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We investigate the behavior of the interface between two fluids in a two-dimensional flow driven by
surface tension. The geometry is chosen so that one can apply a variant of the lubrication approxima-
tion and so that the more-viscous fluid will have a tendency to change its topology by separating into two
masses. Simulations are used to show that, with appropriate initial and boundary conditions, this sepa-
ration can occur in a finite time. We particularly focus our attention at the pinch point, i.e., the space-
time point at which the width of the viscous fluid first goes to zero. The lubrication approximation used
contains a parameter p which measures the strength of the inertial forces. Since the fluid velocity
diverges as the pinch is approached, the behavior is qualitatively different for small p and for p=0.
Simulations and asymptotic analyses are used to isolate this difference. For p=0, at the pinch time there
is a region of space in which the width grows quadratically as one moves away from the pinch. The cur-
vatures, however, are different on the two sides of the pinch. In contrast, when p is different from zero,
the width rises nearly linearly with distance from the pinch.

PACS number(s): 03.40.Gc, 47.20.Ky, 47.15.Hg

I. INTRODUCTION

In a previous paper [1], we described the behavior of a
Hele-Shaw [2] cell in the lubrication approximation. Fig-
ure 1 shows a Hele-Shaw cell setup. This cell is a quasi-
two-dimensional system in which two fluids, which we
will simply call air and water, are confined to the narrow
space between two closely spaced parallel glass plates.
The water has a much higher viscosity than the air. The
water undergoes a flow which is driven by pressure gra-
dients. The pressure variations are produced by surface
tension and the varying curvature of the interface. We
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FIG. 1. Setup of the problem solved in this paper. Givenisa
sketch of the thin neck. Here the neck is symmetrical. A
schematic picture showing the system setup and boundary con-
ditions is given. The heavy lines are walls which separate the
two fluids. The length L is much greater than length W. In this
case we can equivalently imagine that there is a slip wall on the
plane of symmetry. Our variable is & (x,1).

are interested in asking how a mass of water can divide
into two disconnected pieces. In [1], we argued that just
before breakup there would be a thin bridging region
which could be described by a variant of the lubrication
approximation. We then looked at how the bridge could
get narrower and narrower and finally pinch off at infinite
time.

In this paper we are concerned with pinch-offs that
occur at finite time. The form of the hydrodynamic flow
in the bridge is described by analytical arguments and
computer simulations. In one limit, we compare the
asymptotic behavior near the pinch with a matched
asymptotic expansion.

Later in this section we derive the appropriate form of
the lubrication approximation [6] to describe the thin
bridge. The approximation takes into account inertial
effects since flow through a narrow pinch tends to pro-
duce sufficiently high velocities to have a qualitative
significance. With inertia, the approximation is a pair of
nonlinear differential equations for the velocity and thick-
ness of the material in the bridge. If the inertial parame-
ter, called p, is set to zero, the approximation reduces to
the one used in the previous paper [1]. Section II details
the specific models to be studied and describes the numer-
ical methods used. Two particular situations with finite-
time touchdown are studied using simulation in Sec. III,
one with p=0 and one with a small value of p. The re-
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sults differ qualitatively from one another. The final sec-
tion of the paper presents asymptotic analyses which de-
scribe and, in part, explain the numerical results.

In the quasi-two-dimensional Hele-Shaw system, the
gap between the two glass plates is so thin that the veloci-
ty of water is quite parallel to the plates. On these plates,
no-slip boundary conditions are realized, and the water
flow is considered to be in a viscosity-dominated or low-
Reynolds-number situation. Under these conditions, we
assume that the velocity profile in the direction perpen-
dicular to the plate is a parabola everywhere. From this
we conclude that the viscosity term in the Navier-Stokes
equation is proportional to the depth-averaged average
velocity parallel to the plates, v. In Eq. (2) below we also
replace other terms related to velocity in the Navier-
Stokes equation by this average velocity to retain approx-
imately the effect of inertia. After proper scaling, v
satisfies

pv,+(v-V)v)+v+Vp=0, (1

where the pressure p is presumed to depend only upon
the coordinates x,y along the plates and p is a parameter.
Later this equation is used in cases in which the Reynolds
number is not always small because we hope it will give
us qualitatively the correct picture of the interface dy-
namics of our system. The previous Hele-Shaw model is
regained when p=0. Nonzero p corresponds to a case
where inertial effects cannot be ignored. For simplicity
we assume that both the viscosity and mass of the air are
negligible. Then the pressure within the air may be con-
sidered to be independent of position [3].

An experiment in a Hele-Shaw cell was performed re-
cently and indicates that droplets do break up in finite
time [4], though it is not clear how important a role is
played by the actual three-dimensional nature of the cell.
In this paper we will not try to examine the details of this
experiment; instead we will investigate whether, under
the simplifications we have just made, the thin neck of a
droplet in the Hele-Shaw cell will be able to break up in
finite time.

The change in topology of the fluid in a Hele-Shaw cell
was studied recently by Shelley, Goldstein, and Pesci [5].
They considered a situation in which the development of
the singularity was driven by gravitational forces which
result if the cell is tilted instead of horizontal.

A. Derivation of lubrication approximation

Further simplifications can be made since the width of
the fluid neck is very thin. A standard lubrication ap-
proximation [6] will be applied to this thin neck region.
We will limit ourselves to symmetrical neck cases since
we believe they are physically more stable. For such a
symmetrical neck, one variable h(x,t) is enough to de-
scribe its shape, where x describes distance along the
symmetry line, ¢ is the time, and 24 is the thickness of the
interface at position x.

