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The growth of icicles is considered as a free-boundary problem. A synthesis of thin-film fluid
dynamics, atmospheric heat transfer, and geometrical considerations leads to a nonlinear ordinary
differential equation for the shape of a uniformly advancing icicle, the solution to which defines a
family of shapes which compares very favorably with natural icicles. Away from the tip, the solution
has a power-law form identical to that recently found for the growth of stalactites by precipitation
of calcium carbonate. This analysis thereby explains why stalactites and icicles are so similar in
form despite the vastly different physics and chemistry of their formation.

The formation of patterns in snow and ice has been
a source of fascination since antiquity. As early as
1611, Johannes Kepler1 sought a physical explanation
for the beautiful forms of snowflakes. While attention
has been lavished upon snowflakes ever since,2 their win-
try cousins, icicles, have remained largely ignored. The
basic mechanisms of icicle growth are well known,3−5

but there are few mathematical analyses describing their
forms. For instance, icicle surfaces are typically covered
with ripples a few centimeters in wavelength, but only
recently6−8 has theoretical work begun to address the
underlying dynamic instability that produces them. On
a more basic level, the familiar long, slender form of ici-
cles has not been explained quantitatively. As one can
see in Figure 1, icicles and stalactites – the iconic struc-
tures found in limestone caves9 – can bear a striking re-
semblance, particularly insofar as they evince a slightly
convex carrot-like form that is distinct from a cone. Of
course visual similarity does not imply mechanistic simi-
larity, but there is reason to think that a common mathe-
matical structure might link the two phenomena.10 Each
involves an evolving solid structure enveloped by a thin
film of liquid through which is transported a diffusing
field (CO2 for stalactites, latent heat of fusion for icicles).
While the thickness of the film on stalactites limits the
growth rate by precipitation of calcium carbonate11−13,
the growth rate of icicles is typically limited by heat
transport through the surrounding air; we shall see, how-
ever, that the distinction between rate-limiting factors is
(surprisingly) irrelevant to the asymptotic shape.

Recent work14,15 examining stalactite growth as a
free boundary problem established a novel geometrical
growth law based on the coupling of thin film fluid
dynamics and calcium carbonate chemistry. Numeri-
cal studies showed an attractor in the space of shapes
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whose analytical form was determined and found to com-
pare very favorably with that of natural stalactites. Is
there an analogous ideal shape for icicles? It is tempt-
ing to view icicle growth as a classic Stefan problem, as
explored extensively for solidification from the melt.16

There, growth is controlled by a quasi-static diffusive
field and the growth rate is determined by a gradient
of that variable. However, such systems generally lack
the thin flowing film that separates the developing solid
from its surroundings, and thus they do not conceptually
match icicle growth. Exceptions occur, for instance, in
the presence of surface premelting.17 Other models have
been considered3−5 which are in good agreement with
respect to the dependence of growth rates upon such fac-
tors as temperature and flow rate, but are not formulated
as true free-boundary problems. One context in which
progress has been made is the formation of “ice stalac-
tites,” hollow tubular structures formed below sea ice as
salt is rejected during solidification,18,19 but these for-
mations are quite distinct from typical icicles. Here we
suggest an approach to the problem of icicle growth which

FIG. 1: Icicles and stalactites. (a) A collection of icicles.21

(b) Stalactites in Kartchner Caverns, Benson, AZ.
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synthesizes geometrical principles, heat flow in the water
and atmosphere, and thin-film fluid dynamics to arrive at
the existence of an ideal growing shape for icicles which
compares well with observations. Interestingly, the shape
far from the tip has the same mathematical form as that
recently derived14,15 for the growth of stalactites.
We first consider the water layer flowing down the sur-

face of a growing icicle The volumetric flow rate Q over
icicles is typically3,20 on the order of tens of milliliters per
hour (∼ 0.01 cm3/s), and icicle radii are usually in the
range of 1− 10 cm. To understand the essential features
of the flow, consider a cylindrical icicle of radius r, over
the surface of which flows an aqueous film of thickness h
(Fig. 2). Since h ¿ r over nearly the entire icicle sur-
face, the velocity profile in the layer may be determined
as that flowing on a flat surface. Furthermore, we expect
the Reynolds number to be low enough that the Stokes
approximation is valid. If y is a coordinate normal to the
surface and θ is the angle that the tangent vector t̂ makes
with respect to the horizontal, then the Stokes equation
for gravity-driven flow is νwd

2u/dy2 = g sin θ, where g
is the gravitational acceleration and νw=0.01 cm

2/s is
the kinematic viscosity of water. Enforcing no-slip and
stress-free boundary conditions at the solid-liquid and
liquid-air interfaces, the thickness is

h =

(

3Qνw

2πgr sin θ

)1/3

. (1)

