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Recent work on several distinct multicellular organisms has revealed a hitherto unknown type of
biological noise; rather than a highly regular arrangement, cellular neighborhood volumes, obtained
by Voronoi tessellations of the cell locations, are broadly distributed and consistent with gamma
distributions. We propose an explanation for those observations in the case of the alga Volvox,
whose somatic cells are embedded in an extracellular matrix (ECM) they export. We show that the
simplest models for stochastic ECM generation in one and two dimensions are point processes whose
Voronoi tesselations are demonstrably governed by gamma distributions. These results highlight a
universal consequence of intrinsic biological noise on the architecture of certain tissues.

Some of the simplest multicellular organisms have an
architecture consisting of tens, hundreds, or thousands
of cells arranged within an extracellular matrix (ECM),
a network of proteins and biopolymers secreted by the
cells. They often adopt regular geometric forms: the
linear chains and rosettes of choanoflagellates [1, 2], the
sheets or spheres of green algae [3], and the cylinders
of sponges [4]. While the arrangement of cells within the
ECM appears regular, recent work [5] has revealed a hith-
erto undocumented form of disorder found by assigning
neighborhoods to the cells through a Voronoi tessellation
based on the cell centers. Strikingly, both the lab-evolved
organism “snowflake yeast” [6] (a ramified multicellular
form found by repeated rounds of selection for sedimen-
tation speed) and the green alga Volvox carteri display
broad distributions of Voronoi volumes accurately fit by
gamma distributions. These observations are central to
an understanding of a general question in developmen-
tal biology: How do cells produce structures external to
themselves in an accurate and robust manner?

Volvox (Fig. 1(a)) is one of the simplest systems to
understand the statistical fluctuations in the generation
of an ECM. The adult consists of ∼ 103 somatic cells
embedded at the surface of a transparent ECM, a thin
shell ∼ 500µm in diameter and ∼ 30µm thick; the or-
ganism is ∼ 90% ECM. Daughter colonies develop from
germ cells at the inner ECM surface; repeated rounds of
binary division produce a raft of cells held together by
cytoplasmic bridges that remain after incomplete cytoki-
nesis. Following “embryonic inversion” that turns the
raft inside-out [7], daughter colonies enlarge (at fixed so-
matic cell number) by generation of the ECM via export
of proteins from those cells, expanding the colony radius
to the final size over the course of a day, during which
the widely-distributed neighborhood volumes appear.

For Volvox, the general issue above becomes the ques-
tion of how ECM is generated such that the spheroidal
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form is maintained during the dramatic enlargement of
the colony and yet the cellular neighborhood volumes are
broadly distributed. A biological answer might invoke
cell-cell signaling in response to mechanical forces as a
mechanism to coordinate growth and would ascribe the
distribution of neighborhood volumes to imperfections
in that process. Surprisingly, the novel problem of cel-
lular neighborhood distributions is so little-studied that
we do not even understand quantitatively the feedback-
free case, which serves as a benchmark for any analy-
sis of the role of correlations. We note that in granular
physics, gamma distributions have been argued to arise
from maximizing entropy when space is divided up into a
set of subvolumes constrained to add up to a fixed total
volume [8]. But this then begs the question of why biolog-
ical systems should follow a maximum-entropy principle.
Here, we examine a range of idealized models for distri-

butions of cells within a thin growing ECM. Regardless of
the process that generates ECM, the assumption that cell
counts within any two disjoint regions are independent
random variables—along with three technical and phys-
ically reasonable assumptions about the vanishing prob-
ability of realizing particular configurations [9]—is the
defining feature of a Poisson point process [11]. In static
and dynamic one-dimensional models, where cells sit in
a circular ECM, we show analytically that Voronoi seg-
ments obey gamma distributions. In two dimensions we
describe strong numerical evidence for consistency with
gamma-type distributions and conjecture an analytical
form. The following is a non-technical summary, with
details provided in the Supplementary Material [9].
Our analysis is motivated by light-sheet measurements

