VOLUME 79, NUMBER 6 PHYSICAL REVIEW LETTERS 11 AcusT 1997

Critical Dynamics in the Pearling Instability of Membranes
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We report quantitative measurements above threshold in the pearling instability of cylindrical
membranes. Induced by optical tweezers, the instability propagates outward from the laser trap
with well defined wavelength, and velocity. All measured quantities scale with the reduced tension
control parametere = (3 — 3.)/3.. A critical slowing down for initiation of the instability is
observed. The values of the velocity, wavelength, and delay time agree with marginal stability
and linear analysis. Measurements very close to threshold are strongly masked by thermal
fluctuations. [S0031-9007(97)03733-2]

PACS numbers: 87.22.Bt, 47.20.Dr, 68.10.—m

Dynamical shape transitions of membranes are inhemehind the front, but by the linear properties of this low
ently more complex than their static configurations. Theamplitude leading edge.
equilibrium shapes can be explained by variants of the Our major results are as follows.
Helfrich curvature energy alone [1,2]. The nonlinear dy- (1) We measure a constant velocity of propagation
namics, on the other hand, involve the interaction of theof the unstable pearling front that depends linearly on
curvature with the flow of the surrounding fluid, with the control parametee = (2 — X.)/2.. This is in
thermal fluctuations, and, as we now understand, with aagreement with the MSC analysis of Goldstein, Nelson,
effective tension as well [3,4]. Demonstrating that non-Powers, and Seifert (GNPS) [10].
linear dynamical methods can be quantitatively accurate (2) Critical slowing down is observed, with a delay
in such a system is therefore of some importance. time for initiation of the pearling that scales lik& with
Recently we reported a novel “pearling” instability in y = —1.0 £ 0.15. We propose an explanation of this in
cylindrical fluid membranes induced by application of op-terms of a linear response calculation.
tical tweezers [5]. The action of the tweezers is to pull (3) The selected wave vectors lie on a curve that rises
lipid material into the trap region, inducing an effective from below 0.5 (in units of the tube radius) at losvto
tension in the rest of the membrane. Upon tweezingabout 1.0 at highe, in better agreement with predictions
membrane tubes develop a Rayleigh-like peristaltic instaef the MSC [10] than with the fastest growing mode from
bility with a well defined wavelength, advancing into the linear theory [6].
thermally fluctuating tube. The origin of the pearling in- (4) Long wavelength, small amplitude propagating
stability has been identified as a competition between thavaves that are barely discernible immediately at onset are
destabilizing external tensioB induced by the laser and suppressed and replaced by larger amplitude, nonlinear
the bending rigidity of the membrane [5-8]. Above a  states with shorter wavelength.
critical tension,. a membrane tube becomes unstable to (5) The estimate of laser induced tension from elec-
long wavelength peristaltic modes. trodynamic considerations is confirmed by the measured
The difficulties in obtaining quantitative data from threshold intensity at onset of the instability.
the transition lie first in the experimental control of the (6) The agreement between the experiment and the
instability, and then in the thermal fluctuations whichlinear calculations extends up te = 20. Close to
mask its onset. The first problem was solved by usinghreshold, e = 1, the instability is indeed masked by
the laser tweezers [9] to controllably and graduallythermal fluctuations of the membrane.
increase the control parameter until onset was reached. Experiment—The quantitative measurements pre-
The second problem is deeper, since it essentially rulesented here were performed on tubes of stearoyl-oleoyl-
out measurements of the linear state, and without suchhosphatidylcholine (SOPC, Sigma) lipids in water with
information predicting or measuring nonlinear coefficients0.5 M glucose at room temperature. Unilamellar tubes,
and behavior is impractical. freely suspended between large lipid globules were pro-
We therefore exploited the fact that the instability duced as reported previously [5]. Tubes were hundreds of
