for a superconductor in an applied elec-
tric field. The experimental observation of approximate length subtraction of colliding regions of

broken parity follows from this analogy.

I. INTRODUCTION AND SUMMARY OF RESULTS

Close to the onset of many hydrodynamic transitions,
the divergence of both length and time scales results in
dynamics whose form transcends microscopic details. As
a consequence, many general features of the large-scale
evolution may be deduced from the underlying sym-
metries of the system. Consider as an example a solid-
liquid interface translated at fixed velocity through a sta-
tionary temperature gradient G. As the velocity v is in-
creased, the damping effects of interfacial tension cease to
provide stability against diffusional effects that destabilize
the interface. The ensuing transition, known as the
Mullins-Sekerka' instability, occurs at a well-defined ve-
locity v.(G). Prior to the transition, the interface Uy(x,?)
is stationary and planar, and hence is invariant under
spatial and temporal translations,

x—x+A, t—t+0, (1.1)

for arbitrary A and 0, as well as under reflections of time
and space,

X—>—Xx, t—>—1t. (1.2)

These invariances of the homogeneous pattern coincide
with the full symmetry operations of space itself, and
therefore, of course, with the underlying symmetries of
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the microscopic equations of motion.

Beyond the instability (i.e., for v >v,), the interface
pattern becomes ‘‘cellular” (periodic) and is invariant
only under the more restricted translations,

xX—x+tnl,

t—t+6, (1.3)

where A is the wavelength of the pattern, n is an integer,
and again 6 is arbitrary. However, the reflection sym-
metries (1.2) are retained. In general, only in the case of
continuous transitions, and then only asymptotically
close to the onset of the instability, does the pattern ex-
hibit “up-down” (U — — U) symmetry.

Here, we ask the question: What is the nature of
secondary transitions that break one or more of the
remaining invariances of cellular patterns? Interest in
this issue stems from a variety of recent experiments®~’
on one-dimensional pattern-forming systems that have
provided evidence of rather universal behavior involving
asymmetric distortions of periodic patterns. Thus
motivated, we study here®® in particular the dynamics of
an instability at which the time-reversal symmetry and
parity of the pattern are broken.

We begin in Sec. II with a brief summary of the varied
experiments, highlighting those features most suggestive
of the existence of a parity-breaking bifurcation. As in
many hydrodynamic instabilities, the long-wavelength
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slow evolution of the pattern may be reduced to that of a
dynamical system with few degrees of freedom whose am-
plitudes serve as nonequilibrium order parameters. A
mathematical description of patterns with broken parity
entails an identification of the order parameter, and leads
to important symmetry considerations that guide the for-
mulation of model equations of motion. Such symmetry
principles may be derived purely on the basis of the in-
variance of the dynamics to changes in the viewpoint of
an observer,® and also by certain group-theoretical argu-
ments.'°

Section III is a detailed discussion of a simplified model
of a parity-breaking transition, with particular emphasis
on the subcritical (first-order) case (this variant appearing
most relevant to the experiments on directional
solidification). Within this model, we find a natural ex-
planation for the properties of traveling regions of dis-
torted cells (termed “solitary modes™? and “solitary tilt
waves”> in the different experiments); they are nucleated
inclusions of the broken-parity state. The proposed mod-
el takes the form of coupled Ginzburg-Landau equations
for the amplitude of the broken parity and the phase of
the pattern. As with all normal form expansions, the
phenomenological parameters that appear in the dynami-
cal laws are in principle derivable from the underlying
nonlinear equations of motion for the pattern itself by
means of a multiple time-scale analysis.!! Owing to the
complexity of the dynamics, stemming largely from the
nonlinear boundary conditions and nonlocal effects in the
various systems, we do not attempt that analysis here.?

Contrary to physical systems near equilibrium, for
which the notion of a variational principle is valid, we ex-
pect nonvariational contributions to the dynamics in the
systems under study here. The standard theory of kink
dynamics is used to determine certain basic physical
consequences of these and other terms. This is followed
by a discussion of the mechanisms by which propagating
nucleated inclusions of a broken-parity state act to alter
and relax the wavelength of a pattern on which they trav-
el. A brief discussion of related phenomena in the case of
a supercritical bifurcation is also presented.

The simple model described and analyzed in Sec. III
neglects certain important considerations that appear to
play crucial roles in the dynamics of defect structures in
patterns with broken parity. Section IV describes a phe-
nomenological treatment of the coupling between the
symmetric and antisymmetric components into which a
pattern is resolved. A strong similarity is demonstrated
between these dynamics and that of a superconductor in
an applied electric field as described by the time-
dependent Ginzburg-Landau model. The boundary be-
tween two regions of broken parity (space-time symme-
try) is an example of a “spatiotemporal grain boundary”
and finds a natural description in this model. Such a
boundary is found also to resemble objects known as
“phase slip oscillators” in one-dimensional superconduc-
tors. Certain issues related to these defects are first ad-
dressed in the context of a simplified spatially forced
Ginzburg-Landau model, which is then generalized to be
applicable to systems with broken parity.

A summary of the qualitative comparisons possible be-
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tween theory and experiment is presented in Sec. V, along
with a number of important areas that remain to be ex-
plored. Several explicit experiments are proposed as in-
cisive tests of the hypothesis advanced herein. Possible
future extensions of the present theoretical work are dis-
cussed in Sec. VI. Finally, Sec. VII concludes the present
work with suggested directions for a more microscopic
treatment of parity-breaking transitions. On the basis of
certain common features in the various experimental sys-
tems, we advance a conjecture concerning the origin of
the “universality” of this phenomenon.

II. PATTERNS WITH BROKEN PARITY

A. Examples

1. Directional solidification of liquid crystals

In studies'® of the dynamics of the interface between
nematic and isotropic phases of the liquid-crystal octyl-
cyanobiphenyl (8CB) with small amounts of added im-
purities, it was found that there exists a primary transi-
tion whose properties are those of the Mullins-Sekerka
(MS) instability. The association is based on the scaling
of the onset velocity vy with the applied temperature
gradient G, and the impurity concentration c, as well as
features of the stability diagram. More recent studies>!*
have shown the existence of so-called “solitary modes”
far beyond the onset of the primary instability [Fig. 1(a)].
These traveling inclusions possess many interesting prop-
erties which we list below for future reference.

(a) There exists a second characteristic velocity v,(G)
beyond which nucleated solitary modes propagate freely
without decaying.

(b) The traveling domains are typically produced after a
quench to a higher pulling speed. At the final velocity,
the selected wavelength of the periodic pattern is smaller.
Once formed, a domain smoothly disappears if the inter-
face velocity is reduced sufficiently.

(c) The sense of asymmetry of the pattern within a soli-
tary mode is precisely related to its direction of motion,
and does not change during its propagation.

(d) The symmetric pattern left in the wake of a solitary
mode generally has a shorter wavelength than the pattern
into which the mode propagated, and this phenomenon is
correlated with the spreading of the region of asymmetric
cells.

(e) The wavelength of the asymmetric pattern is larger
than that of the symmetric patterns bounding it.

(f) There exists no correlation between the wavelength
change induced by the motion of a solitary mode and its
mean lateral velocity. There is, however, an approxi-
mately linear relation between the lateral velocity and the
velocity with which the pattern is translated through the
temperature gradient.

(g) Successive passage of solitary modes appears to re-
lax the wavelength of the pattern to a steady value.

(h) Two solitary modes of opposite sense of asymmetry,
traveling in opposite directions, undergo collisions with
an approximate rule of length subtraction; the remaining
mode has a length approximately equal to the difference
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in length between the original two, and travels in the
direction of the longer one. See Fig. 1(b).

(i) During the course of a collision new symmetric cells
are created in the collision region.

() Both sources and sinks of traveling waves have been
observed.

2. Directional solidification of eutectic mixtures

In the related class of experiments® on directional
solidification of eutectic mixtures of CBr, and C,Cl,
traveling regions of broken symmetry were discovered!”
which appear to be analogous to the solitary modes de-
scribed above. The moving interface found in
solidification of eutectic mixtures is significantly more
complex than that found in a pure substance, for it is a
locus of three-phase coexistence, involving a liquid mix-
ture and two solid phases of differing composition. The
latter are arranged in bands parallel to the direction of in-
terface motion (i.e., normal to the mean interface), with
relative widths given by the lever rule appropriate to the
phase diagram below the eutectic point. The actual
widths of the bands appear to be determined by a non-
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FIG. 1. Space-time portraits of “solitary-mode” motion

across the interface between isotropic and nematic phases of a
liquid crystal in a directional solidification experiment. (a)
Motion of a single solitary mode, with time increasing upward.
(b) Collision of two solitary modes and the creation of new cel-
lular structures. Images in (a) and (b) are displayed at intervals
of 1 and 0.4 sec, respectively. Courtesy of Simon, Flesselles, and
Libchaber.

GOLDSTEIN, GUNARATNE, GIL, AND COULLET 43

linear wavelength selection mechanism.!® This banded
structure appears at arbitrarily small forward interface
velocities. Unlike in the solidification of a one-
component system, the history of lateral interface distor-
tions is recorded in these bands. The observed traveling
inclusions distort the lamellar structure so that it tilts
from the interface normal, giving rise to the name “soli-
tary tilt waves.” The space-time portrait in Fig. 1(a) illus-
trates the meaning of this terminology in the case of
directional solidification of liquid crystals. The most im-
portant properties of tilt waves are listed below.

(a) Tilt waves are observed only beyond a characteristic
interface velocity.

(b) The creation of tilt waves typically involves a
quench to higher velocities, at which point the selected
wavelength of the pattern is smaller than that at the ini-
tial velocity. Velocity quenches of the opposite sign do
not produce tilt waves.

(c) The edges of tilt waves may be parallel, in which
case the wavelengths of the patterns on its two sides are
identical, or they may be skewed. In the latter case, a
spreading width of the tilt wave is associated with a
wavelength decrease in the pattern left behind. Inside the
tilt wave, the wavelength of the basic lamellar pattern is
larger than that of the untilted regions on either side.