The lubrication approximation is based on the assump-
tion that the fluid system we are studying is a viscosity-
dominated system and the interface is very thin so that
we can treat the pressure as a function of x only. Thus
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the flow velocity will mainly point in the x direction and
its x component, which we denote by v, satisfies

plv,+wvv,)+v +p,=0. ()

Therefore the total current of particles j is velocity times
height

j=vh, 3)
and the continuity equation gives
9,h +93,j=0. 4)

The last simplification is that we will replace the curva-
ture « in the x,y plane by h,, because we are studying a
very thin neck:

Pxx b
K=————F>=h, .
(1+h2)"

This approximation enables us to connect the pressure in-
side and outside of the viscous fluid by

p=P(t)—rh,, , (5)

where P(t) is the pressure of the air.
If we put together Egs. (1)-(5) and make proper rescal-
ing, we will get the following set of equations:

h,+(vh), =0,
plv, +vv,)+v+p, =0, (6)
p+h,—P()=0.

When p=0 (inertia is neglected), we can replace this by
h,+(hh,,, ), =0. 0))

Henceforth we limit ourselves to studying the models
defined by Egs. (6) and (7).

B. Zeros imply singularities

For our models a neck breakage implies that there are
singularities in the solutions in the sense that some
derivatives blow up. The following argument shows that
this is the case. The argument uses the system from Eq.
(6), but since it applies even when p=0, the result is valid
for (7).

Let x,;;,(#) be the position of the minimum of 4 (x,?) in
x. The minimum value of h at time ¢ is
A pin(8)=h(x;,(2),t). From Eq. (6) we know that

d

*‘Eln(hmin )=—Wi(1),
If h;, approaches zero at any finite time ¢, the x deriva-
tive of v must have a very strong singularity—the in-
tegral of W(t) up to ¢, must diverge. Thus a zero in
h (x,t) implies a singularity in the x derivative of v.

W(t)=v,(xpin(tht) . (8)

II. SIMULATIONS AND LOCAL ANALYSIS

Imagine that we have a common of fluid of finite thick-
ness and gradually increase the outside pressure to
squeeze (see Fig. 2). There is no doubt that at late time
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FIG. 2. P(1), pressure field outside of the viscous fluid.

the minimum of thickness 4 (x,?) of the neck will always
decrease if we squeeze it very hard. In a previous paper
[1] we found that for some initial conditions, the thick-
ness h(x,t) of the neck goes to zero as time tends to
infinity; here we study two cases in which 4 (x,¢) reaches
zero in finite time.

A. Models

Bearing the physical picture of our system (see Fig. 1)
in mind, we impose the following boundary conditions
for our equations. We consider % (x,?) in a finite interval
—1<x<1. At the two end points, we demand that
h(x1,t)=1 for all the time. The reference points of pres-
sure are also chosen at the two ends points —x ==1; we
set the pressure inside the water to be zero at these two
positions. The pressure in the air is kept to be P(z).
From Eq. (5) we see that the boundary conditions can be
stated as follows:

h(£1,0=1, h(£1,0)=P(2) 9)

for t=0. Here P(t) is a dimensionless version of the
pressure in the air. If P >0, the air is pushing on the wa-
ter. There is a tendency for the column of water to thin.
If P<O, the column has a tendency to bulge at the
center. Note that there is no separate boundary condi-
tion for v. For the cases we study in this paper P(¢) will
be gradually increased to a positive constant and kept at
that constant for the rest of the time.

The initial conditions used here are that 4 (x,0) is in a
nonsingular equilibrium state and the initial velocity field
is zero everywhere. Specifically, we take P(0) to be in the
interval (0,2) and define 4 and v initially by

__Pw©)

h(x,0) (1—x2), v(x,0)=0. (10)
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B. Simulational methodology

The numerical method used in our simulations is a
conventional finite-difference method. It is an implicit,
two-level finite-difference scheme based on central
differences except for the convective term vv,, which is
upwinded. For the p=0 case we compared simulation re-
sults obtained from the finite-difference method with
those of the finite-element method in the previous paper
and found that they agreed quite closely.

We consider the case of solutions to Eq. (6) that are
symmetric about x =0. Symmetry in the initial condi-
tions is preserved by the evolution, so 4 (x,t) and p(x,?)
are even and v(x,?) is odd about x =0. This symmetry
allows us to work only on half the interval. Discretize
the interval [0,1] by the N mesh points,

0=x,<x,< "+ <xy=1.

At each computational time the height and pressure
h(x,t) and p(x,t) are approximated by arrays h; and p;,
i=1,...,N, and the velocity is approximated by v;,
i=1,...,N—1. The h; and p; values are associated
with the point x;, while v; is the computed velocity at the
center of the interval (x;+x;,,)/2. These associations
are indicated in the following picture:

z; v; Tit1
h; hiy1
p: Pi+1

Adopt the following notation:
AX; (1= Xiv17%i »
X=X 41 %),
Ax;=X; (1 Xi—(1/2) »
hi v =31 th),

(11)

Ohi v =hiv1—hi—1)/BX; 112y
82h; =(3h; 4(1/2~ 3R (1) /Bx;

The term vv, is approximated using an upwinded
difference quotient for %(v2 ), where the upwind direc-
tion is based on v. This approximation is denoted
18,(v?) and is defined as follows:

2 2
5 (v?) Wi =09/ X iv )~ Xi+am) 0SY; .
(v°);, = . (12
U v ) /(X 1 (12 Xi—1/2)) Otherwise .
For simplicity we describe the difference scheme in
space first and later indicate the time discretization. We
replace the equations in (6) as follows:

(h)e +(hi w1 20i —hi— (12005 —1)/BX; =0, (13)
pL(w),+8,(0*);14v;+8p; 4 (1,2=0, (14)
p;+8%h,—P(1)=0. (15)

The boundary conditions are imposed by setting hy =1,
Pn =0, and using the symmetry at x =0.
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The above set of differential-algebraic relations is
discretized in time using a simple two-level scheme. In
advancing from time ¢ to time ¢ +dt the time derivative
terms are replaced by difference quotients involving the
solution at the old time level (time ¢) and the as yet un-
known solution at the new time level (time ¢ +d¢). The
other terms are evaluated using a weighted average of the
solution at the two time levels; we typically used a weight
of 6=0.55 on the advanced time level and 1 —6=0.45 on
the old time level.