propagates outward from the tweezing point, with aum long and with radii in the rang®y = 0.4—1.0 um.
leading edge that exhibits well defined velocity andThe optical tweezers setup is by now standard [12], except
wavelength selection [5,10]. Work on dynamical systemdor the use of an Ar laser. Laser power intensities ranged
has shown that the propagating solution often obeys &om 6 to 50 mW. The laser was turned on for a duration
criterion of marginal stability (MSC) [11]. The front is long enough to observe pearling but short enough to
then determined not by the high amplitude, nonlinear statprevent the tube from going into the highly nonlinear
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regime. That state is quite different, characterized bywhere C is an amplification factor set by the experimen-
isolated tense pearls that propagate along the thinned ot#l detection threshold. We found that the best way to
tube [5,13]. Our procedure also allows rapid relaxation ofidentify and follow this leading edge of the propagating
the membrane to a straight tube with little remnant effecfront was inspection by eye. This naturally adds some
on the tube. Theoretically, the laser induced tensiomoise to the data. Below threshold, and even at zero ten-
is given by S, = IA€D/cw? [6] where I is the laser sion, thermal fluctuations around the critical wavelength
power in the trapA€ = 0.23 is the dielectric difference are strongly enhanced and obscure the instability as it ini-
of lipids and water in the visible ranged) =~ 40 A is tiates (see discussion below). Our measurements are also
the membrane thickness,is the speed of light in water, limited by the field of view of the camera. As seen in
and wy = 0.3 um is the size of the trap. Similarly, the Fig. 1, this covers only about ten wavelengths on each
critical tension for pearling i€, = ;K/Rg [5], wherex  side of the trap. As a result, we are insensitive to effects
is the bending rigidity of the membrane=(0~'? erg for  involving changes in velocity over larger distances. Once
SOPC [4]). the initial front has passed we often saw an increase of
Experimentally, the onset of pearling occurred when théhe amplitude until it reaches a fully saturated nonlinear
laser intensity exceeded a critical intensitywhich we  state. This larger amplitude, shorter wavelength state is
measured to be. = 10 = 4 mW on tubes of radiug, = Still very different from the pearls discussed in [13].
(0.6 = 0.1) um. Using these values we obtal, = From the fit of X(r) = V(t — At), with t =0 the
4.5 X 107*erg/cm? andX,. = 4.2 X 10™* erg/cn? with time the laser was turned on, we extracted the front
errors of up t040% in both. The agreement between velocity V. Figure 2 shows a plot of the velocity as
the two estimates of the tension is a confirmation ofa function ofe. The velocity is scaled by the natural
the simple electrodynamic model for the laser-membran&elocity scale in the membrarig, = x/mR§ wheren =
interaction. Furthermore, it allows us to udeas a 0.01 P is the viscosity of water. Within the experimental
measure of. We then used th&, dependence ok, to  accuracy the velocity scales linearly with a prefactor
calibrate the value of, for tubes of different radii. This 0.04 = 0.01, where the error is statistical. In comparison,
gave us a measure ef= (I — I.)/I. = (2 — 2.)/2.. GNPS predicted this linear relation with a prefactor of
Propagation—Figure 1 shows a typical propagating 0.09 (in our units). Taking into account that measured
front. In these early stages the signal is close to th&alues for« vary by factors of order unity, depending
limit of optical resolution and barely perceptible aboveon the measurement technique, the agreement with GNPS
the thermal fluctuations. The instability becomes apparerig quite good. Measuring the front velocity is nontrivial
once its amplitude exceeds a threshold valgr) = ¢¢,  even numerically: GNPS measured a velocity which was
25% lower than the analytical (MSC) estimate, while
better resolution and improved front identification gave
a result very close to the MSC prediction [15].
Wavelength selectior-The propagating front is char-
acterized by a well defined wavelength which can be
extracted from pictures such as those in Fig. 1. The dimen-
sionless wave vectayR, is plotted in Fig. 3 as a function