(d) Collisions between tilt waves moving in opposite
directions roughly obey a law of length subtraction,
much like that found in the liquid-crystal solidification
experiments.

3. Directional viscous fingering

Recent studies* of the meniscus between a fluid en-
trained between two internally tangent cylinders have re-
vealed a complex dynamics in many ways similar to that
of an advancing solid-liquid interface. Progressive in-
crease of the rotational speed of one of the cylinders, say,
the inner, with the outer cylinder fixed, leads to a desta-
bilization of the planar meniscus, producing a cellular
pattern much like that seen in the Mullins-Sekerka insta-
bility. Counterrotation of the outer cylinder at sufficient
velocity then leads to a traveling-wave state. Below is a
summary of the important observations concerning these
states.

(a) The phase velocity of the traveling-wave state varies
as the square root of the deviation of the control parame-
ter from its value at onset.

(b) The typical traveling-wave pattern formed by rota-
tion of the outer cylinder consists of one or more “de-
fects” that take the form of sources or sinks of traveling
waves, being the junction between two domains or oppo-
site wave propagation direction.

(c) In the regime of traveling domains, collisions may
result in either partial or total annihilation.

4. Rayleigh-Beénard convection

Experiments on Rayleigh-Bénard convection in narrow
rectangular channels have revealed the existence of trav-
eling abnormal convective cells far beyond the critical
Rayleigh number for the onset of convection.” The im-
portant characteristics of these moving structures are as
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follows.

(a) The distorted cells are significantly longer than the
static convective cells.

(b) Abnormal cells may travel in either direction across
the basic pattern.

(c) A collision between two counterpropagating
stretched cells results in a long-lived pair, the center of
which eventually is the site of the creation of new convec-
tive cells.

5. Parametric excitation of waves

Studies of the parametric excitation of waves on the
surface of water contained an annular cell’ have revealed
that the well-known standing-wave pattern that occurs at
small excitation amplitude may undergo secondary insta-
bilities involving propagative phase dynamics. That is,
beyond a characteristic driving force the entire pattern
may begin to “drift” at a constant speed. This instability
is preceded by an oscillatory phase behavior correspond-
ing to a compression mode.

B. Hypothesis: A new transition

The fundamental hypothesis advanced here is the fol-
lowing: The experimentally observed asymmetric cellular
structures are inclusions of a dynamical state with broken
parity. With this viewpoint, the commonality of the be-
havior of the diverse experimental systems described
above follows as a consequence of the separation of spa-
tial and temporal scales between the cellular pattern and
the degrees of freedom characterizing the broken parity.
It is further conjectured that in a state with a uniformly
asymmetric pattern in space, we may employ the usual

HYDRODYNAMIC AND INTERFACIAL PATTERNS WITH . ..
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decomposition of an asymmetric function into a sum of
symmetric and antisymmetric functions. In the simplest
description, we ignore the degrees of freedom associated
with the symmetric component of the pattern, and write
for the spatial pattern U the decomposition

U(x,t)=Ug(x +¢(x,8))+ A (x,0)U 4(x +¢(x,1)) ,
(2.1

where the envelope function A4 (x,?) serves as the order
parameter of the broken parity. The parity-breaking
transition is then seen as an exchange of stability between
symmetric states, with 4 =0, and asymmetric states,
with 4+0.

The decomposition in (2.1) allows us to describe the ob-
served patterns in a very simple way, as shown in Fig. 2.
A localized region of distorted cellular structures is a
“bubble” or “inclusion” of the state with nonzero A.
The two possible signs of 4 [middle of Figs. 2(a) and 2(b)]
correspond to the two observed senses of the asymmetry.
To complete the qualitative description of asymmetric
patterns in the context of Eq. (2.1), note that a linear
phase function ¢ =Qx describes a pattern with an altered
wave vector,

g =qy(1+Q),

The bottoms of Figs. 2(a) and 2(b) show that the phase
function associated with a locally distorted region is
essentially bilinear. The positive phase gradient to the
left of the region of asymmetric cells (a), and to the right
in (b), creates a pattern with a higher wave vector (short-
er wavelength), whereas the negative phase gradient
within the distorted cells leads to a longer wavelength, as

(2.2)

(a) (b)
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FIG. 2. Resolution of the one-dimensional pattern into symmetric and antisymmetric components. Two modulated patterns with
“solitary modes” of opposite sense are shown in (a) and (b), and are related by the transformations in Egs. (2.4)-(2.6). These patterns
are described by broken-parity amplitudes 4 (x) and associated phase functions ¢(x) shown below each. The patterns in (a) and (b)
are obtained from A4 and ¢ through Eq. (2.1)
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seen in experiment. In this form, the motion of the dis-
torted cells coincides both with the propagation of the
bubble of asymmetry amplitude and with the advancing
“front” of negative phase gradient. We shall see below
that the motion of the inclusion is reduced to that of its
two edges.

As in all such approaches based on amplitude equa-
tions, it is supposed that the spatial variations of 4 and ¢
are on length scales long compared to the wavelength of
the cellular pattern itself, and it is only then that the no-
tion of symmetric and antisymmetric components is abso-
lutely well defined. From the experimental point of view
this criterion is only marginally valid, precluding us from
making quantitative statements. Nevertheless, the essen-
tial symmetry considerations remain valid.

In addition to the assumed unstable mode A4, we have
indicated that the phase ¢ of the pattern is a dynamical
variable, in recognition of the fact that a periodic struc-
ture always has a marginally unstable mode arising from
its translational invariance in space. The dynamics of A4
will in general be coupled to this phase mode.®!° In this
description, note that there is only a single phase function
associated with the two components, since their relative
parity symmetry would not otherwise be clearly defined.!’

We emphasize that the description advanced here is
not a theory of the symmetric and antisymmetric func-
tions Ug and U 4. A determination of these requires mi-
croscopic calculations that incorporate the particular
nonlinear physics associated with each system. It is by
focusing on the envelope function and the phase that we
may address the full extent of universality in the dynam-
ics of broken parity.

In the bulk of what follows we shall cast the discussion
in a language appropriate to directional solidification of a
one-component system. Amnalysis of the interface pat-
terns has shown that reasonable forms for the symmetric
and antisymmetric functions are

(2.3a)
(2.3b)

Ug(z)~a,cos(qyz)+b cos(2gyz) ,
U (z)=c,sin(gyz)+d sin(2g,z) ,

the relative amplitudes a,, etc., being deduced from ex-
periment. In subsequent calculations, reconstructed in-
terface patterns will be based on (2.3).

The resolution given by Egs. (2.1) and (2.3) immediate-
ly explains two important observations noted in the ex-
periments. First, the physical shape of the individual
asymmetric cells does not change in time, unlike that due
to the passage of the familiar solitons.!® Second, the
internal structure of distorted cells, with two unequal
maxima, follows directly from the presence of the an-
tisymmetric second harmonic sin(2q,z).

C. Symmetry considerations

The symmetries of the equations of motion may be de-
duced from the invariance of the dynamics seen by ob-
servers on opposite sides of the plane of the pattern. Let
U(x) and U(X) be the interface as seen by the two, as
shown in Fig. 2. The lateral coordinates of the viewers
are clearly related by
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X=—x, (2.4)

so a shift ¢(x) for one corresponds to —¢(X) for the oth-
er. The vertical displacements seen by the two must be
identical, and hence (with the antisymmetry of U ), the
amplitudes must be related by 4(X)=— A(x). Thus, we
require the covariances

A(—x)=—A(x), H(—x)=—¢(x) (2.5)
for all time ¢, and hence
Z,(—x)=—A,(x), (Zt(—x)=~¢,(x) . (2.6)

The highly dissipative dynamics seen experimentally
suggests relaxational equations of motion of the form

A=R (A A Ay oo sy - )
G =Ry A, Ay, Ay o oo 3D bris -2

where the nonlinear operators 72 4, and 7 are odd under
the transformations x ——x, 4—>—A4, and ¢— —¢.
Observe further that the invariance of the dynamics to
the absolute value of the phase of the pattern implies that
the 7 4,74 in (2.7) may depend on ¢ only through its
gradients.

(2.7)

III. MODEL DYNAMICS

A. Equations of motion

There exists no known variational principle by which
the dynamics of nonequilibrium pattern formation may
be deduced, so we do not expect the equations of motion
for the phase and amplitude to be derivable from a
Lyapunov function. Nevertheless, we propose that the
essential aspects of the dynamics at a parity-breaking bi-
furcation may be understood by separating the evolution
of 4 and ¢ into “variational” and “nonvariational” parts.
The former is derived from the relation

A,=—86F,/84 , (3.1)

with #, the Lyapunov functional for the amplitude. In
the spirit of an amplitude-equation approach, we shall
postulate a model for ¥, under the assumption that A4
and its gradients are small. The canonical form for this

variational contribution is'®
Fa= [dx(LAZHF(A)+ ), (3.2)

yielding A4,=A,, —(3F /3 A).
F(A4),

FillA)=—1lpA’—lad*+14°

The even polynomials

(3.3a)
and

Fy(A)=—1pA*+14%, (3.3b)
with o > 0, distinguish, respectively, between sub- and su-
percritical bifurcations. Note that in either case the two
states represented by = A4* are of equal stability, as re-
quired by symmetry. In the present interpretation, the
motion of the region of broken parity reduces to that of
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the two edges of the bubble. For supercritical parity-
breaking bifurcations, such a kink propagates from an
unstable state to a stable state, whereas for subcritical
transitions the kink connects a metastable state to a
stable one.

As is typically the case in Ginzburg-Landau ap-
proaches, we shall assume in most discussions that the
important variation of the parameters u and o with the
experimental control parameter r is contained in pu.
Specializing to the subcritical case, Fig. 3(a) illustrates
the qualitatively different forms taken by F; with u.
Within a small region centered around p*, the “Maxwell
point,” the competing symmetric and broken-parity
states are both linearly stable, their relative stability
changing at u*. For u >0 the symmetric state is linearly
unstable.

