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Critical Dynamics in the Pearling Instability of Membranes
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We report quantitative measurements above threshold in the pearling instability of cyl
membranes. Induced by optical tweezers, the instability propagates outward from the la
with well defined wavelength, and velocity. All measured quantities scale with the reduced
control parametere ; sS 2 ScdySc. A critical slowing down for initiation of the instability
observed. The values of the velocity, wavelength, and delay time agree with marginal
and linear analysis. Measurements very close to threshold are strongly masked by
fluctuations. [S0031-9007(97)03733-2]
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Dynamical shape transitions of membranes are inh
ently more complex than their static configurations. Th
equilibrium shapes can be explained by variants of t
Helfrich curvature energy alone [1,2]. The nonlinear d
namics, on the other hand, involve the interaction of t
curvature with the flow of the surrounding fluid, with
thermal fluctuations, and, as we now understand, with
effective tension as well [3,4]. Demonstrating that no
linear dynamical methods can be quantitatively accur
in such a system is therefore of some importance.

Recently we reported a novel “pearling” instability in
cylindrical fluid membranes induced by application of op
tical tweezers [5]. The action of the tweezers is to pu
lipid material into the trap region, inducing an effectiv
tension in the rest of the membrane. Upon tweezin
membrane tubes develop a Rayleigh-like peristaltic ins
bility with a well defined wavelength, advancing into th
thermally fluctuating tube. The origin of the pearling in
stability has been identified as a competition between
destabilizing external tensionS induced by the laser and
the bending rigidity of the membranek [5–8]. Above a
critical tensionSc a membrane tube becomes unstable
long wavelength peristaltic modes.

The difficulties in obtaining quantitative data from
the transition lie first in the experimental control of th
instability, and then in the thermal fluctuations whic
mask its onset. The first problem was solved by usi
the laser tweezers [9] to controllably and gradual
increase the control parameter until onset was reach
The second problem is deeper, since it essentially ru
out measurements of the linear state, and without su
information predicting or measuring nonlinear coefficien
and behavior is impractical.

We therefore exploited the fact that the instabilit
propagates outward from the tweezing point, with
leading edge that exhibits well defined velocity an
wavelength selection [5,10]. Work on dynamical system
has shown that the propagating solution often obeys
criterion of marginal stability (MSC) [11]. The front is
then determined not by the high amplitude, nonlinear st
0031-9007y97y79(6)y1158(4)$10.00
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behind the front, but by the linear properties of this lo
amplitude leading edge.

Our major results are as follows.
(1) We measure a constant velocity of propagatio

of the unstable pearling front that depends linearly o
the control parametere ; sS 2 ScdySc. This is in
agreement with the MSC analysis of Goldstein, Nelso
Powers, and Seifert (GNPS) [10].

(2) Critical slowing down is observed, with a dela
time for initiation of the pearling that scales likeeg with
g ­ 21.0 6 0.15. We propose an explanation of this in
terms of a linear response calculation.

(3) The selected wave vectors lie on a curve that ris
from below 0.5 (in units of the tube radius) at lowe to
about 1.0 at highe, in better agreement with predictions
of the MSC [10] than with the fastest growing mode from
linear theory [6].

(4) Long wavelength, small amplitude propagatin
waves that are barely discernible immediately at onset
suppressed and replaced by larger amplitude, nonlin
states with shorter wavelength.

(5) The estimate of laser induced tension from ele
trodynamic considerations is confirmed by the measur
threshold intensity at onset of the instability.

(6) The agreement between the experiment and
linear calculations extends up toe ø 20. Close to
threshold, e # 1, the instability is indeed masked by
thermal fluctuations of the membrane.

Experiment.—The quantitative measurements pre
sented here were performed on tubes of stearoyl-oleo
phosphatidylcholine (SOPC, Sigma) lipids in water wit
0.5 M glucose at room temperature. Unilamellar tube
freely suspended between large lipid globules were p
duced as reported previously [5]. Tubes were hundreds
mm long and with radii in the rangeR0 ø 0.4 1.0 mm.
The optical tweezers setup is by now standard [12], exc
for the use of an Ar laser. Laser power intensities rang
from 6 to 50 mW. The laser was turned on for a duratio
long enough to observe pearling but short enough
prevent the tube from going into the highly nonlinea
© 1997 The American Physical Society
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regime. That state is quite different, characterized b
isolated tense pearls that propagate along the thinned
tube [5,13]. Our procedure also allows rapid relaxation o
the membrane to a straight tube with little remnant effe
on the tube. Theoretically, the laser induced tensio
is given by SL ­ IDeDycv

2
0 [6] where I is the laser

power in the trap,De ø 0.23 is the dielectric difference
of lipids and water in the visible range,D ø 40 Å is
the membrane thickness,c is the speed of light in water,
and v0 ø 0.3 mm is the size of the trap. Similarly, the
critical tension for pearling isSc ­

3
2 kyR2

0 [5], wherek

is the bending rigidity of the membrane (ø10212 erg for
SOPC [4]).