of somatic cell positions in adult V. carteri [5]. Figure
1(a) shows a darkfield image of V. carteri and a section
of the Voronoi tessellation around the cells. The area
distribution of Voronoi partitions across 6 organisms is
shown in Fig. 1(b) along with a maximum-likelihood fit
to the affine-transformed k-gamma distribution,

p(v) =
1

v̄ − vc

kkxk−1

Γ(k)
exp(−kx), x =

v − vc
v̄ − vc

, (1)

where v̄ is the mean and vc is the somatic cell area, the
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FIG. 1. The green alga Volvox and one-dimensional models for cell positions. (a) Adult V. carteri with cell types labelled. Inset
shows section of Voronoi tessellation around somatic cells (visible as dots centered in each Voronoi polygon). (b) Voronoi cell
areas v approximately follow the translated gamma distribution (1) [5], computed by a maximum-likelihood fit. (c) The Poisson
process on [0,∞), where cell locations are indicated by vertical line segments and intercalating ECM is colored. Conditioning
on the cell count or length leads to two different realizations of circular processes, IS.1 and IS.2, respectively, whose numerically
obtained empirical distribution are shown in (d) and (e). Dashed and solid lines indicate approximate or exact density functions,
respectively. (f) Empirical distribution for model IS.4, with no cell overlaps, compared to analytial result.

lower bound on v due to the non-overlapping of cells.
We wish to explain the origin of the gamma distribution
itself and its validity in the form translated by vc.

Notation. In the following, random variables are de-
noted by capital lettersXi;α,β,... accompanied by indices i
and parameters α, β, · · · . Variables i ̸= j are independent
unless otherwise noted. The letters Xi;λ, Yi;k,λ, Zi;α,β ,
and Ni;λ are reserved for exponential, gamma, beta, and

Poisson random variables respectively. X
pdf∼ fX(x) indi-

cates that X has the probability density function fX(x),

with X
cdf∼ FX(x) indicating the same for cumulative

density. Xi
d→ Y indicates Xi converges to Y in distri-

bution. Models are named by the ECM dimension d (I or
II) and the property of being static (S) or dynamic (D),
as summarized in Table I.

TABLE I. Summary of models

Model Description

IS.0 fixed N on the half-line
IS.1 fixed N, variable C on the circle
IS.2 fixed N, fixed C on the circle
IS.3 variable N, fixed C on the circle
IS.4 fixed N and C with minimum spacing on the circle
ID.1 Brownian motion on the circle
ID.2 noncolliding Brownian motion on the unit circle
ID.3 noncolliding Brownian motion on a growing circle
IIS.1 variable N on the periodic unit square
IIS.2 variable N with minimum spacing on the unit sphere
IID.1 fixed N, Brownian motion on the unit sphere

One-dimensional equilibrium models. We first consider
static models in which cells sit within a one-dimensional
ECM, and view the arclength of ECM generated by each
cell as a random variable. As in the Gibbs, microcanon-
ical, and grand canonical ensembles, we consider three
types of random configurations of cells in the ECM: (i)
fixed cell counts N = n, with random intercell spacings
and circumferences; (ii) fixed circumferences C = c and
counts N = n, with random positions {Ri}Ni=1; and (iii)
fixed circumferences C = c, with random cell counts N
and positions. Like the convergence of the ensembles in
the thermodynamic limit, we show that the same gamma
distribution arises in the large-n, c limits of these cases.
Model IS.0 (on the half-line) —Consider a semi-

infinite Volvox modelled as a homogeneous Poisson pro-
cess of rate λ on the half-line [0,∞), as in Fig. 1(c).
The sorted cell positions R1, R2, R3, · · · have exponen-
tially distributed spacings Xi;λ. The Voronoi lengths
Vi = (Xi;λ + Xi+1;λ)/2 are proportional to the sum
of exponentially-distributed random variables with the
same rate, which, by a convolution [9], are gamma-
distributed with k = 2,

Vi =
1

2
Y;2,λ

pdf∼ 4λ2ve−2λv. (2)