FIG. 1. Propagation of a pearling front outward from the

illuminated laser spot fore = 6.5. Time from laser on in FIG. 2. Velocity of front propagationV scaled byV, =
seconds: (a).14, (b) 0.68, (c) 0.86, (d) 1.04, () 1.22. The  «/nR{ as a function of control parameter= (I — I.)/I. =
bar represents 1@m. The arrow gives our determination of (3 — X.)/2.. A linear fit (solid curve) gived.04 + 0.01 for
the leading edge. the slope.
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1.2 r x due to fluid entrainment [17], or stabilizing nonlinear
effects.
R, ! I B At slightly higher e we could indeed verify that long
0.8 il wavelengths tend to appear at onset [shown in Fig. 4(c)].
______ M ﬂj_l__ However, we could not measure teedependence, both
0.6 "7 Fastest growing - because the signal is on the same level as the thermal
. mode fluctuations of the membrane and because these states
045 7 are unstable, quickly supplanted by a shorter wavelength
o b | nonlinear state.
Measured “delay time.—From the fitX(s) = V(r —
0 ! ! Ar) in Fig. 2, the delay time\r from ¢ = 0 (power on)
0 5 e 10 15 to the beginning of propagation can be measured as well.

Figure 5 shows a log-log plot of the delay time, scaled
FIG. 3. Selected wave vectgR, as a function ofe. The by the natural time scale, = R3n/k, as a function of
theoretical prediction for fastest growing mode from the¢ Right near threshold, where a central bulge appears
dispersion relation of GNPS (dashed curve) and their MSG, .+ o propagationAs was taken as the time it took
wave vector correction [10,14] (solid curve) are also plotted. .
for the bulge to develop. A clear trend is observed, and
the best fit yieldsA¢/7, = (1000 = 200) X e~ 10015,
of € along with two theoretical results, the fastest growingTo check that the delay time scales withwe fitted
mode of the linearized dispersion relation and the selectedur data toA:r ~ 1/%” and obtained a worse fit (with
wave vector of the MSC. It is evident that the data cor-v = 1.4 = 0.2).
respond to smaller wavelengths than those predicted by Linear response theoryDespite the nonlinear nature
the linear theory. There is much better agreement witlof the pearling, the leading edge of the instability has a
the MSC prediction, especially for the moderate tensiormoderate amplitude and hence can be analyzed in terms
regime € = 5). We believe that it is nonlinear effects of the linear response [8,10,11]. We show here that the
that tend to shift the data at high tension values towardselocity calculation by GNPS using the MSC is in fact
shorter wavelengthgR = 1. equivalent to the linear calculation by Guret al. [8],

A salient feature of the mean field theory that haswhen extended to small values ef From this we
evolved to describe this transition is that pearling occurshall further obtain an estimate for the delay time at the
via a continuous bifurcation where the selected (or fastestxperimentally relevant regime of higher We consider
growing) wave vector at threshold is zero and increasean approximate form of the exact dispersion relation of
continuously withe. We found experimentally that close GNPS:
to threshold pearling cannot propagate out and only 3
develops a steady state “bulge” aboi radii long w(k) = r,?lbkz[—e(l — k%) — k* - kq, (1)
centered around the laser position; see Figs. 4(a) and 2 o ]

4(b). This bulge is a localized, steady state for as longvherek = gRo andb ~ 0.04. The initial perturbation,
as the laser is kept on. It may hint at the existencéVhich is localized around the laser trap, is modeled by
of additional physical mechanisms such as steady staté{z.? = 0) ~ 8(z). The perturbation therefore diffuses
tension gradients in the tube [7,13,16], pressure gradient&om the origin and is amplified by the unstable modes

10* ¢ —— ey
Atft
1000 ¢ E
100 | J
FIG. 4. Slightly above threshold long wavelengths appear as i
a steady state “bulge” centered around the position of the laser I ¢
trap. Here (a) is the unperturbed tube and (b) is after 43 I
seconds of tweezing. In (c) we show a different tube with 10 E— e

a long wavelengthyR, = 0.47 close to thresholde = 0.35, ! 10

corresponding to the lowest data point in Fig. 3. The arrows
in (c) mark the troughs of the peristaltic mode, and the brightFIG. 5. Delay timeAr scaled byr = R*n/« as a function
spot towards the left hand side of the frame marks the place abf e. The best fit (solid line) yielda\z/7 = (1000 = 200) X
operation of the tweezers. The bar represéftg.m. e 10=015,
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according to [8] the nonlinear state with linear theory at the leading edge.
| A272 z Predictions that rely on gradients between the trap and
u(z,t) ~ —exp(— 5 )exp(iko— + w0t>, (2) globule at the edge of the tube, for example slowing of the
Vi 4Ry wot front at large distances [7,16], are beyond the scope of our
where we used a saddle point approximation witrand  measurements. We find that the measurements are quali-
wo the wave number and the growth rate of the fastestatively consistent with a continuous bifurcation with long
growing mode, respectively, and = [—2wo/w"(ko)]'/>.  wavelength at threshold, though in the immediate vicin-
The leading edge follows the trajectory of constantity of the transition this behavior is masked by thermal
amplitudeu(z, 1) = e€: fluctuations. Above threshold, quantitative measurements
w C C of the front velocity, delay time, and wavelength compare
0 w( . . . .
7= ZXq/l i 2X<t - 2—) (3)  well with our linear analysis and the recent theoretical
@o @o predictions by GNPS.
Propagation is seen to begin after a delay tithe= We thank R. Goldstein, R. Granek, V. Lebedeyv,
C/2wo. Asymptotically, the front propagates at a con-F. MacKintosh, P. Nelson, Z. Olami, T. Powers,
stant velocityV/V, = 2wo/A. Inserting the theoretical S. Safran, and U. Seifert for fruitful discussions, and J.-P.
values forkg, wo, we see that close to threshokd,< 1, = Eckmann for raising the question of propagation. Work

the critical scaling is [8]V/V, = 0.2¢¥? andAt/7, =  supported by the BSF Grant No. 94-00190, the Klutznick
21Ce%. However, for the experimental regime,= 1 Foundation, the Minerva Center for Nonlinear Physics,
the critical scaling crosses over to and the Minerva Foundation, Munich.

1% At

— = 0.09¢; — =33Ce . (4)
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