Experimentally, the onset of pearling occurred when th
laser intensity exceeded a critical intensityIc which we
measured to beIc ­ 10 6 4 mW on tubes of radiusR0 ­
s0.6 6 0.1d mm. Using these values we obtainSL ­
4.5 3 1024 ergycm2 andSc ­ 4.2 3 1024 ergycm2 with
errors of up to40% in both. The agreement between
the two estimates of the tension is a confirmation o
the simple electrodynamic model for the laser-membra
interaction. Furthermore, it allows us to useI as a
measure ofS. We then used theR0 dependence ofSc to
calibrate the value ofIc for tubes of different radii. This
gave us a measure ofe ­ sI 2 IcdyIc ­ sS 2 ScdySc.

Propagation.—Figure 1 shows a typical propagating
front. In these early stages the signal is close to th
limit of optical resolution and barely perceptible abov
the thermal fluctuations. The instability becomes appare
once its amplitude exceeds a threshold valueusz, td ­ eC ,

FIG. 1. Propagation of a pearling front outward from the
illuminated laser spot fore ­ 6.5. Time from laser on in
seconds: (a)0.14, (b) 0.68, (c) 0.86, (d) 1.04, (e) 1.22. The
bar represents 10mm. The arrow gives our determination of
the leading edge.
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where C is an amplification factor set by the experime
tal detection threshold. We found that the best way
identify and follow this leading edge of the propagatin
front was inspection by eye. This naturally adds som
noise to the data. Below threshold, and even at zero t
sion, thermal fluctuations around the critical waveleng
are strongly enhanced and obscure the instability as it i
tiates (see discussion below). Our measurements are
limited by the field of view of the camera. As seen i
Fig. 1, this covers only about ten wavelengths on ea
side of the trap. As a result, we are insensitive to effec
involving changes in velocity over larger distances. On
the initial front has passed we often saw an increase
the amplitude until it reaches a fully saturated nonline
state. This larger amplitude, shorter wavelength state
still very different from the pearls discussed in [13].

From the fit of Xstd ­ V st 2 Dtd, with t ­ 0 the
time the laser was turned on, we extracted the fro
velocity V . Figure 2 shows a plot of the velocity as
a function of e. The velocity is scaled by the natura
velocity scale in the membraneVk ­ kyhR2

0 whereh ­
0.01 P is the viscosity of water. Within the experimenta
accuracy the velocity scales linearly with a prefacto
0.04 6 0.01, where the error is statistical. In comparison
GNPS predicted this linear relation with a prefactor o
0.09 (in our units). Taking into account that measure
values fork vary by factors of order unity, depending
on the measurement technique, the agreement with GN
is quite good. Measuring the front velocity is nontrivia
even numerically: GNPS measured a velocity which w
25% lower than the analytical (MSC) estimate, whil
better resolution and improved front identification gav
a result very close to the MSC prediction [15].

Wavelength selection.—The propagating front is char-
acterized by a well defined wavelength which can b
extracted from pictures such as those in Fig. 1. The dime
sionless wave vectorqR0 is plotted in Fig. 3 as a function

FIG. 2. Velocity of front propagationV scaled by Vk ­
kyhR2

0 as a function of control parametere ; sI 2 IcdyIc ­
sS 2 ScdySc. A linear fit (solid curve) give0.04 6 0.01 for
the slope.
1159
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FIG. 3. Selected wave vectorqR0 as a function ofe. The
theoretical prediction for fastest growing mode from th
dispersion relation of GNPS (dashed curve) and their MS
wave vector correction [10,14] (solid curve) are also plotted.

of e along with two theoretical results, the fastest growin
mode of the linearized dispersion relation and the select
wave vector of the MSC. It is evident that the data co
respond to smaller wavelengths than those predicted
the linear theory. There is much better agreement wi
the MSC prediction, especially for the moderate tensio
regime (e # 5). We believe that it is nonlinear effects
that tend to shift the data at high tension values towar
shorter wavelengthsqR ø 1.

A salient feature of the mean field theory that ha
evolved to describe this transition is that pearling occu
via a continuous bifurcation where the selected (or faste
growing) wave vector at threshold is zero and increas
continuously withe. We found experimentally that close
to threshold pearling cannot propagate out and on
develops a steady state “bulge” about10 radii long
centered around the laser position; see Figs. 4(a) a
4(b). This bulge is a localized, steady state for as lon
as the laser is kept on. It may hint at the existenc
of additional physical mechanisms such as steady st
tension gradients in the tube [7,13,16], pressure gradie

FIG. 4. Slightly above threshold long wavelengths appear
a steady state “bulge” centered around the position of the las
trap. Here (a) is the unperturbed tube and (b) is after 4
seconds of tweezing. In (c) we show a different tube wit
a long wavelengthqR0 ­ 0.47 close to thresholde ­ 0.35,
corresponding to the lowest data point in Fig. 3. The arrow
in (c) mark the troughs of the peristaltic mode, and the brigh
spot towards the left hand side of the frame marks the place
operation of the tweezers. The bar represents10 mm.
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due to fluid entrainment [17], or stabilizing nonlinea
effects.

