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Periodic Chirality Transformations Propagating On Bacterial Flagella

Daniel Coombs,1 Greg Huber,2 John O. Kessler,3 and Raymond E. Goldstein3,4

1Theoretical Biology and Biophysics, Los Alamos National Laboratory, Los Alamos, New Mexico 87545
2Department of Physics, University of Massachusetts, Boston, Massachusetts 02125

3Department of Physics, University of Arizona, Tucson, Arizona 85721
4Program in Applied Mathematics, University of Arizona, Tucson, Arizona 85721

(Received 13 February 2002; published 23 August 2002)
118102-1
When a helical bacterial flagellum, clamped at one end, is placed in an external flow, it has been
observed that regions of the flagellum transform to the opposite chirality, and travel as pulses down the
length of the filament, the process repeating periodically [H. Hotani, J. Mol. Biol. 156, 791 (1982)]. We
propose a theory for this phenomenon based on a treatment of the flagellum as an elastic object with
multiple stable configurations. The simplest possible implementation of the model accurately reproduces
key features seen in experiment.
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FIG. 1. Cyclic transformation between normal (grey) and curly

that the left-handed (normal) state could alternate with
either of two right-handed states (semicoiled or curly 1)

(black) forms on a salmonella flagellum (length 23 �m). Time
runs left-to-right at intervals of 0.55 s. Courtesy of Hotani.
During chemotaxis of certain bacteria (E. Coli, for
example), the multiple, rotating helical flagella that
provide thrust to the cells exhibit remarkable dynamics.
They bundle and unbundle as their rotary motors episodi-
cally reverse rotational direction [1–3]. When its flagella
are bundled a bacterium moves linearly, but the disintegra-
tion of the bundle upon motor reversal creates a tumbling
event that effectively randomizes the cell’s orienta-
tion. These alternating modes of ‘‘run’’ and ‘‘tumble’’
enable the cell to sample different chemical environ-
ments, and give rise to the familiar chemotactic trajec-
tories [4].

A series of investigations [3] has shown that flagella take
on helical shapes of differing pitch, radius, and handedness
under differing mechanical and chemical conditions. In
particular, it has been observed [2] that the motor reversal
that initiates a tumbling event not only turns the flagella in
the opposite manner, but also initiates a chirality reversal,
eventually turning a left-handed helix that had been rotated
counterclockwise into a right-handed helix rotated clock-
wise, as viewed from its distal end. In a set of elegant
experiments, Hotani [5] studied detached Salmonella fla-
gella that were irrotationally pinned to a microscope slide
by one end, and found that a steady fluid flow of order
microns per second ( � 1 wavelength=s) past a flagellum
leads to a remarkable periodic chirality transformation
along the filament (Fig. 1). The left-handed helix develops
a growing right-handed domain at its upstream end. Once a
significant fraction of the helix is in the new state, the
upstream end reverts back to left-handed while the right-
handed domain travels downstream, disappearing as it
reaches the helix end. A new region of flipped chirality is
nucleated roughly as the preceding one reaches the end.
Remarkably, the process continues periodically, demon-
strating the generation of oscillations from steady forcing
within the low Reynolds number regime. Hotani observed
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depending on how the filament was attached to the glass.
Important recent work by Turner et al. [6] using fluores-
cently labeled E. coli flagella has shown that in vivo the
sequence of transformations is more complex than origi-
nally thought; for instance, the sequence normal ! semi-
coiled ! curly 1 ! normal is typically seen on a single
flagellum during one run-and-tumble cycle.

In explaining static polymorphism, Calladine [7] con-
ceived of the flagellum as 11 protofilaments of polymer-
ized flagellin, slightly twisted together similar to the
strands of a rope. Assuming that each strand may exist in
one of two states with different geometric properties, he
found 12 possible helical configurations that minimize the
elastic strain of the whole filament. Nine of these have been
seen experimentally [8]. His argument relies on the bista-
bility of flagellin itself, confirmed by recent crystallogra-
phy [9–12]. No theory has yet been advanced to explain the
dynamics of flagellar polymorphism.