The fully discrete system is a set of nonlinear equations
at each time level, and these equations were solved using
Newton’s method. The Jacobi matrix has all of its
nonzero entries very close to the diagonal if one chooses
an appropriate order for the computational unknowns,
and the solution of the linear equations in Newton’s
method is not a dominant expense.

The time steps used in the solution of the discrete
scheme were chosen dynamically so as to control several
aspects of the simulation. When any constraint was
violated the step was rejected and tried again with a
smaller step size. If all the constraints were easily being
met (and had been so for several steps) the step size was
increased by about 20% on the next step. There was a
constraint based on local time truncation, and another
which assured that no step was accepted on which the
minimum of 4 decreased by more than 10%. There was
also a step constraint which assured that the correction
on the first iteration of Newton’s method was a very
small fraction of the change over the step, where the ini-
tial guess at the change was the change over the previous
step, corrected for any difference in df’s. This last con-
straint allowed us to conduct most of our experiments us-
ing only one Newton iteration per time step.

The spatial grids used were highly graded so that they
were very fine near the singular points and less fine in
other parts of the region. The location of the fine grid
was a manual process which involved examining a se-
quence of finer and finer meshes. The meshes used had
locally constant Ax;’s and the Ax;’s were increased or de-
creased by a factor of 2 at any point where they were
changed. (In fact all the Ax values used were negative
powers of 2.)

III. RESULTS OF SIMULATION

In this section we discuss the numerical simulation re-
sults in detail. We observed different behavior for the
no-inertia case and the inertial case; these two cases are
treated in separate subsections.

A. Finite-time singularity in no-inertia case

We present evidence of finite-time singularity in the
solutions of Eq. (7). We have seen finite-time singularities
with several different initial conditions but will exhibit
one case in detail.

The initial condition we used in our simulations for
no-inertia case is the following:

h (x,O)=1— letlal (1 2)

—x°), (16)
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where P; ;i is a constant less than 2.
The outside pressure field P(¢) changes with time as
shown in FIg. 2. The specific formula for the pressure is

Pinitial+(Pﬁnal _Pinitial )(3—‘2S)S2 if 0<S < 1

PO=1p.  ifs>1. an

where s =¢/0.05.

In the case we want to examine now, P .=,
P4 .1=5. (The only change from our previous study [1] is
that earlier we used Pjj;a = Pgna =35.) In Figs. 3 and 4
we plot h(x,t) at different times. As time increases, A
changes its shape from initially a parabola with a
minimum at x =0 to a shape with two minima setting
symmetrically on both sides of x axis. Dramatic things
happen to k() (see Fig. 5). In contrast to our previous
cases, now the minimum of A (x,t) decreases to zero in
finite time. At first, the minimum of A (x,t) lies at x =0,
hpin increases and reaches a maximum around
t,—t=0.05. After t,—t~0.06 the minimum of 7 moves
away from the center. Thereafter h;, goes down to zero
monotonously. Around ¢,—¢~0.0008, h,; decreases
very fast. The dropping then becomes slower but the
curve continues to go down and reaches zero at
t,~0.076 326. It is found that after ., —¢~0.0008 the
solution of our system begins to show self-similar proper-
ties.

The behavior of the curve for ¢ very close to ¢, or after
t.—t=~0.0008 is plotted in Fig. 6. The ¢, is adjusted as a
parameter _to get the straightest line in the plot of
(t, —1)/V h iy versus logyo(t, —t). Our matched asymp-

100 T T T T
1072 | 4
———time = 0.00
+——time = 0.05
< ———time = 0.06
———time = 0.07
+——+time = 0.075
= time = 0.076
107* + g
10—5 ! $ 1 1 L
0.0 0.2 0.4 0.6 0.8 1.0

FIG. 3. Behavior of h(x,t) in the case where p=0 and the
pressure field outside of the water is smoothly increased from
% to 5. h becomes singular. Logarithm of the solution for
h(x,t) is shown for selected early times. Only the region
0<x <1 is shown because the curves are symmetrical about

x =0.
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FIG. 4. An enlargement of the small-4 region of Fig. 3
(p=0), carried to later times.

totic solution (see below) suggests that this curve should
be a straight line. Our best power-law fit of 1/ A,
versus ¢, —t is checked in this figure, too. The ratio be-
tween (z,—¢)?! and V'h,;, goes to a constant when
t—t.. Limited by the round-off error of our computer,
we cannot approach ¢, very closely, with ¢, —t ~ 10~ ap-
proximately the limit we can reach by doing double-
precision calculations on a SUN computer workstation.
Around ¢, —t ~ 10~ we begin to see oscillations in A
Our best power-law fit is

min*

O T T T T
0.015
-4 o010} b
r_’%
0.005 |
£
Ny
o -8 F  0.000 .
g 0.00
_‘]2 . 4
_16 " L " n 1
-9 -7 -5 -3 ~1

tog,, (t.—t)

FIG. 5. Plot of logyohmin Vs logio(t.—t) for p=0. Here
t.~0.076 326. The inset shows early behavior of A ;,.
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10 (tc_t)1.21/hmm05

(tc—_t)/hmino.5

loQIO(tc_t)

FIG. 6. Two ratios are plotted against log;(t, —¢) for p=0.
One is R, =(t.—t)/V h min- The other is
R,=10(t,—t)"*' /A h ;. Here t. is adjusted to get as big as
possible a range of straight line in the R, plot. Notice that over
a big range R is very close to a straight line and R, approaches
a constant when ¢t —7,.

hminN(tc __t)2.42i0.05 , (18)
which is a good approximation in the range
10765 ¢, —t S 107 But a better fit is

t,—t ]
B ~ (tc—t)/logw . , (19)
s

as t—t,. Here t,=0.0007 is a time scale indicating when

the self-similar solution becomes the dominant term in
hmin‘

There are several other interesting quantities in this
problem which deserve careful study. Let us examine
them one by one.