The variational contributions described by (3.1), (3.2),
and (3.3) are clearly consistent with the symmetries re-
quired of the parity-breaking dynamics, but do not, for
instance, include terms odd under the transformation
x— —x. For the purpose of understanding the forces
that affect the edges of a bubble, all further additive non-
linear terms in the amplitude equations may be classified
into two primary categories. Our focus here will be on
the qualitative consequences of these kinds of nonlineari-
ties, and therefore we shall investigate only the lowest-

F(A)
]
(a)
pept
pep
' A
A‘
popt

T //
g (b)

FIG. 3. (a) Lyapunov function appropriate to a subcritical bi-
furcation, at various values of the control parameter u. (b) The
stable (solid lines), metastable (dashed), and unstable (dotted)
equilibrium values of the broken-parity order parameter as a
function of u. The vertical dash-dotted line at u* indicates the
Maxwell point.
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order terms of these groups; a more detailed study of the
entire panolopy of nonlinearities is deferred. The
simplified equation of motion adopted here for A is
A,=Axx—£+yAAx+eA¢x+ cee,
04

where ¥ and € are phenomenological parameters whose
signs are as yet unspecified. Below, it is shown that the
terms with the symmetry of 4 4, are primarily responsi-
ble for the translation of the center of mass of inclusions
of the state with nonzero A, while terms like €Ad,,
which depend on the phase gradient, play an important
role in wavelength relaxation. Within the context of sub-
critical parity-breaking bifurcations and the description
of solitary modes as droplets of the traveling-wave state,
all other nonlinearities that are allowed by symmetry in
Eq. (3.4), such as ¢,,, etc., may be classified into a few
distinct groups on the basis of their effects on the motion
of those bubbles. For this reason, we focus on terms that
epitomize the behavior of these few groups. In the super-
critical case, certain new terms may produce qualitatively
different behavior.?’

In the simplest case, the appropriate functional for the
phase tends to drive the system to the underlying wave
vector g, and is quadratic in the gradients

Fo=[dx(g2+---),

(3.4)

(3.5)

yielding the diffusive form ¢, =¢,,. Below we show that
much of the phenomena of wavelength selection and the
dynamics of defects arises from the lowest-order coupling
between the phase dynamics and A4, embodied in the
phase equation

6 =¢tood+ -, (3.6)

with o also of as yet unspecified sign. Thus, a pattern
with uniformly broken parity (i.e., nonzero A) has a
phase that increases in magnitude linearly in time, and
with the phase of the pattern entering as in Eq. (2.1), this
yields a traveling-wave state. While the underlying dissi-
pative dynamics of the pattern are, of course, not time-
reversal invariant, we may classify the symmetries, in-
cluding that of time-reversal invariance, of steady-state,
homogeneous patterns. In this restricted sense of examin-
ing patterns before and after the bifurcation, we may say
that the loss of reflection symmetry is coincident with the
loss of time-reversed invariance. Again, it should be
remarked that the dynamics proposed above explicitly
neglect linear gradient terms such as 4, in (3.6), and un-
der certain circumstances'’ such cross terms may lead to
qualitatively different behavior than implied by dynamics
lacking them.

B. Subcritical bifurcations

1. Elementary dynamical considerations

We first investigate the linear stability of the basic pat-
tern Ug toward antisymmetric perturbations. While for
subcritical bifurcations the nonlinear stability of the pat-
tern is perhaps most relevant to the creation of domains
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of broken parity, an important qualitative principle is il-
lustrated by comnsidering first the linear stability. The
relevant time-independent solutions to the dynamical
equations for 4 and ¢ are

A4,=0, ¢o=p+0x,

p being an arbitrary additive constant, with the linear
term Qx in ¢ corresponding to a symmetric pattern with
an altered wavelength. Writing

(3.7

A=Ay+ A4, d=¢ot¢", (3.8)
we find to linear order
A’ dtuteQ 0 | |4
9, ¢ © 3., | |o (3.9)
Assuming

(A',¢')~explot+ikx),

we obtain the dispersion relations for two eigenmodes e
and e,, one a purely diffusive phase mode,

0
ey < ||, oy=—k%, (3.10)
the other a mixed phase and amplitude mode,
+eQ
e, “w , 0,=u+eQ—k?. (3.11)

From (3.11) we may deduce the stability diagram shown
in Fig. 4 for the case € <0, illustrating that the broken-
parity transition may occur either by changes in the con-
trol parameter u or by creation of a phase gradient with
the appropriate sign. That is, when the pattern is
stretched and € <0, or when the pattern is shrunk and
€> 0, the relative stability of the state at a given u is re-
duced. As may be deduced from the potential in Fig. 3
and Eq. (3.3), the instability at =0 corresponds to the
transformation of the point 4 =0 from a metastable
minimum to a local maximum of F. Before that value of

A(L) ) 4)*

P A6

K* 0

FIG. 4. Stability diagram for the basic pattern in the space of
control parameter p and phase gradient Q =¢,, for €<0. The
systems in regions I, II, and III are, respectively, absolutely
stable, nonlinearly unstable, and linearly unstable to parity-
breaking perturbations.
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U, the pattern is nonlinearly unstable, and the above con-
siderations have important consequences for the nu-
cleation of inclusions of the broken-parity state (see Sec.
III B 3).

2. Kink dynamics

The hypothesis that the experimentally observed trav-
eling cellular distortions in the various hydrodynamic
patterns are inclusions of an antisymmetric state implies
certain relationships between the characteristics of the
envelope function bounding the inclusion and its direc-
tion of motion. To establish these, we begin by rewriting
the amplitude equation for 4 as

A=Ay, +p*A+ad’— A +AuAd+yAA, +edd, ,
(3.12)

where

Ap=p—u* (3.13)
is the deviation from the coexistence point. This form
emphasizes the three kinds of forcing, associated with
amplitudes Ay, v, and €, on the elementary kinks con-
necting states with 4 =0 and 4 0.

Recall first that there are four elementary kinks con-
necting the symmetric state 4 =0 with a broken symme-
try state A =+ A*, as shown in Fig. 5. At the coex-
istence point p=u*=— 2a?, all four are of equal stabili-
ty and subject to no forcing when in isolation. We adopt
the labeling conventions shown in the figure, and refer to
their parity (i.e., sign) and orientation (i.e., handedness).
Let us solve for, say, 4, (x). The other kinks may be ob-
tained by a coordinate transformation and/or inversion.
From Eq. (3.3), we have

2
O—_——Jd;z—A,jL-%y*A,f—f—a(AZ’P—(A[)S, (3.14)
with the boundary conditions A;'(—o)=0 and
Af (0)=A*. The ordinary differential equation (3.14)

+ A+
ALy Ry
e
- —— —— >
» X =
A . A —
<) [
K I

FIG. 5. Elementary kink structures and the forces acting on
them. The dashed arrows give the direction of motion when
w>p*, while solid arrows indicate the effects of the term y 4 4,
for y <O0.
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with these boundary conditions has the first integral

dA;

1 de =F,(A4]) . (3.15)
Integrating by  partial fractions, and setting
A(x =0)= A4 * /2 for convenience, we obtain

*
A (x)= 4 7 (3.16)
[1+3exp(—2x/&)]
where 4*=1V'3a/2, and with the correlation length
V73 4
= = 3.17
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The remaining kinks are then

Ag (x)=A[ (—x),

A (x)=—A; (%), (3.18)

AR (x)=— A/ (—x) .

(a) Forcing induced by Au A. Consider now the motion
of these elementary kinks induced by a small deviation
Ap of the control parameter, its value at the Maxwell
point, with Ay >0 stabilizing the states with 450 rela-
tive to the symmetric state, and vice versa. For widely
separated kinks and for small forcing, the steady-state
solution to the equation of motion is approximated by a
traveling version of the kinks A, plus a small correction
of order Ap,*""?2

A (x,t)~=

A (2)+w(2), z=x—x[ (1) (3.19)

where x,jr (1) is the as yet unknown moving origin of the
kink and w;" is the as yet unknown correction. Substitut-
ing into the equations of motion, we obtain to leading or-
der in w; ,

__-+_d_ + u +
X r 2 L(Z) *(AL) a'u )
AN .
+ a: (A wiH+ -+, (3.20)

dropping terms of order (w; )%, w; % [, etc. Here,

N )= A} (2) (3.21)
ou L '
and
8./\/ d?
aA (A;)— +,u*+3a(AL 2504, (3.22)

Equation (3.22) may be cast in the form of a linear in-
homogeneous ordinary differential equation for the
correction w;",

w =—Aud; (z2)—x i f(,

+
Ly L

225 (3.23)
z

where
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+ 'Nu +
L= A;) .
L 94 (4.)
Now, the existence of a first integral of the equations of
motion guarantees that A is bounded in magnitude for all
time, so we must eliminate any secular terms that would
arise in inverting (3.23) to find w;". The elimination of
these terms is accomplished by choosing the velocity x
in order that the right-hand side of (3.23) is orthogonal to

(3.24)

the null space of the linear operator .L;. Using the
defining equation for the equilibrium kink

Nu*(AL*)=O , (3.25)
we differentiate to obtain

ON « dA; dA;

d + u* L L

— A )= = =0. .

a7 N AT g = =0 326

Thus (d 4;" /dz) is the eigenfunction of L] with zero ei-
genvalue and hence is in its null space. Note that £} isa
self-adjoint operator. Orthogonalization means

dAL (2) N ., dA[ (2)
0= [dz———— | —ApA/(2)—% | = (3.27)
or
[dz 4 (d A 7dz)
F=—Au . (3.28)

[dz(d A} /dz)?