At slightly higher e we could indeed verify that long
wavelengths tend to appear at onset [shown in Fig. 4(c
However, we could not measure thee dependence, both
because the signal is on the same level as the ther
fluctuations of the membrane and because these st
are unstable, quickly supplanted by a shorter wavelen
nonlinear state.

Measured “delay time.”—From the fitXstd ­ V st 2

Dtd in Fig. 2, the delay timeDt from t ­ 0 (power on)
to the beginning of propagation can be measured as w
Figure 5 shows a log-log plot of the delay timeDt, scaled
by the natural time scaletk ­ R3hyk, as a function of
e. Right near threshold, where a central bulge appe
with no propagation,Dt was taken as the time it took
for the bulge to develop. A clear trend is observed, a
the best fit yieldsDtytk ­ s1000 6 200d 3 e21.060.15.
To check that the delay time scales withe we fitted
our data toDt , 1ySn and obtained a worse fit (with
n ­ 1.4 6 0.2).

Linear response theory.—Despite the nonlinear nature
of the pearling, the leading edge of the instability has
moderate amplitude and hence can be analyzed in te
of the linear response [8,10,11]. We show here that t
velocity calculation by GNPS using the MSC is in fac
equivalent to the linear calculation by Gurinet al. [8],
when extended to small values ofe. From this we
shall further obtain an estimate for the delay time at t
experimentally relevant regime of highere. We consider
an approximate form of the exact dispersion relation
GNPS:

vskd ­ t21
k bk2

∑
3
2

es1 2 k2d 2 k2 2 k4

∏
, (1)

wherek ­ qR0 and b ø 0.04. The initial perturbation,
which is localized around the laser trap, is modeled
usz, t ­ 0d , dszd. The perturbation therefore diffuse
from the origin and is amplified by the unstable mod

FIG. 5. Delay timeDt scaled byt ­ R3hyk as a function
of e. The best fit (solid line) yieldsDtyt ­ s1000 6 200d 3
e21.060.15.
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e)
according to [8]

usz, td ,
1

p
t
exp

µ
2

D2z2

4R2
0v0t

∂
exp

µ
ik0

z
R0

1 v0t

∂
, (2)

where we used a saddle point approximation withk0 and
v0 the wave number and the growth rate of the faste
growing mode, respectively, andD ­ f22v0yv00sk0dg1y2.
The leading edge follows the trajectory of consta
amplitudeusz, td ­ eC:

z ­ 2
v0

D
t

s
1 2

C
v0t

ø 2
v0

D

√
t 2

C
2v0

!
. (3)

Propagation is seen to begin after a delay timeDt ­
Cy2v0. Asymptotically, the front propagates at a con
stant velocityVyVk ­ 2v0yD. Inserting the theoretical
values fork0, v0, we see that close to threshold,e ø 1,
the critical scaling is [8]VyVk ­ 0.2e3y2 and Dtytk ­
21Ce22. However, for the experimental regime,e $ 1
the critical scaling crosses over to

V
Vk

­ 0.09e;
Dt
tk

­ 33Ce21. (4)

The result forV is identical to the GNPS result. The
factor C in Dt characterizes the amplification needed
get an observable instability amplitude from the initia
perturbation. While the measured delay time is thu
consistent with linear response, we cannot rule out t
possibility that it is related to a mechanism for productio
of tension in the membrane [7,16]. Furthermore, th
experimental valueC ø 30 is higher by a factor of 3–
5 than one would reasonably estimate, mainly due to t
high amplitude needed to detect the leading edge.

Role of fluctuations.—Experimentally, the analysis of
the propagating front was complicated by the existen
of fluctuations in the tube which, at times, were on th
order of the instability itself. This is made worse b
the proximity of the wavelength at which the therma
fluctuations below onset peak to the unstable mode of
instability itself. Equipartition in the case of curvatur
with no tension gives the amplitudeuk of the mode
with wave numberk ­ qR0 in a fluctuating cylinder at
equilibrium: kjukj2l ~

kBT
k s 3

2 2
1
2 k2 1 k4d21. This has a

maximum atk ­
1
2 , close to the wavelengths observed

threshold. Plugging in all factors and integrating gives th
root mean squared fluctuation to be about0.1R0, which
is consistent with what we see below onset. Intriguin
questions, and ones that we cannot answer at present,
how the masking of the linear regime occurs, and what
the mechanism by which the fluctuations interact with th
instability.

In summary, we have quantitatively examined pa
tern formation in the pearling instability of fluid mem-
brane tubes. At onset thermal perturbations mask a
compete with the low amplitude, linear instability. Th
observations of propagating fronts allow us to compa
measurements of velocity, delay time, and wavelength
st
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the nonlinear state with linear theory at the leading edg
Predictions that rely on gradients between the trap a
globule at the edge of the tube, for example slowing of t
front at large distances [7,16], are beyond the scope of
measurements. We find that the measurements are qu
tatively consistent with a continuous bifurcation with lon
wavelength at threshold, though in the immediate vici
ity of the transition this behavior is masked by therm
fluctuations. Above threshold, quantitative measureme
of the front velocity, delay time, and wavelength compa
well with our linear analysis and the recent theoretic
predictions by GNPS.
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