The first one is the current at the minimum point of
h(x,t), Jpin(£)=j(x;,(2),2). From Fig. 7 one can im-
mediately find that now J;,(¢) goes to zero in finite time.
When the outside pressure becomes constant (¢ =0.05),
the current of the water gradually forms a new minimum
around x_;, and j at this new minimum goes to zero in
finite time (see Fig. 7). This feature is certainly different
from what we observed in our previous studies, for
which, in the pinch region, j went to zero only at infinite
time. The zero in j will be a crucial fact in understanding
our solutions. Next we performed a power-law fit to find
the relation between J,;,(¢) and ¢, —¢. Here we use the 7,
we got from Fig. 6. The fit tells us that as t—1., the
asymptotic relation between j and ¢, —t is

Jin(1)~ (2, =)0 (20)
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FIG. 7. Two ratios are plotted against log,(¢, —t) for p=0.
One is R3=(t,—t)/J min, Where J;, is the current j at x;,.
The other is R, =10(t, —t)"°/J s t. is the same as that in
Fig. 6. Notice that over a big range R; is very close to a
straight line and R, becomes approximately a constant when

t—t,.

The prediction from the matched asymptotic solution is
that J,;,(¢) should scale like (¢, —t)/log o[ (. —1)/t;] for
very late time. Both descriptions of J;,(¢) are examined
in Fig. 7 where Ry=(t,—t)/J pin and
R,=10(¢t,—t)"1° /J . are plotted against log(z, —1). If
the power-law fit is correct, R, should be a constant. If
the matched asymptotic solution is right, we shall see R,
be a straight line in Fig. 7. From Fig. 7 one sees that our
numerical results agree with the prediction given by the
matched asymptotic solution over a wider range than just
a simple power law.

Another interesting quantity is the width of pinch re-
gion £(z). It is defined as the distance between two points
where £ is twice as big as h_;,. These two points sit on
different sides of x_;, and serve as markers for the pinch
region. A power-law fit and a fit suggested by the
matched asymptotics are illustrated in Fig. 8. Our data
suggest that roughly

g(t)~(tc_t)l.30i0.05 , (21)

and that £ can be better described by a prediction of the
matched asymptotic solution,

t.—t
—_— ] . (22)

§(t)~(tc—t)/log10 t

The third interesting quantity is another length scale in
this problem, the width of an intermediate region L (1)
It is related to the current j (see Fig. 9). It can be mea-
sured in the following way: find the minimum of the
current (for late time it is at x_;,). From this minimum
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2 t
(tc_t)LJO/E
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log,,(t.—t)
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FIG. 8. Plot of Rs=(t,—t)/& and R¢=30(t,—1)"° vs
log,o(z. —1) for the no-inertia case at late times (p=0).

search the right (left) side to find the first point where j is
twice as big as J;,; the distance between this point and
the minimum is L T(¢) [L ~(¢)]. These two points set the
limits of the intermediate region. Again we illustrate fits
graphically; we plot V/z,—t /L% and (z,—t)*%/L*
versus log,q(¢, —t) in Fig. 10, where power 0.5410.05 is
our best fit from a log-log plot of L™ versus ¢, —t. Figure
10 indicates that this fit works for 10765z, —¢ S10™*

0.20 T T
= time = 0.05
0.16 + +———+time = 0.06 b
—stime = 0.07
—time = 0.075
—— time = 0.076

0.08 b

0.04 +

0.00

0.0 0.1 0.2 0.3 0.4 0.5

X

FIG. 9. The current j =hh,,, at various times for the case
p=0 and the pressure field outside of the water is smoothly in-
creased from 42’ to 5. It forms a local minimum at Xy, lately.

The current does go to zero at finite time.
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25 T T

-6.0 -55 -5.0 45 —4.0 -35
log,q (t.—t)
FIG. 10. Plot of V&t —t/L* and ¢ —t**/L*t vs

log;o(2, —1) for the no-inertia case at late times (p=0).

The asymptotic analysis predicts a power 0.5, so our
numbers agree with the prediction.

The fourth interesting quantity is x;,(¢), the x value
at which h (x,t) attains its minimum. The plot of x;, (¢#)
versus ¢ is very close to a straight line which implies that
when ¢t —t,, the minimum of 4 (x,t) moves at a constant
velocity.

The simple asymptotic behavior of the pinch region
and intermediate region is shown in Figs. 11 and 12. Fig-

16.0 . '
¥
13.0 + T
L +time = 0.07600 M
, «time = 0.07610 »
L *time = 0.07617
oo L ® »time = 0.07625 H |
. . «time = 0.07632 x
E * * e
£ b‘ *
= T z
7.0 + :.- 3‘ ]
». &
3 N
e :
i - 4 .
4.0 "
ﬂ% /
o \ M .
-2.0 —-1.0 0.0 1.0 2.0
(X_Xmin)/g

FIG. 11. Late-time shape of the pinch region for the case
where p=0 and the pressure field outside of the water is
smoothly increased from % to 5. Notice that the shape of the
pinch region is not symmetric about its minimum. The x axis is
(X —Xmin)/€ and the y axis is & /h ;.
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5.0 . . :
B
[+ y
0. +time = 0.07610 S
. xtime = 0.07617
. s time = 0.07625 .
. - time = 0.07632 *
30 s .
N +a
- x: +"
- .
* -
& <
2.0 . N ﬂ
* +
* 2
*, £
Y &
%, r
y‘,& #"‘
1.0 . 1 S kk.t"“ I L
-2.0 -1.0 0.0 1.0 2.0

(x=Xmin) /L7 0r (x=Xp) /LT

FIG. 12. Late-time shape of the intermediate region for the
case where p=0 and the pressure field outside of the water is
smoothly increased from —‘g to 5. Notice that the shape of the
intermediate region is not symmetric about its minimum. The x
axis is (x —x ) /LT and the y axis is j /J nin-

ure 11 plots h/h,;, versus (x—xp; )/§.  For
—2ESx —x;, S2& we see a beautiful superposition of A
from our late-time data. Similar superposition for the in-
termediate region is demonstrated in Fig. 12. There
j/Jmin is plotted as a function of (x —x,;,)/LE for
several different late times.