As is clear from the form (3.28), the velocity arising
from deviations Aup of the control parameters is (a) even
under parity inversion (i.e., 4 — — A4) and (b) odd under
reversal of the kink orientation [i.e., A4 (z)— A (—2)], as
shown in Fig. 5. With the closed form for the 44, we ob-
tain explicitly the velocities X [, etc., in terms of the pa-
rameters of the amplitude equation

(3.29)

Returning to the transformations connecting the kinks
Ag, etc., to the basic kink A;", we obtain

% pAw)=—x f(Ap),
x [ (Ap)=x% [ (Aw), (3.30)
x g (Ap)=x [ (Ap)

(b) Forcing induced by y 4 A, and € 4¢,. The parity

and orientational symmetries of the velocity induced by
deviations from the coexistence point u* are to be con-
trasted with those arising from the coupling term y 4 4,
in the dynamics (3.3). Applying the kink-dynamics pro-
cedure as above, we obtain the velocity

fdz A (d A /dz)?
[dz(da; /dz)

xp(y)=— (3.31)

which is antisymmetric under parity reversal and sym-
metric under orientational reversal, i.e.,
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X Fy)=x(y),

X (y)=—x ), (3.32)

xrly)=—%1(y),
as shown by the dashed arrows in Fig. 5. Equation (3.31)
may be simplified to

. 4V 3a
xiy)y=— T

The dynamic coupling of the phase gradient to the am-
plitude A4 is somewhat complicated by the rather nonlo-
cal relation between the phase and amplitude implied by
the phase dynamics ¢, =¢,, +wA. Observe, however,
that the symmetries of the associated forces on kinks in A4
may be deduced quite simply by viewing the phase dy-
namics as an inhomogeneous diffusion equation. That is,
we rewrite (3.6) as

(0, =0, )d(x,t)=w A(x,1)

(3.33)

and then solve it formally as
dx,)=—0 [" dx' [7 dr'G(x,t;x",t)Ax",1") ,
(3.34)

where G is the diffusional Green’s function. From this,
we see that the coupling 4¢, has the same symmetries
under parity and orientational reversal as the term 4 4.

3. Nucleated propagating inclusions

With the view that traveling domains of asymmetric
stretched cells are bubbles of the broken-parity state, we
may understand the motion of those bubbles from the
viewpoint that they are two kinks of opposite orientation
joined together. From the analysis above it is clear that
the velocities of the two edges of such a bubble are not
equal; the mean velocity is controlled by the terms 4 4,
and A¢,, while the spreading rate (the difference in ve-
locities) is controlled by the forcing Au A due to the devi-
ation from the Maxwell point. Since the bifurcation is
subcritical, a perturbation to the interface will only lead
to a propagating inclusion if it is larger than the critical
nucleus. The critical nucleus itself has a size that may be
determined from a straightforward generalization of the
kink-dynamics approach used in Sec. III B2 (b).?3 For the
dynamics of A4 alone, the size I, of the critical nucleus
scales with u beyond the Maxwell point as
l,~—In(u—p*). In the present context, with the
effective control parameter varying with the phase gra-
dient, we see that the size of the critical nucleus scales as

I.~—In(p+ep, —pu*).

Thus, nucleation of broken-parity inclusions is facilitated
(in the sense of requiring a smaller critical nucleus) in al-
tered symmetric patterns with €@, > 0.

Figure 6(a) shows the space-time evolution of a nu-
cleated bubble for the parameter values u= —0.15,
a=1.0,e=—1.0, y=—2.0, and w=1.0, obtained by nu-
merical integration of the equations of motion.?* After a
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short transient, the two edges of the bubble move with
uniform, although unequal, velocities, leading to a linear
spreading rate. As expected, we find that opposite-parity
bubbles move in opposite directions with velocities and
spreading rates of equal magnitude, and that the rate of
spreading increases with p—p*. In general, there is a
second, qualitatively different regime of behavior in
which the edges of an inclusion move in opposite direc-
tions, with velocities of different magnitude. This occurs
when the forcing from the control parameter dominates
the “advection” due to terms like 4 4, and A¢, in the
dynamics.

The phase function ¢ associated with the amplitude in
Fig. 6(a) is shown in Fig. 6(b). It exhibits an essentially
bilinear form with a positive phase gradient left in the
wake of the bubble and a negative phase gradient within
the bubble itself. When A4 and ¢ are used to reconstruct
the interface pattern (Fig. 7), we see many of the features
of the experimental patterns (e.g., as in Fig. 1). First, the
sense of asymmetry within a moving domain is preserved
during its motion; there is no “flipping” of the asym-
metry. Second, the wavelength of distorted cells is larger
than those on either side when the pattern left behind has
a shorter wavelength (see also Sec. IV). This results from
the negative phase gradient within the bubble. Third, the
nonzero phase velocity within the asymmetric regions

60+

40
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N T T
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60

$(x)/2m
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0 . : r -
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FIG. 6. Amplitude and phase of a propagating inclusion of
broken parity, with time increasing upward and successive
graphs offset for clarity. The bubble of nonzero order parame-
ter A4 in (a) spreads uniformly as it moves, leaving behind a
phase function (b) that is linear in x.
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FIG. 7. Reconstructed interface pattern corresponding to the
inclusion of broken parity in Fig. 6, using Egs. (2.1) and (2.3).

leads to a space-time pattern in which the motion of an
inclusion corresponds to a “tilt wave.”

The phase gradient left in the wake of a solitary mode
has important consequences for the behavior of subse-
quent traveling domains that pass through the same re-
gion. In Fig. 8 we plot the envelope function A over a
period of time during which bubbles of broken parity
were injected periodically at a fixed point in space. Ob-
serve that the spreading rate of a given bubble is smaller
than that of the preceding one. Analysis of the phase of

60

A(x)

20+

L
0 50 100 150

X

FIG. 8. Propagation of broken-parity bubbles introduced
periodically, illustrating a dynamical Maxwell construction.
Time increases upward, and successive graphs are displaced up-
ward for clarity. The pattern left in the wake of a given bubble
is closer to the coexistence point, as evidenced in the reduced
spreading rate of the succeeding bubbles. For clarity, only
values of the broken-parity amplitude 4 >0.05 are shown.
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the pattern reveals also that the difference in wave-vector
shift between the two sides of the parity bubble also
steadily decreases; that is, the wavelength of the pattern
relaxes to a fixed value. To understand this phenomenon,
qualitatively like that seen in experiment, requires that
we understand in detail the mechanism by which wave-
lengths are altered by solitary modes, a subject to which
we now turn.

4. Wavelength selection

The considerations of Sec. III B 3 imply that nucleated
inclusions of the broken-parity state generally spread or
shrink as they propagate. Here, we investigate the impli-
cations of this phenomenon on the dynamics of the phase
function ¢. In order to simplify the analysis, we first
motivate a convenient approximation to the amplitude
function of a moving inclusion of broken parity. Consid-
er the typical situation (as seen in experiment) of a
spreading bubble. When the edges are far apart, the in-
teraction between them is small, and they move with con-
stant velocities. In addition, the widths of the transition
zones at the two edges remain constant. Hence, on scales
of the order of the length of the bubble, the shape of the
envelope function A is reasonably well approximated by
a square wave with left and right edges at positions
x;=v;t and x,=v,t, v; and v, being the propagation ve-
locities of the two edges. They may be computed from
the kink-dynamics analysis in previous sections, or sim-
ply taken to arise from the particular nonlinearities of a
given physical system. Within this approximation, we
have

A(x,t)=~A*O(x —v;t)B(v,t —x) , (3.35)

with © the Heaviside step function; O(x)=0(1), x <
(>0). In the square-wave approximation, we may solve
analytically the phase equation and reveal the nature of
wavelength selection. -

It is first convenient to recast the phase equation (3.6)
in terms of the phase derivative Y =¢, as

(3, — D3, W=wA, , (3.36)

where we have introduced a diffusion constant D for the
purposes of later discussion. As in the discussion of kink
dynamics in Sec. III B3, we solve this by means of the
diffusion Green’s function. The general solution of (3.36)
is the sum of the general solution of the homogeneous
equation and a particular solution of the inhomogeneous
equation. In the simplest case, prior to the creation of
the bubble in the amplitude A4 the phase derivative van-
ishes identically; the pattern is simply the unperturbed
symmetric state. The solution to (3.36) is then immedi-
ately analogous to that of Eq. (3.34) in terms of the
Green’s function

1

G(x,t;x',t"=O6(t —t')———r
x 2[wD(t —t')]'?

X exp (3.37)

4D (t —1t')

_ (x—=x')? ]
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satisfying (8, —D3,, )G (x,t;x’,t')=8(x —x"')8(t —¢').
Using (3.35), we have

A= A*[8(x"—vt")=8(x"—v,t")], (3.38)
so that the x’ integral in (3.34) may be performed trivial-
ly. We rescale the x coordinate by the position of the
right edge of the bubble and define the parameters

wA*

7' %,c 0

2
e—2rc(§—c)fc r_dz
172
z

P(x, )=

exp | —z —

For any given rescaled time 7 and ratio of velocities c,
(3.41) yields the phase derivatives for all ¢ (i.e., for all x).
Near the onset of the bubble propagation, when the in-
clusion has not traveled very far compared to the
diffusion length D /v,, the shape of ¥ is complicated,
reflecting the nonlocality of the Green’s function on a
scale D /v,. That nonlocality is reduced by letting ¢t — o
(71— ) in Eq. (3.41), thereby obtaining a fixed-point
solution for rescaled inclusions that have propagated
many phase diffusion lengths. With the identities

2 v
®_v—1 — __li_ = li
fox eXp | X — dx =2 5 K (u) (3.42)
and
1/2
— ™ -z
= | ) 3.43
K, (z) 2z e ( )
we obtain
1—¢, 0<é<ec
wA*
Y= e X i —c, c<f<l1 (3.44)
’ 0, 1<¢&.