Using typical flow rates and radii, we deduce a layer
thickness that is tens of microns and surface velocities
us ' (gh

2/2νw) sin θ below several mm/s, consistent with
known values,3,18 yielding Re = 0.01 − 0.1, well in the
laminar regime as anticipated. At distances from the
icicle tip comparable to the capillary length (several mil-
limeters), the complex physics of pendant drop detach-
ment takes over and the thickness law (1) ceases to hold.
If the icicle is growing, the volumetric flux Q must vary

along the arclength s of the icicle as water is converted

FIG. 2: Features of a hanging axisymmetric shape used in
development of the theory. The flowing water layer, not to
scale, is much thinner than the rising thermal boundary layer.

to ice. With the icicle profile described by r(z) (Fig. 2)
and the growth velocity normal to the ice at any point
being vg, Q varies along the surface as

dQ

ds
= 2πrvg , (2)

the positive sign on the right-hand-side reflecting the
choice of origin at the tip, with s increasing upward.
We seek a uniformly translating shape,10,11 for which

every point on the icicle must grow at a rate such that
vg = vt cos θ, where vt is the growth velocity of the tip,
usually millimeters per hour (∼ 10−4 cm/s).3,18 Given
the complexities of droplet detachment,3 the tip velocity
here will be considered a parameter of the theory. Sub-
stituting into (2) and using dr = ds cos θ, one finds that
an exact integration may be performed, yielding

Q = Qt + πr2vt , (3)

where Qt is the flow rate at the icicle’s tip. This result
neglects evaporation.
Turning to heat transport, note that the curvature of

the icicle surface is sufficiently small everywhere that the
Gibbs-Thompson correction21 to the melting tempera-
ture Tm is negligible. Thus, the temperature of the wa-
ter at the ice-water interface is well-approximated as Tm

along the entire icicle. Furthermore, since most icicles
possess an unfrozen liquid core,3−5 heat does not travel
radially outward from the center of the icicle, as it would
if the core were solid and the temperature inside were
decreasing over time. Hence, any flux of heat present
at the ice-water interface consists solely of latent heat
being removed as the water changes phase. The issue
of advective heat transport by the flowing water is ad-
dressed by considering the Peclet number Pe = ush/αw,
where αw ' 10

−3 cm2/s is the thermal diffusivity of wa-
ter. Using our previous estimates for the flow velocity us

and thickness, we find Pe ' 0.1 − 1, indicating that en-
ergy transport down the icicle is generally subordinate to
conduction of heat across the water layer. The heat flux
across the water, then, is Fw = κw(Tm−Ti)/h, where κw

is the heat conductivity of water and Ti, the temperature
at the air-water interface, is found below.
Once the heat has traversed the water layer, it must be

transported through the air surrounding the icicle. As is
well-known, objects warmer than their surroundings of-
ten create rising thermal boundary layers in the adjacent
atmosphere due to the buoyancy of the heated surround-
ing air, a fact incorporated into an earlier study.4 Sim-
ilarity solutions for the coupled Navier Stokes and heat
transport equations in the Boussinesq approximation can
provide the basis for understanding this boundary layer.
For instance, for a flat, vertical, isothermal plate, so-
lutions show that the rising warm air is confined to a
boundary layer whose thickness δ as a function of the
vertical coordinate z is22

δ = C

(

ν2
az

gβ∆T

)1/4

, (4)
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where C is a dimensionless constant that depends on the
Prandt number of air (0.68) and is of order unity, νa '

0.13 cm2/sec is the kinematic viscosity of air, β ' 3.7×
10−3 K−1 is the volumetric coefficient of expansion for
air, and ∆T is the temperature difference between the
plate and the ambient temperature Ta far away.
We may use Eq. 4 to approximate the boundary layer

thickness for our icicle for the following reasons. Firstly,
using a temperature difference of ten degrees Kelvin, one
finds a boundary layer thickness on the order of a cen-
timeter, much greater than the thickness of the water
layer on a typical icicle, but less than a typical icicle ra-
dius, so that flatness is approximated. Secondly, the peak
velocity of the warm air in the layer is

up '
2

3

√

g∆Tβz , (5)

around 5−10 cm/s, much greater than the downward wa-
ter velocity, so the no slip condition used in the flat plate
analysis is nearly attained. Thirdly, the atmospheric heat
flux can be written as Fa = κa(Ti − Ta)/δ, where κa is
the thermal conductivity of air, differing from the exact
form only by the multiplication of an order one constant.
If we equate this heat flux with that through the water
layer, one finds that Ti is given by