At t,, the lowest diverging x derivative of h(x,t) is
h.... The shape of the interface for [x —x;,|>>¢&
around x; (z.) is very close to two parabolas, which are
tangent to the x axis at x;,(¢.) (see Fig. 11). The pres-
sure field inside the water, or P(¢)—h,,, is shown in Fig.
13. This figure shows that within the pinch region the
pressure jumps from one value to another.

B. Finite-time singularity in inertial case

The initial conditions used in this case are the same as
Eq. (16). The pressure field outside the water is changed
with time according to Eq. (17) (see Fig. 2).

We have tried several different p in our simulations.
The one we are going to discuss in detail is p=0.005.
Figures 14—19 show us the overall plots of 4 (x,t) versus
x,p(x,t) versus x, and v(x,t) versus x both for early
times and late times. Again A (x,?) reaches zero in finite
time. Now both the velocity and the pressure field
diverge in finite time. We begin our discussion with the
A min(2) versus the ¢ plot (see Fig. 20). The minimum of
h(x,t) does not change very much until it reaches
t~0.01. The behavior of h_; (¢) for t <0.05 is quite
close to that in the p=0 case. Then it bounces back and
goes down. Once again h; (¢) drops to zero monoto-
nously in finite time. The critical time extrapolated from
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FIG. 13. Pressure field p or P(t)—h,, at various times. This
is obtained from a p=0 simulation with initial condition Eq.
(17) and the pressure field outside of the water is smoothly in-
creased from 22’ to 5. Notice p itself does not diverge. It has a
jump around x ~0.28627479. . . when t —¢,.

our data for the p=0.005 case is ¢, =~0.079 81. Figure 21
exhibits how h;,(?) changes with ¢ when t—t.. Figure
21 can be fit via

_ 110.7661£0.050
hmin(t)~(tc 1) ’

when ¢t — ¢, from below.
Good power-law fits are found in the behaviors of
X min(8)—Xxin(2,) versus (¢, —t) (see Fig. 22); J .. (2)

10° . . T T
107" - 1
< «
—— time = 0.000
—— time = 0.050
+———time = 0.060
= +———+time = 0.070
107° F = time = 0.078 1
10“3 . 1 I 1 1
0.0 0.2 0.4 0.6 0.8 1.0

X

FIG. 14. Plot of h (x,t) at early times for the p=0.005 case.
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1 0—4,5

10760
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FIG. 15. Plot of h(x,1) at late times for the p=0.005 case.

versus (t,—t) (see Fig. 23); &(¢) versus (z,—t) (see Fig.
24); p(xin(t)) versus (z,—t) (see Fig. 25); and
V(X min(2),t) versus (t,—t) (see Fig. 26) when t—t¢..
Define

B ()~(t,—0)"", (23)
ED~(t,—1)?, 24)
X min(£) = X pin(8)~ (2, — )%, (25)
I min(8)~ (2, — 1), (26)
V(X pin(8),8)~ (2, —2) "¢, (27)
60 T T B T T
—— time = 0.00
«——time = 0.02
i
- —a e = . -
4.0 *———vtgme = 0.06
= time = 0.07
:ﬁ; 2.0 b .
Q.
0.0
_20 " 1 — 1 1 1
0.0 0.2 0.4 0.6 0.8 1.0

FIG. 16. Plot of p(x,t) at early times for the p=0.005 case.
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FIG. 17. Plot of p(x,t) at late times for the p=0.005 case.

P(X pin(8))~—(t,—1)7°, (28)

when ¢ —t,. Our numerical results can be summarized in
Table 1.

It is worth pointing out the difference of the shape of
the pinch region between the two cases. When p=0, we
always see that when L >>|x —x,,;,(¢)| >>& the pinch re-
gion is formed by two parabolas tangential to the x axis.
This is no longer the case. Figure 27 shows the shape of
the pinch region for the p=0.005 case. The &; (£,) is the
distance from x;, to the first point on its left (right) side
where h is twice as high as A ;. From this figure we find
that the right half of the pinch region is very close to a
parabola, but not the left half. The shape of the left half

30.0 T T

— time
— time
— time
= time
—— time
= time

20.0

I n

co0000

000000

NNOOW RO
1

10.0

v(x,t)
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_‘]0.0 1 1 1 1
0.0 0.2 0.4 0.6 0.8 1.0

X

FIG. 18. Plot of v (x,t) at early times for the p=0.005 case.

X

FIG. 19. Plot of v (x,?) at late times for the p=0.005 case.

TABLE 1. Table of critical indices for the p70 case.

Quantity Index Numerical value
A omin(2) vy 0.766+0.050
&(t) v, 0.713+0.050
X min(te) =X min(2) V3 0.684+0.050
T min () € 0.446+0.050
V(X min(2),2) & 0.320+0.050
P(xnin(2)) [ 0.642+0.050
0020 T T T T
0.015 | B
£ 0.010 B
0.005 | 4
0.000 L . .
0.00 0.02 0.04 0.06 0.08

t

FIG. 20. Plot of A, as a function of time for the p=0.005

case.
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FIG. 21. Two ratios are plotted against log,(t.—¢) for

p=0.005. One is R,=(t,—t)/V'hy,. The other is
R,=10(t,—t)"*' /v h;,. Here t, is adjusted to get as big as
possible a range of straight line in the R plot. Notice that over
a big range R, is very close to a straight line and R, approaches
a constant when t —1,.

of the pinch region is close to a linear function when
(X min —X) R &

This difference can be easily found from the plot of the
pressure field inside the water, or A, — P (t), too. Figure
25 provides clear evidence that the pressure field inside
the water diverges when x ~0.3353.