Thus, associated with the piecewise constant form of A
assumed from the start, there is a piecewise constant
phase gradient. Observe that the total phase derivative is
conserved,

J 7 dewg,n=—c)e —c(1—c)=0, (3.45)
as may be deduced from the equations of motion when
A0 only in a finite region. Thus, in this model, cells
are neither created nor destroyed. The phase itself may
be recovered simply by integration,

(U,—v,)x, O0<x <U1t

_wA*

v,

X o, t—vx, vt <x<v,t (3.46)

0, v,t<x.

An identical result may be obtained simply by ignoring
the diffusion term 9,, in the phase equation and simply
integrating in time.

With these results, we conclude that when a bubble of

[27c(6=0)* | _  —pne—1) (7 dz
4z ce fo

GOLDSTEIN, GUNARATNE, GIL, AND COULLET 43
{=x/x,, c=v;/v, (05c=<1), (3.39)
and finally introduce the scaled time
v} x,v,
T= D = D (3.40)
to obtain

. [27(£—1)]?

4z

exp
2172

(3.41)

[

broken parity propagates and spreads in time, and it has
moved many diffusion lengths past the point of observa-
tion, the change in the wave vector left behind is propor-
tional to the spreading rate v, —v,;, which in turn is pro-
portional to the deviation u—p*. Indeed, the perturba-
tive calculation of Sec. III B3 yields an explicit value for
the wave-vector shift,

75 wAup
o, = - s 3.47
T Wa y2 ( )

ignoring corrections of order € in the average velocity of
the kinks.

5. Wavelength relaxation

If the passage of a single bubble of broken parity re-
sults in a symmetric pattern with an altered wavelength,
what effect does the successive passage of additional bub-
bles have? To answer this, it is necessary first to establish
the relative signs of the various parameters of the ampli-
tude equations. It follows from Eq. (3.34) that the struc-
ture of the 44, term is identical to that of the A¢,
term, and we consider first the simplified model

oF

A=A, —~—+edd, .

4
34 (3.48)

Assume that a bubble moving to the right corresponds
to 4 >0. A derivation similar to that leading to (3.31)
then implies that ew > 0. This can be deduced by observ-
ing that the prefactor —y of (3.31) is replaced by ew as
can be seen from (3.34). (Had we chosen the opposite
convention for A4, then we would conclude that ew <O0.
However, the freedom of choice for the sign of U, allows
us to reconstruct the identical pattern for the propaga-
ting front.)

Using the experimental observation of longer cells
within a steadily growing region of asymmetry, the sign
of w may be determined. On either side of the bubble and
far from it, the solidification front does not change. In
the absence of events that create new cells, phase conser-
vation requires that the wavelength of the pattern left
behind will be shorter; that is, behind the bubble ¢, >0.
From Eq. (3.47) it follows that @ >0. (Had the cells of
the asymmetric region been shorter, the same argument
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would yield  <0.) Thus, with the above conventions, we
conclude that € <0.

These considerations may be used to explain the wave-
length selection law, observation (g) of Sec. IIA1—
namely, that successive passage of solitary modes relaxes
the pattern to a selected wavelength. Consider the pas-
sage of a growing bubble moving to the right. Since the
bubble grows, the state 470 is the more stable, and so
u>p*. Further, ¢, >0 for the pattern left behind. Writ-
ing (3.48) as

A=A, +(p*+Autep )A+ad’—A4° -+, (3.49)

we notice that the effective value of p has changed to

w=pted, <u . (3.50)

With € <0 and ¢, >0, the passage of a bubble of broken
parity has adjusted the wavelength so that the system is
closer to the coexistence point.

From the change in the effective control parameter u
given in (3.50) and the linearity of the equation of motion
for the phase, we conclude that successive passages of
bubbles of the broken-parity state relax the wavelength to
a unique value, according to the map

‘u(n—f—l):‘u(n)_cki([u _'u*) ,
where the superscripts denote the value after the nth bub-
ble has passed and c is a numerical constant related to the
parameters of the amplitude equations other than €. We
may therefore interpret the relaxation phenomenon illus-
trated in Fig. 8 as an approach to the Maxwell point.
Wavelength selection occurs by a dynamical Maxwell con-
struction.

We should remark that the inclusion of a lateral veloci-
ty from terms such as y 44, in (3.48) may complicate
the conclusions drawn above. For instance, if this term is
dominant over the velocity arising from the contribution
€A¢,, then it is not possible to deduce the sign of ew
solely on the basis of the sign of the parity bubble veloci-
ty. On the other hand, the sign of w itself is determinable
directly from the sign of the phase velocity of the
traveling-wave state.

(n) (3.51)

6. Localized states and dynamical Maxwell constructions

Once the wavelength of the pattern has relaxed
sufficiently, the spreading rate of the bubble is vanishing-
ly small—in a reference frame moving with the center-
of-mass velocity of the inclusion, it appears as a localized
state. In the absence of a coupling between the phase and
amplitude, we know from basic considerations that the
only configuration of a pair of kinks in A that is station-
ary is that forming the critical nucleus, and this is an un-
stable state—larger inclusions grow, smaller ones shrink.
In the presence of couplings between the phase and am-
plitude, the progressive stability of a bubble of fixed
length as the phase gradient is altered bears an interesting
resemblance to the appearance of localized states in a cer-
tain class of reaction-diffusion equations. Here we illus-
trate the correspondence and a heuristic way of under-
standing the dynamical Maxwell construction.?>2¢
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A well-studied form of reaction-diffusion equation®’ in-

volves an autocatalytic species 4 and an inhibitor B, the
dynamics of the two being given by the rate equations

A, =D, A, +f(A)+eB , (3.52a)

B,=DyB, +aA—PBB . (3.52b)

The diffusion constants D , and Dy of the two species in
general differ, and the mechanism of localization is most
clear when Dy >>D 4, so the species B relaxes on a much
faster time scale than does A. The nonlinear term f( A4)
represents the supposed autocatalytic property of 4, and
rather generally gives a positive growth of 4 only for 4
within some small range centered at a finite value A4 *.
This nonlinear term may conveniently be written as
f(A)=—0F /9 A, where

F(A)=lpuA*+1lvAa’+1s4*

is the usual double-well free energy with two competing
minima at 4 =0 and 450. The presence of B in (3.52a)
implies inhibitory action if € <0, while (3.52b) reveals
that B is stimulated by A but self-limiting (for a,8> 0, as
we shall suppose).

In the absence of couplings to the inhibitor field B, the
behavior of a localized domain of nonzero A follows clas-
sical nucleation theory. When the state 40 is more
stable, bubbles smaller than the critical nucleus shrink,
while those that are larger grow; no stable finite regions
of nonzero A exist. In the presence of B, however, one
finds localized states. A heuristic understanding of the
stability of these states follows from viewing the quantity
f(A)+e€eB in (3.52a) as the variation of an effective free
energy F'( A)—e AB and thus an effective control parame-
ter p—eB. Localized states arise from variations in B
that make the nonzero value of 4 most stable inside the
bubble, tending to make its edges move outward, while
stabilizing the state 4 =0 outside the bubble. At the
center of the kinks the two states are in coexistence and
the kink is stationary.

With this analogy, we see clearly that the forms of Eqgs.
(3.52) and those of the parity-breaking dynamics, (3.4)
and (3.6), are very similar, with the phase gradient play-
ing the role of the inhibitor field B. To illustrate the con-
cept of an effective free energy that alters the local stabili-
ty of the symmetric and broken-parity states, consider
the effective control parameter u'=p-+ed, discussed
after Eq. (3.50). Figure 9 shows the deviation
Heg=p' —u* from the Maxwell point as a function of x
for a bubble propagating close to wavelength relaxation,
clearly showing that the coexistence points (u.=0) occur
at the bubble edges.

C. Supercritical parity-breaking bifurcations

Here we make several remarks concerning the proper-
ties of bifurcations at which the amplitude of broken par-
ity grows continuously from zero at onset. The first and
perhaps most important feature of such transitions is that
the symmetric pattern becomes linearly unstable to bro-
ken parity beyond the transition point [u=0 in Eq. (3.3)].
The entire interface would be expected to become asym-
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metric at once, rather than by the nucleation of small re-
gions as in the subcritical case, although under certain
circumstances the uniform traveling-wave state may itself
be unstable.?’

Inside any domain with a uniform value of A0, the
pattern will be an asymmetric traveling wave with a
phase velocity proportional to 4. Now, in the supercriti-
cal case, the equilibrium values = A * themselves vary as
Vi, so we conclude that the phase velocity should scale
with the square root of the distance from onset of super-
critical parity-breaking bifurcations.

The linear instability of the symmetric pattern beyond
onset leads one to expect that the noise in an extended
system will generally produce a pattern that is a sequence
of domains with an alternating sense of broken parity.
The junctions between these regions are elementary de-
fect structures. They necessarily are sources or sinks of
traveling waves and new cellular structures and, as such,
are the loci of phase singularities and cannot be described
by the phase dynamics studied thus far. They are con-
sidered in Sec. IV.
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FIG. 9. (a) A bubble of broken parity in a system whose
wavelength has relaxed close to coexistence. (b) Effective con-
trol parameter pu.s;=p+ep, —u* as a function of position near
the bubble, illustrating that inside the bubble the broken-parity
state is favored (u.q> 0), while outside the symmetric state is the
more stable (u.;<0). Coexistence occurs close to the center of
the edges of the bubble in (a).
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IV. DEFECT STRUCTURES
AND TRAVELING-WAVE STATES

A. Anatomy of a defect

A natural generalization of states with uniformly bro-
ken parity is that in which the two dynamically stable
traveling-wave states coexist. As shown in Fig. 10, an in-
terface between two regions of broken parity (which we
refer to as a “defect”) is associated with a zero crossing of
the order parameter 4. The symmetry arguments de-
scribed in Sec. III allow us to conclude within the present
model that, if such a structure exists and the forces on
the kinks are such as to push them toward each other,
then those forces are equal in magnitude; the defect does
not move. How does the phase evolve? Observe that the
same nonvariational term in (3.6) that leads to a phase
evolution ¢ =+w A *¢t far from the defect—that is, travel-
ing waves with opposite propagation directions corre-
sponding to the opposite sign of the broken parity—of
necessity leads to an arbitrarily large phase gradient at
the core of the defect. This continual growth of the
phase gradient would imply that within any neighbor-
hood of the defect there would be an ever-increasing
number of cellular structures of ever-decreasing wave-
length.