Here we propose a theory for the dynamics of Hotani’s
observations, first in broad terms, developing ideas of
Hotani and Purcell [13,14], and then in a fully quantitative
way, modeling the flagellum as an elastic filament with
the underlying multistability described above. Our study,
part of a larger class of problems in the dynamics of
 2002 The American Physical Society 118102-1
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biofilaments [15–17], raises the possibility that flagella
conformations in vivo are associated in a self-consistent
manner with the flows induced by swimming.

Consider a rigid helix of radius R, pitch P, filament
radius a, and coiled length L held at z � 0 in a fluid
of viscosity � with velocity field U along the z axis, which
is the helix axis. The flow produces a tension and also
a torque. In a local drag model [18], the torque den-
sity is 
U, where 
 � �2�R2�k�=�P

2 � 4�2R2�1=2, �k ’
�?=2 � 2��=
ln�L=2a� � c� are the drag coefficients for
motions parallel and perpendicular to the filament, in the
slender-body limit, and c is an order-one constant [19]. If
the helix is static, the torque is maximum at the upstream
end, decreasing to zero at the free end: ��z� � 
U�L� z�.

Suppose now we have two concatenated mirror-image
helices. Purcell [13] observed that by cancellation of tor-
ques such a structure, sinking under its own weight in a
viscous fluid, does not rotate. More generally, any set of
concatenated helices in a flow has a piecewise linear torque
profile and the rotary stress at its fixed end is specified
entirely by the downstream configuration. In Hotani’s ex-
periment, that stress cycles in sign as pulses of oppositely
handed helices move down the filament. One infers that it
can alter the local monomer configuration and change the
local handedness of the filament at the fixed end. Yet, these
simple arguments do not explain the dynamics of poly-
morphism; for that, we must make reference to the local
elastic strains [20].

Let the filament be aligned approximately with the z
axis, with a shape �X�z�; Y�z�; z�with z 2 �0; L�. Imagine it
is first straightened and untwisted and a stripe is painted
along one side. In a twisted state, the stripe winds around
the filament with an angle ��z� [��0� � 0]. We approxi-
mate the bend and twist rates 
i [20] as follows, using
subscripts ‘‘z’’ to denote derivatives:

� i
1 �
2 � �Xzz � iYzz�e�i�; (1)


3 � 
 � �z: (2)

The elastic energy E of a flagellum is modeled byR
L
0 dzF�
1;
2;
�. The coarse-grained F incorporates

filament multistability, and for a given flagellum has min-
ima corresponding to locally stable states [7]. A simple
functional describing multistable chirality is [21]

F �
A
2


2

1 � �
2 �Q�2� �
�2

2

2

z � V�
�; (3)

where A is the bend modulus, Q is the spontaneous curva-
ture, and � imposes a front width. Multistability appears
through the minima of V. The monostable V�
� � k�
�
2�=P�2 describes a filament whose ground state is a helix
of pitch P. As a first step towards understanding in vitro [5]
and in vivo [6] studies, especially periodically nucleated
chirality fronts, we study a bistable model [21], where V is
a symmetric double well with minima at �2�=P. This
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describes mirror-image left- and right-handed helices,
separated by a barrier of height H.

The two chief unknown parameters of the model are H
and �. Using the drag estimated as above, Hotani deduced
the scale of torques acting on the pinned end of the flagel-
lum. That same procedure allows us to estimate H as the
work per unit length done by the torque acting through the
angle that untwists the filament halfway; H � ��2�=P�,
and � � 
LU�, where U� is the critical flow velocity to
initiate a chirality flip, or

H �
2�
LU�

P
: (4)

The methylcellulose solution used by Hotani has a viscos-
ity 2 orders of magnitude greater than that of water, while
the induced rotational frequencies of the flagella were less
by that same factor than those generated by the cellular
motors; the scale of torques in vivo and in vitro are com-
parable. Other experimental parameters [5] are L�
15 �m, P� 2 �m, �k � 1 g=cm s, and 
� 10�5 g=s.
Expressing U� as ~UU� �m=s, this yields H � 4�
10�8 ~UU� erg=cm. With U� a few microns per second, this
result is in line with an earlier discussion [21].