_3.0 LA T T L T
= —40 I
x
A
:
>
o
3 —5.0
_6'0 L | - 1 S
-9.0 -8.0 -7.0 -6.0 -5.0
log,q (t.—t)

FIG. 22. Plot of x,;, as a function of ¢ at late time for the
inertial case (p=0.005).
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FIG. 23. Scaling of the current when p70 (p=0.005). The
current at the pinch point J;, (#) is plotted vs ¢, —¢.

IV. SCALING ARGUMENT
AND MATCHED ASYMPTOTIC SOLUTION

In this section we will first discuss an asymptotic solu-
tion of the p70 case, then construct a matched asymptot-
ic solution which catches essential features we observed
from simulations of the no-inertia case.

l0g,q (t.—t)

FIG. 24. Scaling of the width of the pinch region for
p=0.005 case. The width of the pinch region § is plotted
against z, —1.
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FIG. 25. Scaling of the absolute value of the pressure at the
pinch point for p70 case (p=0.005). |p(xi(2))] is plotted vs
t.—t.

A. Asymptotic analysis for p7#0

Next we turn to a rough asymptotic analysis which de-
scribes the situation in which p is not zero. We start
from Egs. (6) to get

h,+(vh), =0,
(29)
plv, tov, )tv=h,, .

Let us assume a similarity solution centered about the

4-0 T T T
3.0 + 7
=
}
x
=
° .
o .
L2 .
2.0 * b
1‘0 1 1 1 .
-10.0 -8.0 —-6.0 —4.0 -2.0
log,g (t.—t)

FIG. 26. Scaling of the water velocity at x;, for p=0.005.
The water velocity at x i, v(xmin(2),2) is plotted vs ¢, —t.

(x=%m) /& or (x=%u)/¢,
FIG. 27. Plot of pinch region shape for the p#0 case
(p=0.005).

point a =x_; (¢) with typical velocity u =v(x;,(?),7)
and length scale §. We write

h(x,t)=h_. (DH(7) , (30)
vix,t)=u(t)V(n), (31)
x—a
= 2 (32)
e

For simplicity take x;,(¢.)=0, and assume that a /§=r
is independent of time to get

hmin _é u _
mH g(77‘*‘?‘)f1,7'|' g(V.[:[)n—() ’

. (33)
&y, & Yty - Dmin
VTRVt TV, e

We are interested in the behavior that these equations im-
ply for large values of ) so some terms can safely be ig-
nored. To get a balance in these equations, neglect the
V /p term, drop r, and assume that
h_.

¥__1 o (34)
p&u
These results agree well with the scaling indices displayed
in Table I. Then if we use the notation of Table I, we can
write

—vH +v,nH, +(VH),=0,
LV vV, +VV,=H, .

(35)

[The rescaling of n that is implicit in the use of (34)
without coefficients could leave a coefficient on H 7 DUL
this term will be very small for large 7.]

To make further progress we must assume that V be-
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comes small for large values of 7); as ¢ approaches ¢, the
coefficient of V becomes very large, thus we need V to be
small so that v will be moderate far from the singular
point. For general values of the indices in Eq. (35), V will
grow linearly with 7. To avoid this unwanted outcome,
we must assume that for large 1, V is small and then no-
tice that H,,, will be zero. Then H will be quadratic in
n. We cannot see how to get balance with indices close
to those in Table I if H grows like %%, so we assume that
H is linear in 7; specifically,

H=n+An"+ --- , (36)
with p <0. Then, to make V small we assert that
VIi=Vy, (37)

so that the first equation of (35) now gives
VH = E—vl AnP !
so that we obtain
V= P—lenP+0(n2P—1)+0( ¥-2) (38)

which is small, as desired. In writing (38), we set a con-
stant of integration equal to zero. The substitution of
(38) into the second equation of (35) gives a linear growth
of H for large 1 only if

S+vp=0. (39)

The growth 7” can only be obtained if the last correction
term in (38) is of order »* 3 so that we find

p=—1. (40)
Put Eqgs. (34), (37), (39), and (40) together and obtain
Vl = Vz V3 % §= % . (41)

These results roughly agree with Table I. The disagree-
ment may be due to logarithmic terms, which could be
incorrectly treated by the analysis above. However, the
difference is not so large as to rule out the values in (41).

B. Matched asymptotic solution for p=0 case

We are looking for a similarity solution to Eq. (7)
which holds in the neighborhood of the pinch point. To
find this kind of solution, define a new variable g (x,¢) by

h(x,t)=g.(x,t), (42)

and write Eq. (7) as

8 T 8x8xxxx =0 . (43)

We analyze the solution to Eq. (43) by looking at three re-
gions.

(i) A very narrow pinch region in which 4 (x,t) is very
small but positive. In this region, centered at x equal to
a(t)=x..(t), we assume that, to leading order, the
current in this region, j(x,t)=—g,(x,t), depends upon
time but is independent of x. This assumption will be the
basis of an asymptotic expansion in this inner region.
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(ii) Two somewhat wider regions bordering on the
pinch region. The region which lies at higher (lower)
values of x than the pinch is described by the upper
(lower) of a pair of signs, + (—). In these two regions,
the lowest-order terms in g (x,#) will be cubic in x, hence

g~A.(x—a).
Then, as we have discussed before,

P—h, =P—314,

is the pressure, assumed almost constant, in each of these
regions. This assumption of constancy will permit an
asymptotic expansion for these regions which can then be
matched [7] to the solution near the pinch.