Such a continual spatial contraction quite generally
leads to a destabilization of the pattern, typically by
means of the Eckhaus instability,”” a dynamical process
not contained in the phase evolution discussed in Sec. III.
Note further that the absolute value of the phase of the
pattern is irrelevant, only its value modulo 27 is relevant,
a consideration most naturally contained in a description
in which the phase is associated with the argument of a
complex order parameter. We propose’ in this section
that a description of the dynamics of defects of broken-
parity states may be formulated by a suitable coupling be-
tween the scalar amplitide A4 of the broken parity and a
complex order parameter B associated with the sym-

Ay (a)
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FIG. 10. Interfaces between regions of broken parity as de-
scribed by the order parameter 4. Arrows indicate the direc-
tion of forcing on the kinks. Two regimes may be distinguished:
(a) advection-dominated—only one type of defect (the right-
hand one) is stable; (b) spreading-dominated—both sources and
sinks of traveling waves are stable.
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metric component of the pattern, with arg(B)=¢. In or-
der to elucidate the effects of differential forcing at a de-
fect, it is useful first (Sec. IV B) to eliminate the dynamics
of the kink-shaped forcing function 4 (x) (Fig. 10) and
replace it with a static function, leading to a spatially
forced Ginzburg-Landau model of a periodic pattern.
With the insight thus gained, a phenomenological model
with couplings between A4 ands B is proposed that allows
for a consistent description of the dynamics of defects in
three important contexts. First, we consider an isolated
defect at the junction between two semi-infinite regions of
broken parity and demonstrate that viewed as a function
of space and time, such a junction is a “spatiotemporal
grain boundary,” the core of which is a locus of *“spa-
tiotemporal dislocations” which correspond to the
creation or destruction of new cellular structures.
Second, there may exist patterns consisting of alternating
sources and sinks. Finally, the dynamics of collisions be-
tween two finite regions of opposite broken parity, and in
particular the empirical rule of length subtraction de-
scribed in Sec. II, follow directly from these results.

B. A spatially forced complex amplitude equation

Consider a system with a supercritical primary insta-
bility leading to a stationary periodic pattern and let v be
a dimensionless control parameter defined as positive
beyond the instability. Near onset, the dynamics of the
pattern U may be reduced to that of a complex amplitude
B (x,1), where by a suitable rescaling of space,

Uz%(Beix+B*e+[x)+"' , 4.1)
with B* the complex conjugate of B, the ellipses
representing higher harmonics. A canonical form for the
dynamics of B is B,=B,, +vB —|B|?B. In the presence
of a real forcing g (x) that acts solely on the phase of B,
we obtain

B,=B,.+vB—|B|’B+ig(x)B . 4.2)
A particularly simple form for g is
(a)
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g (x)=gotanh(x /8) , (4.3)
the defect being located at the origin.
Provided |B|#0, it is meaningful to write
B =S expl(i¢) and so to deduce the coupled dynamics
S, =8, +(v—¢2)§ —83,
(4.4)

¢ =¢ +25 7S, b, +g .

This phase equation is then the generalization of (3.6) to a
complex order parameter with spatially varying magni-
tude. As the amplitude dynamics in (4.4) reveal; here,
unlike in models that do not respect the periodicity of the
phase, the large phase gradients produced by g (x) at the
origin destabilize the pattern. This destabilization is rem-
iniscent of the Eckhaus instability exhibited by B in the
presence of homogeneous forcing, whereby the state with
wave-vector mismatch Q (i.e., =Qx) and with amplitude
S =(v—0?)!""? becomes unstable for Q?>wv/3 and ceases
to exist for Q2> v.

How does the system evolve from the initial equilibri-
um state in which the pattern is uniformly in the center
of the band of stable states, i.e., S =v!/2, $=0? Figures
11 and 12 show the results of numerical integration®* of
(4.2), in which we write B=u +iv and solve the equa-
tions

u,=uy +vu—(ul+vHu —gv ,
4.5)
v, =v,, Fvo=(u?+v2)v +gu

for u(x,?) and v(x,?), rather than employ the polar
decomposition. Far on either side of the defect, the forc-
ing is homogeneous and we obtain the simple results

u(x,0)=Vvcos(got), v(x,1)=Vvsin(g,t)

(x—>+tw), (4.6a)
u(x,t)=Vvcos(gyt), vl(x,1)=—Vvsin(gyt)
(x—>—w). (4.6b)

FIG. 11. Evolution of a spatially forced Ginzburg-Landau model, with time increasing upward. (a) |B(0,¢)| vanishes periodical.ly.
(b) The reconstructed pattern shows that this vanishing corresponds to the disappearance of a cell. Numbers beside the successive

graphs correspond to those in Fig. 12.
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FIG. 12. Phase portrait of the forced Ginzburg-Landau
equation at successive points in time, with spatial coordinate x
parametrizing the curves. The destruction of a cell corresponds
to the simultaneous vanishing of the real and imaginary parts of
B =u +iv. Numbers beside curves correspond to Fig. 11.

Near the defect, the evolution is consistently more com-
plex. As the initially uniform state develops a phase gra-
dient near x =0, the modulus of B steadily decreases un-
til both the real and imaginary parts smoothly cross
through zero, as shown in Fig. 11(a). An alternate way to
view this is by means of a phase portrait in the u-v plane,
with the spatial variable x parametrizing the curve,
shown in Fig. 12.

The vanishing of B at the defect is found to be periodic
in time, the frequency related to the rate w at which the
phase gradient grows to destabilize the pattern. The
reconstructed pattern

U(x,t)=u(x,t)cos(x)—v(x,t)sin(x) , 4.7)

shown in Fig. 11(b), reveals that this periodic zero of B
corresponds to the destruction of a cell, consistent with
the defect being a sink of traveling waves. Had we
chosen g, of the opposite sign, the defect would be a
source of traveling waves, a locus of new cells.

C. Dynamics with couplings between symmetric
and antisymmetric components

1. A generalized model

Having established that a differentially forced complex
order parameter avoids large phase gradients by vanish-
ing periodically, we return to patterns with broken parity
and develop a model for the dynamics of a defect. We
consider again the model equations for the amplitude of
broken parity and the phase of the pattern,

A,=Axx——aa%+7/AAx+eA¢x+ S (4.82)
¢ =¢tod+ -, (4.8b)

and generalize them to the case in which ¢ is the argu-

GOLDSTEIN, GUNARATNE, GIL, AND COULLET 43

ment of a complex field B, and in which the primary in-
stability that breaks the continuous translational invari-
ance is supercritical, as in Sec. IV B.

With the proposed representation of the amplitude of
the symmetric component of the pattern with a complex
field B and that of the antisymmetric component with a
scalar field 4, we demand of the dynamics invariance un-
der the transformations

x—>—x, A—-—A, B—B* . (4.9)

From the discussion around Eq. (4.2), it is clear that the
appropriate dynamics for B is

B,=B,, +vB+|B|*B+iwAB . (4.10)

To generalize the term A¢, in (4.8a), observe that the
phase gradient is

2S%p,=i(B*B,—BB}), 4.11)
very much like the probability current in quantum
mechanics (with B representing the wave function).
Indeed, as we discuss in Sec. IV D below, there is a strong
analogy to be made with the dynamics of superfluids and
superconductors.

Viewing v as the basic control parameter (e.g., in direc-
tional solidification, v < v —vyg, where v is the imposed
forward velocity of the interface and vy is that of the
Mullins-Sekerka instability), we make the plausible as-
sumption that the control parameter y in the dynamics of
A varies primarily through the growth in the amplitude
of the symmetric component, and hence implicitly with v.
To lowest order, this implies that the effective u increases
linearly in |B|?. We thus arrive at the model

A,= A, +([@+|B*)A +ad’— 4>

+i§(BB;"—B*Bx)A +yAA, . 4.12)

In a polar decomposition, with B =Re'?, (4.10) and (4.12)
become

R, =R, +(v—¢l)R —R®,

R,
@ =P T2—@,twd, (4.13)

R ¢
A=A, +H(u+RHA+aA*— A4°+eR* A .