Ti = Tm − (Tm − Ta)
hκa/δκw

1 + hκa/δκw
. (6)

On account of the vast difference in scale between h and
δ mentioned above, the ratio hκa/δκw ' 0.01, so Ti is
lower than Tm by only 10

−3 − 10−2K. Hence, from the
view of atmospheric heat transport, the icicle is essen-
tially isothermal at Tm. Finally, we account for the non-
verticality of the icicle’s surface by simply replacing g
with g cosφ in Eq. 4, a reasonable action given the slow
variation of φ away from the icicle’s tip.
At this point, then, we are in a position to derive a

formula for the growth velocity vg of the icicle’s surface.
We divide the heat flux as calculated through the atmo-
spheric boundary layer by the latent heat of fusion per
volume L of water (0.334 J/cm3) to obtain the velocity

vg =
κ∆T

LC

(

g cosφβ∆T

ν2
az

)1/4

= vt

(

` cosφ

z

)1/4

, (7)

where vt is, again, the velocity of the tip and ` is a char-
acteristic length of about 10−1 cm. To find the equation
governing the icicle profile, we scale the variables r and z
both by `, defining new variables ρ and ζ and enforce the
condition for uniformly translating shapes vg = vt sinφ.
After rewriting trigonometric functions in terms of the
slope of the profile ρ′, one finds the equation

(ρ′)
2
ζ1/2 =

[

1 + (ρ′)
2
]3/4

. (8)

Expanding for small ρ′, as is valid away from the tip,
gives an equation which can be exactly integrated to yield

ρ =
4

3

(

ζ1/2 +
3

2

)

√

ζ1/2 −
3

4
. (9)

Note that this shape far from the tip goes as ρ ∼ ζ3/4

and therefore the thickness of the thermal boundary layer
relative to the icicle radius scales as δ/r ∼ ζ−1/2 and the
two-dimensional boundary layer calculation becomes ever
more satisfactory further up the icicle, albeit slowly.
Before discussing the resultant shape in greater detail,

we use a slightly different method to arrive at the same
solution, this time calculating the growth velocity using
the heat flux through the thin water layer. We first make
the approximation that the temperature difference, ∆Tw,
between Tm and Ti is constant. Of course, this is not valid
near the tip of the icicle; however, it can be seen through
a synthesis of (1), (3), (6), and (9) that for large ζ,

∆Tw '

(

2νw`v
4
t

g

)1/3
L

κw
. (10)

So, we may perform a similar calculation to the one above
by using the relation for Fw and Eqs. 1 and 3 to give

(

dζ

dρ

)3

+
dζ

dρ
−
3

4

γ + ρ2

ρ
= 0 , (11)

where γ = Qt/(πvt`
2). This differential equation sup-

ports power-law solutions in the asymptotic limit of large
ρ and ζ ′, for the balance of terms is then [ζ ′(ρ)]3 ' ρ,
and the shape is given approximately by

ζ '

(

3

4
ρ

)4/3

. (12)

FIG. 3: Ideal shape of an icicle and comparison with natural
icicles. (a) Ideal shape in dimensionless units of radius and
height. (b)-(d) A selection of natural icicles,23 each with the
appropriately-scaled ideal form overlaid.
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As must be the case, this asymptotic form is the same
seen in Eq. 9 above, completing the logical circle. As
promised, this asymptotic power law is identical to that
found in the case of stalactites14,15, finally explaining
their strikingly similar appearances. Furthermore, if we
evaluate this asymptotic form at some point on the sur-
face (ρ∗, ζ∗) where the aspect ratio (length/width) is
A = ζ∗/ρ∗, then the shape can be rewritten as ζ/ζ∗ '
(ρ/ρ∗)4/3, a universal, self-similar form.
This ideal shape compares well with typical shapes of

icicles. As an example, Figures 3b-d show overlays of
the theoretical shape with images of natural icicles.23 All
that is necessary to make the comparison is to adjust the
magnification and compare aspect ratios as discussed ear-
lier. In fitting these, we have ignored the region just near
the tip, where the droplet detachment obviously rounds
out the shape. The excellent agreement obtained, in
the absence of any material fitting parameters, suggests
strongly the validity of this analysis. Systematic, con-
trolled experiments on the growth of icicles are needed
to check in detail various aspects of the theory, such as
the significance of depletion and the assumption that a
traveling shape is indeed an attractor of the dynamics.