1. Pinch region

Start with the pinch region. Assume that the pinch re-
gion has a characteristic size J (¢), where J goes to zero at
the critical time. (It turns out, as we see below, that J is
the current.) Let a(¢) be the center of the pinch region
and assume a solution of the form

g(x,0)=K(1)+J3G(n)+a,J*GV(n)
+J'J4G(2)(77)+ e, (44)

Here we have written terms which successively decrease
in magnitude when the similarity variable

n=(x—a)/J (45)

is of order unity and when 7 is close to the critical time
for pinch off ¢,. Our basic expansion parameter is

e=t,—t. (46)

We assume that J goes to zero as € goes to zero. Our
assumption that the leading-order x-dependent term is
the one of order J3 is the assertion that the pressure,
which is P —g,.., is finite at pinch off. Substitute expan-
sion (44) in Eq. (43) and retain lowest-order terms, assum-
ing that the time derivatives (J?), and (aJ), both are
much smaller than unity. The resulting equation is

IG G oy = — K, - @n

Here the right-hand side of Eq. (47) is the total current of
fluid through the pinch region. For definiteness, assume
that this current is positive for times earlier than the time
of pinch off, and decreases toward zero at pinch off.
Then J and —K, are each small quantities. To get a #-
independent equation, define the scale factor J by

J=K, . (48)

Thus, J has the additional interpretation of being the
current through the pinch. From Eq. (48), Eq. (47) be-
comes

GG =1 - (49)

Physically, we would like to see a situation in which
the pressure changed abruptly within a distance of order
J around the pinch, and then settled down in the two in-
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termediate regions in two different constant values. To
achieve this, we need the leading terms in the asymptotic
expansions of the G as 77 goes to £ o to be of the form

G:Aj:773 .

Using Eq. (49), we can then calculate higher-order terms
in the form

G=A4.m’—nlog,(|n])/6 4 . +0(q[log,u(In])]?) .
(50)

The quantities 4, in Eq. (50) must be positive in order
that g, be positive.

To match onto the intermediate regions, a higher-order
analysis is required, which takes into account the effects
of the time dependence of J and of a. The substitution of
Eq. (44) into Eq. (43) gives equations of motion for G!)

and G?). These, respectively, obey the two fourth-order
inhomogeneous linear equations
(1) 1,2 =
Gy TG /GL=1, (51)
(2) (2) ya2 — _ _
Gogn TG /G, =—(3G —1G,)/G, . (52)

For large values of Inl, these quantities have asymptotic
expansions which are polynomially bounded in |7|. The
expansions are performed by assuming that the right-
hand side of each equation gives the leading contribution
to the fourth derivative As a result, the expansions start
off

GVt /41+0(Plog o I9])) ,
G(Z)_>_n410g10(!17|)/43214§: .

Put this all together and discover the approximate
value, for large 7, of g (x,7). We write the result in terms
of the coordinate y, which measures separation from the
pinch point y =x —a (¢). The result is that, for y of order
J,

g(x,0)=A,y3+{ —JyZog,o|y| /7) /6 4. +K (2)
+a,y*log,( |yl /T) /43243 )+ - -
(53)

The grouping of terms in Eq. (53) points toward the next
regions in which the y3 terms will be the leading
behavior, while to logarithmic accuracy, all the remain-
ing terms will be of the same, higher, order.

2. Intermediate regions I

Next, we would like to fit this onto solutions which
would be correct for larger values of |y|. The first term in
(53) describes a pressure which is constant except for a
jump at y =0. Assume that this term dominates the solu-
tions for larger |y|. Specifically, take the intermediate re-
gions to have characteristic distance variables

u=y/L%(1), (54)

with L*(¢) being the width of each of these regions. We
expect that L*(¢) will go to zero at the critical time. In
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our work, we assume that L *(z) [or rather a power of
L*(t)] forms appropriate expansion parameters for the
intermediate regions, when p=y /L™ is of order unity.
Specifically, in this section, we write an asymptotic ex-
pansion which we expect to be valid in some range of u,

L <<|pu| <<o(|logoL]) . (55)

We write down an equation of motion for R (u,L%),
defined as

g, t)/(LEP=A, > +R (u,LY), (56)
in the form
Ry =(—L,L)3+L3;, —ud,)R/(3Ap*+R ) +a,L .
(57

Here, the £ symbols have been dropped temporarily to
achieve a relative simplicity of notation. In addition, we
expand R as

Ry (u,L*)=L*F (u)+(LEPFP )+ -+ . (58

To get a simple expansion for R, assume that the correc-
tion term R, in the denominator of Eq. (57) is a small
correction, and all other terms as written contribute to
the lowest order. Then Eq. (57) becomes

(Fy) (=L L*)4—pd,)F, /3 A p*+a, . (59)

mppp

All terms in this equation will be of the same order of
magnitude if we choose the following quantities to be
constants, independent of time: (i) the velocity of the
pinch point a,; (i) the leading-order pressures in these re-
gions, P —3! 4 ; and (iii) the time derivative of the length
scale squared. To express this constancy we use the nota-
tion

a,=u , (60)
LEL*=-34, , (61)

with u being independent of time. Note then that the
solution for a and L is

a=ue, (62)

L*=1/64 €. (63)
Thus, the lowest-order result, Eq. (59), becomes

aftFi—(4—-,ua#)Fi/,u2=u . (64)

Since Eq. (64) is linear we can analyze its solutions
rather fully. Notice that it is a fourth-order inhomogene-
ous ordinary differential equation, with irregular singular
points at infinity and zero [8]. One solution to the inho-
mogeneous equation is simply uu*/4!. A more general
but equally simple solution involves one undetermined
constant of integration, and is

FlL(u)=up*/8+y  Fy(u) . (65)

Here, vy, are constants of integration, yet to be deter-
mined, and F, is the simple solution to the homogeneous
equation
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F (p)=p>+2u*/81=p2f,(u?) . (66)

The subscript 2 is intended as a reminder that the lowest
power of p in this expression is u2. The f, notation will
be convenient when we discuss the other three solutions.
Later we shall discuss the additional more complex solu-
tions to the homogeneous equation which start off with
third, first, and zeroth powers of u. However for now, we
should see what we can do to fit the solution expressed in
Egs. (65) and (66) onto Eq. (53), which expresses the form
of g in the pinch region. Use Egs. (55), (60), and (61) to
reexpress

g(x,t)~ A y3+(u+2y  y*/8+y (LH? . (67)

The first terms on the right-hand side of Eq. (67) each
have direct analogs in Eq. (53), so we cannot learn very
much from them. However, the last term in Eq. (67) is
quite interesting. It should be compared with the corre-
sponding term in Eq. (53),

—JyZog |yl /1) /64 .