The remaining parameters 8, u, «, etc., are taken to be
fixed. For p+|B[*>pu* the broken-parity state becomes
dynamically stable, and from a linear stability analysis
around the state 4 =0, ¢=0x, B =(v—0?)'"?, we may
locate the stability boundary for broken parity shown in
Fig. 4 in the space of v and phase gradient Q. A
schematic neutral stability diagram is shown in Fig. 13
for the case € > 0. Observe that the parity-breaking bifur-
cation curve intersects the vertical axis at an angle. This
implies that a quench of the system to a state with a uni-
form phase gradient Q will lead to nucleation of parity-
breaking modes only if the sign of the jump in Q is ap-
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FIG. 13. Schematic stability diagram including the Eckhaus
(dashed) and parity-breaking instabilities (hatched region).

propriate (negative in the case shown in the figure). This
behavior is in accord with experiments on directional
solidification.?3

2. Analogy with superconductors in applied electric fields

As remarked above, the dynamics of the complex sym-
metric order parameter in Eq. (4.10) bears a strong rela-
tion to that found in superconductors, an analogy that is
made more complete here. Recall the essential aspects of
the time-dependent Ginzburg-Landau (TDGL) descrip-
tion of the dynamics of a superconductor.?® The TDGL
equation in the absence of a vector potential is

3 , 2ip,
—+
ot #

¢=a—22¢+r¢—|¢|2¢ , (4.14)
ax

where ¥(x,t) is the complex superconducting order pa-
rameter. u, is the electrochemical potential related to the
electrostatic potential ¥ by®’

p,=eV (4.15)

with a suitable definition of the reference of chemical po-
tential.
With =y exp(i$) we have, as in (4.10),

Xe=XwtOv—82x—x°, (4.16a)
1 2u,
G = b TX T Xxbx— 7 (4.16b)

the latter being the Josephson relation.’® In this form, we
see that the traveling-wave relation ¢, ~w A4 is essentially
also a Josephson relation, with the broken-parity order
parameter corresponding to the electrochemical poten-
tial. In the parity-breaking problem, of course, there are
no universal scale factors analogous to # that enter the
Ginzburg-Landau (amplitude) equation, but nevertheless
there are certain universal features that can be tested ex-
perimentally. Most importantly, as remarked earlier, for
supercritical bifurcations the growth of the amplitude of
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broken parity near onset, 4 ~v!/2, implies the general-

ized Josephson relation connecting the phase velocity v,
and the control parameter

v, ~vav!’?, 4.17)
P 0

v, being some nonuniversal constant

3. Propagating inclusions

With the coupled dynamics of (4.12), we return to the
motion of propagating inclusions of the broken-parity
state and recall that the symmetric pattern left in the
wake of such a bubble has a wavelength shortened from
that before the bubble passed, provided the bubble is
spreading. In the context of the couplings proposed
above, where the phase gradient and the symmetric am-
plitude are coupled, it follows that the amplitude of the
symmetric pattern remaining is diminished as well. Note
also that with the essentially triangular shape of the
phase function that arises from the propagation of a pari-
ty bubble, there may be an instability of the pattern
within the inclusion if the phase gradient there is too
large. That is, the propagation of a parity bubble may
lead to a spontaneous creation of new cells. Near the top
left of Fig. 1(a) we see such an event in the case of
solidification.?! There is additional evidence for this
phenomenon in directional viscous fingering.?

4. Spatiotemporal grain boundaries,
spatiotemporal dislocations, sources, and sinks

There are two fundamental kinds of boundaries be-
tween adjacent regions of opposite broken parity, dis-
tinguished by their handedness, as in Fig. 10. The sign of
the coupling constant ® in the phase relation
¢, =@, + A determines whether a given defect acts as a
source or sink of traveling waves. It was established in
Sec. III that the symmetries of the equations of motion
require that kinks with opposite parity and orientation
move with velocities of equal magnitude but opposite
sign. Thus, in isolation, both junctions are forced equally
from both sides, and therefore do not move. On the oth-
er hand, the stabilities of the two defects are not identi-
cal. As remarked in the discussion of kink dynamics in
Sec. III B, the dynamical forcings on kinks can lead to
two qualitatively different regimes for the motion of bub-
bles of broken parity: (i) advection dominated and (ii)
spreading dominated. In the former, as shown in Fig. 10,
only one kind of defect is stable. In the latter case, both
are stable.

Far beyond the hysteretic region of a subcritical bifur-
cation, or beyond the onset of a supercritical bifurcation,
we expect the rate of expansion of bubbles of broken pari-
ty to overwhelm other forcing, and the system to be in re-
gime (ii). Figure 14 shows reconstructions of the two
kinds of spatiotemporal grain boundaries, sources, and
sinks, for a system far beyond onset. We see that far
from the defect the pattern is a uniform traveling wave,
but there are distortions in the phase velocity close to the
defect as the broken-parity order parameter approaches
zero.
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FIG. 14. Two types of spatiotemporal grain boundaries in
the spreading-dominated regime. (a) A source of traveling
waves; (b) a sink.

In situations where both sources and sinks are stable,
we may anticipate that a pattern prepared with arbitrary
initial conditions may develop an alternating sequence of
sources and sinks, separated by somewhat random inter-
vals. Experiments on directional viscous fingering indi-
cate that this is the case.’? Such a pattern is reminiscent

20

A(x)
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U(x)

of the “phase slip oscillator,” state>® discussed in the con-
text of superconductivity, in which there is a spatial array
of sites at which the superconducting order parameter is
periodically driven to zero. We defer a detailed discus-
sion of the interactions between these defects, but remark
here that experiments®' indicate the possibility of a
bound state of two defects.

5. Collisions

The dynamics of phase slips at the junctions between
regions of opposite broken parity allows us to understand
the nature of collisions between parity bubbles, and in
particular the creation of new cells and the origin of the
empirical rule of length subtraction. Figures 15 and 16 il-
lustrate the dynamics of annihilating and partially an-
nihilating collisions as deduced from the model (4.10) and
(4.12). The junction between two finite domains of oppo-
sitely broken parity is essentially a transient grain bound-
ary, the order parameter A locally having the shape of
the kink connecting the two states = 4 *. This junction
remains fixed in space during the course of the collision,
as a consequence of the equal and opposite variational
and nonvariational forcing on its two halves, but the two
outer edges of the bubbles continue traveling inward with
velocities of equal magnitude. The transient occurrence
of a kinklike structure connecting the states A4 * leads
to a periodic phase instability (or several) at the junction,
and this yields new cellular structures. When viewed in
terms of, say, the maxima of the pattern U in Figs. 15(b)
and 16(b), these instabilities during a collision are “spa-
tiotemporal dislocations.” Once the outer edge of the
shorter bubble gets close to the junction, that bubble will
become smaller than the critical nucleus and thus col-
lapses to zero, leaving the remainder of the longer
domain to propagate in its original direction, slowly
spreading as before. It follows that the rule of length
subtraction is approximate up to deviations on the order
of the critical nucleus.

IOOW I Y
50 XA = ; i
0 = %
0 50 100
X
(b)

FIG. 15. Annihilating collision between broken-parity domains of equal length. The reconstructed interface pattern U in (b) is cal-
culated from the broken-parity order parameter in (a). For clarity, the latter is shown at one-tenth the temporal resolution used in

(b).
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FIG. 16. Same as in Fig. 15, but a partially annihilating collision.

V. SUMMARY OF COMPARISONS
WITH EXPERIMENTS

Modulated hydrodynamic states destabilize by break-
ing one or more of their symmetries. We have suggested
the breaking of parity symmetry as a possible explanation
of the experimental observations summarized in Sec. II.
The universality of the features, in spite of the diverse na-
ture of the physics, suggests that they are indeed proper-
ties of a common transition. Their strong resemblance to
properties of the model advanced here suggests that the
experimental systems exhibit such bifurcations. The fol-
lowing brief summary of comparisons with experiments is
oriented toward the directional solidification experiments
on liquid crystals (see Sec. II A 1), for which the most de-
tailed information is available.

The experimental observation of a first-order transition
was built into the theory, and in Sec. III B 5 several sim-
ple observations were used to determine the signs and
ranges of the model parameters u, € and w. The remain-
ing observations of Sec. II follow from the model: The
velocity v,(G) at which solitary modes first propagate
freely corresponds to the Maxwell point, beyond which
the asymmetric state is the more stable. The form of the
nonvariational terms in Egs. (3.4) and (3.6) implies a pre-
cise correlation between the sign of the asymmetry and
the direction of motion of the solitary mode. Further, it
follows from Egs. (3.31) and (3.33) that the velocity of a
solitary mode is independent of its length (provided that
it is sufficiently longer than the critical nucleus) and is a
function only of u and €, and hence varies only with the
forward velocity of the interface and the applied tempera-
ture gradient. The wavelength relaxation rule (g) follows
directly from the model, as discussed in Sec. IT A 5.

In both directional solidification and Rayleigh-Bénard
experiments the fundamental selected wavelengths of the
symmetric cellular pattern is a decreasing function of the
control parameter (forward interface velocity or applied
temperature difference). Associated with this shrinking
of the pattern is the observation that velocity quenches of
size Av nucleate new cellular structures by means of

asymmetric traveling domains generally only if Av >0.
This onesidedness suggests clearly that the stability of the
antisymmetric state depends on the sign of the mismatch
between the wave vector of the pattern and the one to
which it is relaxing after the quench. The symmetry con-
siderations associated with parity-breaking bifurcations
in general require that this be the case.

The approximate length subtraction rule (h) and the
creation of new cells at the interface (i) are consequences
of the model of Sec. III and the interpretation of the col-
lision front as a phase slip center. Close to the coex-
istence region, only sinks are stable, while farther away,
both sources and sinks can exist.

To elucidate further the nature of parity-breaking tran-
sitions, we raise the following questions as experimental
tests.

(i) Resolve the experimental pattern into symmetric
and antisymmetric components and thereby deduce the
broken-parity order parameter and slowly varying phase.
What are the length scales for the variations of 4 and ¢?

(i) For velocities far beyond the onset of broken parity,
do solitary modes expand in both directions and ultimate-
ly cover the entire interface?

(iii) Near the supercritical parity-breaking bifurcation,
does the phase velocity vary with the broken parity as ex-
pected [Eq. (4.17)]?

(iv) At a source of traveling waves, does the symmetric
component of the pattern vanish periodically at the same
rate as the creation of new cells (the Josephson relation)?

VI. EXTENSIONS

More recent experiments®' on directional solidification
of liquid crystals have been carried out in containers
whose lateral extent L is only on the order of ten cells
wide, thus affording the opportunity to address the na-
ture of geometric pattern selection in these systems. As
is often found in confined hydrodynamic systems, the
boundary conditions on the interface resemble closely
those found in equilibrium situations, meaning here that
there is a reasonably constant contact angle as a function
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of the forward velocity v of the interface. Consequently,
there is an integral number of cells between the walls; the
wave vector go(v) of the periodic pattern is quantized.
Figure 17 illustrates this wavelength locking
phenomenon, contrasting sharply with the continuous
variation g,(v) found in containers with L /Ay>>1.