Clearly, the scenario presented here, by which a free
boundary dynamics for icicle growth is derived, contains
a number of simplifications and approximations whose
quantitative accuracy merits further study. Chief among
these is the use of a boundary layer theory which as-
sumes a flat and vertical surface. Both of these asump-
tions are justifiable only far away from the icicle’s tip.
A full numerical study would likely prove most illumi-
nating. We expect the analysis presented here to serve
as a basis for further understanding of ice structures,
including axisymmetric perturbations such as the rip-
ples so commonly found on icicles, as well as strongly
non-axisymmetric forms such as the sheets which are
analogous to “draperies” in limestone caves. In this re-
gard, recent work on solidification on surfaces of arbitrary
curvature24 may prove quite relevant.
We thank J.G. Dash, S.R. Morris, and J.S. Wettlaufer

for important discussions, and an anonymous referee who
emphasized the importance of heat transport through the
convective boundary layer. This work was supported in
part by NSF ITR Grant PHY0219411.

[1] J. Kepler, A New Year’s Gift, or On the Six-Cornered

Snowflake (Clarendon Press, Oxford, 1966).
[2] K.G. Libbrecht, The Snowflake: Winter’s Secret Beauty

(Voyageur Press, Inc., Stillwater, MN, 2003).
[3] L. Makkonen, L. “A model of icicle growth,” J. Glaciol-

ogy 34, 64 (1988).
[4] K. Szilder and E.P. Lozowski, “An analytical model of

icicle growth,” Ann. Glaciol. 19, 141 (1994).
[5] J. Walker, “Icicles ensheathe a number of puzzles: just

how does the water freeze?,” Sci. Am. 258, 114 (1988).
[6] N. Ogawa, and Y. Furukawa, “Surface instability of ici-

cles,” Phys. Rev. E 66, 041202 (2002).
[7] K. Ueno, “Pattern formation in crystal growth under

parabolic shear flow,” Phys. Rev. E 68, 021603 (2003).
[8] K. Ueno, “Pattern formation in crystal growth under

parabolic shear flow. II,” Phys. Rev. E 69, 051604 (2004).
[9] C. Hill and P. Forti, Cave Minerals of the World , (Na-

tional Speleological Society, Inc., Huntsville, AL, 1997)
[10] C.A. Knight, “Icicles as crystallization phenomena,” J.

Crystal Growth 49, 193 (1980).
[11] W. Dreybrodt, “Chemical kinetics, speleothem growth

and climate,” Boreas 28, 347 (1999).
[12] G. Kaufmann, “Stalagmite growth and palaeo-climate:

the numerical perspective,” Earth Plan. Sci. Lett. 214

251 (2003).
[13] D. Buhmann and W. Dreybrodt, “The kinetics of calcite

dissolution and precipitation in geologically relevant sit-
uations of karst areas. 1. open system,” Chem. Geol. 48,
189 (1984).

[14] M.B. Short, J.C. Baygents, J.W. Beck, D.A. Stone, R.S.
Toomey, and R.E. Goldstein, “Stalactite growth as a free

boundary problem: A geometric law and its Platonic
ideal,” Phys. Rev. Lett. 94, 018501 (2005).

[15] M.B. Short, J.C. Baygents and R.E. Goldstein, “Stalac-
tite growth as a free-boundary problem,” Phys. Fluids
17, 083101 (2005).

[16] D.A. Kessler, J. Koplik, and H. Levine, “Pattern selec-
tion in fingered growth phenomena,” Adv. Phys. 37, 255
(1988).

[17] J.S. Wettlaufer and M.G. Worster, “Dynamics of pre-
melted films: frost heave in a capillary,” Phys. Rev. E
51, 4679 (1995).

[18] S. Martin, “Ice stalactites: comparison of a laminar flow
theory with experiment,” J. Fluid Mech. 63, 51 (1974).

[19] D.K. Perovich, J.A. Richter-Menge and J.H. Morison,
“The formation and morphology of ice stalactites ob-
served under deforming lead ice,” J. Glaciology 41, 305
(1995).

[20] N. Maeno, L. Makkonen, K. Nishimura, K. Kosugi and
T. Takahashi, “Growth-rates of icicles,” J. Glaciology 40,
319 (1994).

[21] J.S. Rowlinson and B. Widom, Molecular Theory of Cap-

illarity (Clarendon Press, Oxford, 1982).
[22] H. Schlichting, Boundary Layer Theory (McGraw-Hill,

New York, 1979).
[23] Icicle images: www.artlebedev.com/posters (Figs. 1a and

3b); smartacus.org/albums/tahoe/icicles.jpg (Fig. 3c);
cyren.org/Mambo/images/stories/icicles.jpg (Fig. 3d).

[24] T.G. Myers, J.P.F. Charpin and S.J. Chapman, “The
flow and solidification of a thin fluid film on an arbitrary
three-dimensional surface,” Phys. Fluids 14, 2788 (2002).