Once nucleated, the chirality front invades the flagellum
at some velocity v, changing the flagellum’s energy at a
rate ��
v, where �
 � 2�2�=P� is the difference in
twist rates between the two stable states. The power dis-
sipated scales as �?L�!R�2, where ! is the angular speed
of rotation of the filament downstream from the transition.
Geometrically, ! � �2�=P�v. Balancing these two
powers at the critical flow rate U�, we have

v ’
P

�P2 � 4�2R2�1=2
U�: (5)

Thus, the propagation speed at the onset of transitions
depends only on the geometry of the helix and the flow
rate, and is strictly less than the background flow. Our
result applies only to the invasion of the first poly-
morphic front into a filament of one handedness. Using
values of R � 1:0 �m and P � 2:0 �m, which we use
as our standard, we find that v� 0:30U�. There is no
experimental data for the behavior of the system near
onset. Figure 2 shows that the onset of fronts in nu-
merical experiments (described below) is in line with the
scaling result (5).

Moving beyond scaling results, we construct dynamics
of twist and bend by balancing elastic forces with transla-
tional drag and torques with rotational drag. Forces and
torques are found by functional differentiation of E with
respect to X; Y and �. We make here the simplifying
assumption that the fluid acts as a homogeneous drag in
the z direction; elsewhere we discuss perturbation of the
flow by the flagellum. Introducing  �z� � X�z� � iY�z�,
the long-wavelength equations of motion are

�?� t �U z� � �A� zz �Qei��zz; (6)
118102-2



FIG. 3. Filament configuration time series for flow speed close
to critical (U � 10 �m=s) with corresponding twist-rate (
)
plots. Time runs from top (t � 0 s) to bottom (t � 11:7 s).
Arrows indicate points at which the handedness changes. The
oscillations seen in the twist, while reminiscent of computational
artifacts (Gibbs phenomena), are real; they arise from a phase
mismatch between the actual and locally preferred pitch of the
filament.
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FIG. 2. Initial front velocity versus flow speed, comparing
numerical results (dots) and Eq. (5) (solid line). The minimal
flow speed for nucleation of fronts in the computations is
10 �m=s.
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�r�t � ��2�zzzz � V 00��z��zz � AIm�Qei� �zz�; (7)

where �r � 4��a2 is the rotational drag coefficient.
Natural boundary conditions are a fixed, stress-free left
end  �0� � ��0� � �zz�0� � 0 and  zz�0� �Q, with a com-
pletely free right-hand end:  zz�L� � ei��L�Q,  zzz�L� �
iQ�z�L�ei��L�, �zz�L� � 0, �2�zzz�L� � V 0
�z�L��.

Without intrinsic bends or flow, (6) reduces to the simple
elastic hyperdiffusion equation [22]. With intrinsic bends
but without flow, the stationary solutions of (6) and (7) are
of the form �0 � 2�z=P;  0 � Q�P=2��2�1� eiKz�,
where V 0�2�=P� � 0; a helix of pitch P, chosen to pass
through the origin. In the z direction, there are at least three
length scales: L� 15 �m, P� 2 �m, and the front width
we term %, resulting from a balance of the twist-gradient
energy with that of helix hand reversal: �2�zzzz �
�zzV 00��z�, or %� 2��=�P

�����
H

p
�. As previously discussed

[21], treating finite-size fronts as a perturbation of zero-
width fronts enables one to convert Hotani’s data on angles
between coexisting helical states into an estimate of front
width, with the result % ’ 100 nm. Combining this with
our value for H yields �2 ’ 4� 10�27 ~UU� erg cm3 ’
10�26 erg cm3, using typical flow rates.