The relevance of a parity-breaking instability to this
geometric quantization appears in the dynamical mecha-
nism by which a pattern with n cells adds a cell upon a
gradual increase of the forward velocity v. Provided
L /Ay=5 (i.e., that the central region of the pattern is
unaffected by the walls), it is found?®!' that such an in-
crease in the wave vector g is achieved by the nucleation
of a solitary mode, typically at one or the other wall in
the system. This inclusion may travel across the length
of the container, increase the wave vector of the pattern
left behind, as in unconfined geometries. Remarkably,
this parity-breaking phenomenon appears at the edge of
each of the plateaus in the g-v plane of Fig. 17, in contrast
to the situation in an infinite container where it occurs at
a unique velocity.

Interestingly, there is a fundamental asymmetry in the
mechanism by which wavelength changes occur when
one compares increases and decreases of the control ve-
locity v. That is, the nucleation of solitary modes that
occurs with increasing v is replaced by an Eckhaus-like
instability that is responsible for destroying cellular struc-
tures upon decreasing v. This is reminiscent of the
features of the stability diagram derived in Sec. IV,
shown schematically in Fig. 13.

The appearance of a parity-breaking instability along
each of the plateaus of constant wave vector may be un-
derstood®* by viewing the mismatch between the geome-
trically selected wave vector and the one selected in an
infinite system as a negative phase gradient that changes
the effective control parameter for the bifurcation from u
to u+e¢,. If, as established in previous sections, € <0,
then such a phase gradient will destabilize the symmetric
pattern. Similarly, progressive decrease in the forward
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FIG. 17. Diagram illustrating effects of confined geometries.
The observed wave vectors in narrow channels are discrete,
whereas in the infinite system they form the continuous function
qo(v), with v the imposed forward interface velocity. Velocities
v, are those at which the system undergoes a transition from n
to (n +1) cells.
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interface velocity will lead to a positive phase gradient
that would eventually destabilize the interface by an
Eckhaus-like mechanism without an intervening parity-
breaking bifurcation.

Nowhere in the discussion above have we taken into
account the existence of liquid-crystalline order within
the nematic phase of the directional solidifcation experi-
ments. On a gross level, one might imagine that the only
indication of those degrees of freedom is the particular
values of the material parameters such as the capillary
length, latent heat of transition, partition coefficient, etc.,
and also therefore in the coefficients of the Ginzburg-
Landau model for parity breaking. On the other hand,
recent experiments'* have indicated that there may be an
intimate connection between certain defect structures as-
sociated with the nematic director and the motion of the
nematic-isotropic interface itself.

It is known> that the director in these liquid crystals
tends to lie at a particular orientation with respect to the
nematic-isotropic interface—in some systems it is normal
to the meniscus, in others at an angle. In any fully micro-
scopic description of the solidification dynamics, we
might expect that the complex nematodynamics would
supplement the usual thermal and/or impurity diffusion.
Likewise, in a long-wavelength approach based on sym-
metries and invariances, it is natural to ask whether the
existence of nematic order might alter the form of ampli-
tude equations. One possibility, analogous to that in
smectic liquid crystals,>® is that a joint rotation of the
director and the nematic-isotropic interface does not alter
the properties of the system (in the absence of a
symmetry-breaking thermal gradient); only the relative
gradients of the interface position and nematic director
are important. Thus, spatial derivatives in amplitude
equations would become covariant; the nematic order
would induce a “gauge field.” As is the case for flux lat-
tices in superconductors, the existence of such an auxili-
ary field can lead to important defect structures. That
such a gauge field might exist has been conjectured re-
cently’’ in the context of electrohydrodynamic convec-
tion in liquid crystals, but it is an important open prob-
lem to determine whether the director does indeed play
the role of a gauge field in these one-dimensional pat-
terns.

VII. DISCUSSION

The qualitative agreement between the dynamics of the
simplified model of a parity-breaking transition and the
experimental observations, particularly in directional
solidification, reveals the power and generality of symme-
try arguments. Yet, out of this analysis comes no micro-
scopic understanding of the mechanisms that produce
these instabilities. Here, we discuss possible origins for
the ubiquity of parity-breaking bifurcations in dissipative
pattern-forming systems.

In Sec. II B we outlined some of the important com-
mon features of the experimental systems, and in particu-
lar the indications that the second harmonic of the mode
that appears at onset plays an important role. Note that
such a harmonic content cannot arise from underlying
dynamics of the form
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U,=f(U) (7.1

if £(U) is an odd function of its argument, as is the case,
for instance, of the Swift-Hohenberg3® equation

U=—rU—2U,—U,, —U*. (7.2)

The cubic nonlinearities in (7.2) will only mix odd har-
monics like cos(gyx) and cos(3gyx). Clearly, even-order
nonlinearities are needed, the lowest-order such terms be-
ing quadratic. It is precisely these even nonlinearities
that remove the symmetry between U and — U, a symme-
try that is known* to be broken in the case of directional
solidification. In convection at large Rayleigh numbers,
the fluid properties at the top and bottom of the convec-
tive cell would differ, thus breaking the up-down symme-
try of the velocity profile in the convective rolls. Such
effects might indicate a breakdown of the Boussinesq ap-
proximation.*’

The first part of our conjecture is then that parity-
breaking bifurcations may arise as a consequence of dy-
namics which break the “up-down” (U — — U) symmetry
and thereby nonlinearly couple the fundamental mode
and the second harmonic.*!

Why should the generation of the second harmonic of
a cellular pattern lead to a secondary instability (Ref. 42)?
One possible answer comes from considering again the
linear stability of the homogeneous pattern. As can be
seen in Fig. 2, in which we have drawn interfacial pat-
terns corresponding to the form

Ug(x)=b, cos(gox)+b, cos(2gyx) ,

with b,/b;=—0.25, growth of the second harmonic
creates a pattern that is progressively flatter at its leading
edge. By the time the ratio of amplitudes is like that in
Fig. 2(a), the front of the interface is nearly flat, and its
stability might plausibly be understood in terms of an
analysis around the planar state. Sufficiently far beyond
the onset of the primary instability, the band of unstable
modes may contain the mode of wave vector 2q,; the pos-
itive growth rate for this second harmonic may then sig-
nal a secondary bifurcation of the periodic pattern.

From the results in previous sections, it is clear that a
fundamental aspect of the dynamics of broken parity is
the lack of a variational principle governing the normal
form expansion. This suggests that the underlying micro-
scopic equations of motion also involve nonvariational
terms. In both solidification and viscous fingering experi-
ments the underlying equations of ' motion for the spatial-
ly distributed fields are either diffusive or Laplacian, and
linear. The origin of all of the nonlinearities lies in the
boundary conditions on those fields. In both of these
cases, the boundary conditions involve relationships be-
tween the interface position, curvature, and normal
derivatives. Fundamental to these geometric features of
the interface is the metric relationship between arc length
and the shape of the boundary

ds=(1+U2)"2dx . (7.3)

5543 3544

Both the ‘“‘geometric and ‘“‘boundary-layer models
of solidification suggest that the nonlinearities embodied
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in the metric might enter directly into the equations of
motion of interfaces.

That nonvariational quadratic nonlinearities such as
U? might play a role in secondary instabilities of periodic
patterns has been discussed*’ in the context of a modified
version of the Kuramoto-Sivashinsky (KS) equation,*®
which also finds application in the study of flame fronts
and other nonequilibrium systems. A convenient form of
the KS equation is

U=—rU—2aU,, — +vU? . (7.4)

UXXXX

This equation is also obtainable from the ‘“‘geometric”
model of solidification, and directly from the underlying
microscopic physics*’ and boundary conditions. The
linear stability of the homogeneous pattern U =const to
perturbations of the form U=-exp(ikx +ot) yields a
growth rate curve o (k) that has the essential features for
solidification: a quadratic maximum at some finite wave
vector k,, with both damping at the extremes of low and
high wave vectors.

As discussed elsewhere,*® the cellular structures found
near the onset of the primary instability of the homogene-
ous interface remain left-right symmetric over a range of
control parameter beyond that onset. There is a well-
defined point, however, where the parity is broken. In a
simplified treatment,*’ the interface function is approxi-
mated by a linear combination of a small number of
modes, the amplitudes of which constitute a reduced set
of dynamical variables,

U(x,t)=Bcos(gox +¢)+B,cos[2(gox +¢)]

+ A,sin[2(gox +@)]+ - - (7.5)

As expected, the second harmonic of the basic pattern
arises from the quadratic nonlinearity and leads to cellu-
lar structures that are quite reminiscent of those seen in
experiment. Further analysis suggests that when the
band of unstable modes in the stability analysis of the
homogeneous state is broad enough, the broken-parity
amplitude A4, becomes finite. This point roughly corre-
sponds to that at which the growth rate of the second
harmonic becomes positive. At this instability, the phase
becomes a propagating mode, so the pattern exhibits
traveling waves. Interestingly, then, the lowest-order
quadratic nonvariational nonlinearity consistent with the
underlying x — —x symmetry of the equations of motion
leads to a parity-breaking transition. A normal form
analysis of this bifurcation*! should prove illuminating in
the study of parity-breaking bifurcations and may serve
as a check of the ideas advanced here.

Finally, given a simple microscopic model for a sub-
critical bifurcation, it may be possible to address the ori-
gin of the hydrodynamic noise that ultimately nucleates
the new state. In this issue, also, we may expect the ex-
istence of nonvariational dynamics to play an important
role. As is well known, when the microscopic equation of
motion is variational, U,=—8%F/8U, then ¥ itself is a
nonincreasing function of time, and the system is con-
tinually relaxing to a (perhaps metastable) minimum of 7.
Such unidirectional relaxation does not exist for nonvari-
ational dynamics, and its absence is clearly seen in nu-
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merical simulations* of the KS equation. Perhaps a
study of nucleation at a subcritical bifurcation in the con-
text of nonvariational dynamics will be a fruitful step to-
ward understanding the origin and magnitude of hydro-
dynamic noise.
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