Analyze this term for p of order unity, where to loga-
rithmic accuracy it is

—JyHog,o(L*/J) /64, .

If we say that there should be an order-of-magnitude
equality between these two y2 terms and postpone the
question of whether a full match can be achieved, then
we should argue that

Jlogo(LE/D)~y (LEV~e~(t,—1)
so that
J~elog e ! . (68)

The logarithm in Eq. (68) is a correct estimate of the or-
der of logo(|y| /J) when y is of order L*. Now we have
to see to what extent we can make the analysis stand up
to a more full treatment.

3. Intermediate regions I

We now try to construct a more careful analysis. Re-
turn to the solutions of the homogeneous form of Eq.
(64). This is a fourth-order equation. We have one solu-
tion. Assume that these are expressed as an asymptotic
expansion about y =0, with lead terms of order u?, with p
being 3, 1, and 0. Expressed as expansions in powers of
U, these solutions are

Fy(pw)=p3f(u?), (69)
Fl(,u)=y,fl(,u2)+y3loglo( luDf3(u?) (70)
FO(,u)=f0(y,2)—/,Lzloglo( ) fo (1) 71
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Our notation with the f’s is helpful because in each case
the f has a power-series expansion in its argument, start-
ing with a constant term. It is easy to see that these f’s
are entire functions of their arguments. Note the loga-
rithms in Egs. (70) and (71). These logarithms will be
used to match corresponding logarithms in Eq. (53). The
general solution to Eq. (64) is the sum of the solution (64)
plus arbitrary coefficients, which may differ in the two re-
gions, times the terms in Egs. (69)-(71). However, these
solutions can show exponential blowup as p goes to +co.
To see this property, write

Fi(p)=exp[X;(n)],

and assume that X; goes to infinity at the appropriate
infinity for u. Then, Eq. (64) implies that X; (abbreviated
as just X) obeys, in the asymptotic limit
1
3—_ 1
(X,)= w

so that for large |ul
X = _% 21rp/3|#t2/3 , (72)

where p =0 or 1 or —1. The general solution to the in-
homogeneous equation is then of the form of the sum of
Eq. (64) (which contains the constant of integration )
and a sum of three terms which are obtained as linear
combinations of the solutions Egs. (65) and (66) and are,
respectively, proportional to

exp{-—%l,u|2/3] ,
exp{2(1—V30)|ul??},
exp{2(1+V30)|ul?7} .

At first sight, one might argue that the exponential
blowup of the latter two terms means that their
coefficients should be zero, while the decay of the first of
these three means that it would not contribute for large
values of |u|. However, when u gets large the solutions
F, get large and thus the expansion of Eq. (57) breaks
down. Hence, we can only employ this analysis when |,u|
is not too large, say of order log,,L or smaller. In this re-
gion it is just fine to use all four terms in the expansion
and write

g =4,y +F, (WL}
=A.y + L (up /Aty Fy(p)+asFo(p)
+BLF (u)+a Fy(p)} . (73)

To match onto the pinch region, take the small u form of
each of the F'’s. The result is

g =(A.+&,LE)3+F (LY +(u +25, )y*/8+w, yA(L*)?

+ay {(LE)*+2(L*)2yUogo(y /L) +y*ogo(y /LE) 76} +BL(LT)y (1+u?) . (74)
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When we fit this to the outer solution of Eq. (53), we
need as many arbitrary coefficients as we can get, each of
which does not go to zero as ¢ goes to t,. However, there
is nothing in Eq. (53) which corresponds to the 8 term in
Eq. (74), so that coefficient is set equal to zero. The
remaining terms all fit onto the pinch region when we
make the correct choices of the fitting coefficients. The
only unexpected feature is that we cannot choose a to
be of order unity. Instead we must choose this coefficient
to be small (but only logarithmically so)

ai""[loglo(e_l)]—l . (75)

With this choice, the terms in y2, yZlog,,(y), y* and
y*logo(y) all work out perfectly. The @, L~ is absorbed
into a redefinition of 4. The constant term a,(L*)*is
just right to fit a K for which

K,~J~¢€/log;o(e 1),
so that
K ~€?/logiole N~ar(LH)*. (76)

We have already seen that these estimations agree well
with the simulations.

V. CONCLUSIONS

In this paper we have studied the droplet-breakup
problem in the Hele-Shaw cell. Lubrication approxima-
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tions are used to derive equations for the width of a thin
neck between two masses of the fluid. These equations
can be used to describe the singularity-development pro-
cess. Starting from smooth initial flows which are
different from those in previous studies [9-12] we have
observed finite-time singularity in the solutions of these
partial differential equations. For p#0 or the inertial
case, when t—t,., we have observed terms with power-
law behaviors which are explained by a simple scaling ar-
gument. For p=0 or the no-inertia case, and for the case
where we have finite-time singularity, when ¢ is very close
to the critical time ¢,, matched asymptotic similarity
solutions are found for the shape of the interface in the
pinch region and the intermediate region. Comparison
between the simulation results and theoretical universal
shapes are made and the agreements are very satisfying.
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