Associated with the various length scales ‘ above are
time scales T�‘�. Bends relax on the scale TA�‘� �
�?‘4=A, and twist changes on two time scales, depend-
ing on whether axial rotation balances the twist-gradient
term (�r�t � �2�zzzz), giving T� � ‘4�r=�

2, or the twist
potential [�r�t � �zzV

00��z�], so TV � �2�‘�2�r=�HP
2�.

Relaxation thus occur on two scales: the inner scale % of
the front, with times TA�%� � 10�6 s and T��%� �
TV�%� � 10�8 s; and the pitch scale with TA�P� � 10�1 s,
T� � 10�3 s, and TV � 10�6 s. When the system is driven
away from equilibrium by a flow (initially introducing a
pure bending deformation), the initial response will be
through a twisting deformation. Subsequently, the slow
bending relaxation is towards the new twisted state ei�.

As discussed in detail elsewhere [23], this problem is
ripe for treatment with matched asymptotics, with an inner
region on the scale of the twist front and an outer region on
the scale of the helix pitch (or filament length). Here we
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scale on the bend time, filament length, and bending modu-
lus, setting  � L(, z � L), t � ��?L

4=A��, and V�
� �
Hf�
�, to obtain

(� � u() � ��()) � qei��)); (8)

-2�� � �w�)))) � hf00��)=L��)) � qIm�ei�(�
))�;

(9)

with the dimensionless flow velocity u � �?L
3U=A, spon-

taneous curvature q � QL, drag coefficient ratio -2 �
�r=�?L2, potential amplitude h � L2H=A, and twist-gra-
dient stiffness w � �2=AL2. The bending stiffness of bac-
terial flagella is not particularly well determined, but
estimating from that of the flexible hook gives A�
10�14–10�13 erg cm. Using this range, the dimensionless
parameters in (8) and (9) have the typical values u� 1–10
for flow velocities of �m=s, q� 10, -2 � 10�7, h� 10,
and w� 10�5. This shows that the fluid velocity necessary
to make an order-1 change in the shape of the filament is
indeed that seen in experiment.

We numerically integrated (8) and (9) for the parameter
values given above. The main features observed in
Hotani’s remarkable experiment are accurately captured;
initiation of a chirality reversal at the upstream end of a
pinned flagellum, growth and detachment of a pulse from
that end, and resetting of the chirality through torque
cancellation. The front propagation velocity was shown
already in Fig. 2, validating the scaling result (5), with a
minimum flow speed for the onset of polymorphism found
to be 10 �m=s, close to the measurement of Hotani (a few
�m=s). Below this, the helix unwinds slightly from the
preferred state and then ceases to move. At and above the
critical velocity, we observe (Fig. 3) nucleation, propaga-
118102-3



9 10 11 12 13 14

1

2

3

4

Applied Flow Velocity U (µm/s)

In
ve

rs
io

n 
Fr

eq
ue

nc
y 

(H
z)

1-2 fronts

2-3 fronts

>3 fronts

0

FIG. 4. Numerical results for inversion frequency and number
of domains vs fluid speed. Dots are numerically determined
inversion frequencies; lines separate regimes in which different
numbers of fronts exist simultaneously on the filament.
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tion, and resetting of domains. The speed at which a front
traverses the filament grows with the applied fluid velocity.
The frequency of front nucleation and the number of fronts
on the filament at one time increases nontrivially with the
flow speed (Fig. 4).

A detailed test of the predictions of this model re-
quires new experiments. We urge that Hotani’s experi-
ments be reproduced with, for instance, fluorescently
labeled flagella [6] and an optically trapped bead as an
anchor point. Using magnetic beads [24], the flagellum
may be rotated, permitting full examination of flagellar
responses to fluid drags and applied torques. It would
also be possible to observe the interaction between mul-
tiple flagella under imposed flows and torques, giving
insight into the bundling–unbundling transition in swim-
ming cells, although under extensional rather than com-
pressive circumstances. The insight gained here as to
how a steady Stokes flow generates oscillating helical
chirality may also find applications in micro-fluid-
dynamical devices.
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