This result already shows explicitly the deep link between
the Voronoi construction and gamma distributions.
Model IS.1 (fixed N , variable C on the circle) —Now

consider a circular Volvox. Select a fixed number N;λ =

n + 1 of successive points {Ri}k+n+1
i=k from the half-line

process in IS.0 and form a circle by identifying the first
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and last points, as in Fig. 1(c). This yields a vari-
able circumference C which is n-gamma distributed, i.e.
C = Y;n,λ, and Voronoi lengths Vi which by the same
convolution argument follow the identical k = 2 gamma
distribution as in IS.0. Fig. 1(d) shows a numerical
demonstration of this using 104 realizations.
Model IS.2 (fixed N , fixed C)—Let us now constrain

the circumference C = c in IS.1 as follows. Take the
points {Ri}n+1

i=1 , assume wlog R1 = 0, and form the nor-
malized sequence cR1/Rn+1, cR2/Rn+1, . . . , c. These are
the order statistics of n − 1 uniform random variables
on the interval (0, c) (see §4.1 of [12]), as seen in Fig.
1(c). Identifying the first and last points as in IS.1, the
arclengths {ℓi}ni=1 are the ratio of i.i.d. exponential ran-
dom variables to their sum,

ℓi = c
Xi;λ∑n
j=1 Xj;λ

. (3)

Thus, the corresponding Voronoi lengths {Vi} are

Vi =
c

2

Y1;2,λ

Y1;2,λ + Y2;n−2,λ
=

c

2
Z;2,n−2 (4)

pdf∼ 4v

c(n− 1)(n− 2)

(
1− 2v

c

)(n−3)

, (5)

where v ∈
[
0, c

2

]
, which is computed using the joint dis-

tribution (Y1 + Y2, Y1/(Y1 + Y2) [9]. As can be seen, Vi

is α = 2 beta-distributed, taking values in [0, c
2 ], which

is the second order statistic of n − 1 uniform random
variables. Taking the limits n, c → ∞ with density
ρ = m/c = (n − 2)/c fixed—a kind of thermodynamic
limit—we obtain, by taking the pointwise limit of cumu-
lative density functions [9],

Vi =
m

2ρ
Z2;m

n→∞−→ 1

2
Y;2,ρ, (6)

converging in distribution to the k = 2 gamma distribu-
tion (with cell density/rate ρ) as in IS.0 & IS.1.
Model IS.3 (variable N , fixed C)—In contrast to IS.1,

let us now constrain the circumference C = c, leaving
the count N;cλ a Poisson-distributed random variable.
Using IS.2, the distribution of Vi can be computed by
marginalizing the joint distribution (Z;2,n−1, N;λ) over
n—the compound beta-Poisson distribution—which is a
k = 2 gamma distribution (see SM [9]). A simpler ap-
proach is to place an observation window [x, x+c] at ran-
dom on the half-line process and note that the inter-point
spacings ℓi follow a truncated exponential distribution:

ℓi
pdf∼ λe−λx

1− e−λc
, x ∈ [0, c] (7)

Taking c → ∞, leaving the rate λ fixed (analogous again

to the thermodynamic limit), we have ℓi
d→ Xi;λ, with Vi

converging to a k = 2-gamma distribution as in IS.0.
Thus far, we have considered models in which cells

in the Volvox ECM, viewed as the final configuration of

some stochastic growth process, occur as points in space
that are independently scattered. Gamma distributions
govern their Voronoi tessellations in various limits, inde-
pendent of the constraints applied to the scattering.
Model IS.4 (fixed N , fixed C, no overlaps)—Starting

with fixed C = c andN;cλ = n per IS.2, now suppose that
points have a finite “diameter” vc. In d = 1, the shape of
a segment ℓi is invariant of the allocation vc; hence, we
may start with vc-length segments and add the random
spacings of a subinterval of length (c−nvc). Using IS.2, Vi

therefore is a vc-shifted beta random variable, converging
in the limits n, c → ∞ with fixed density ρ = (n−2)/(c−
nvc) to a shifted gamma random variable,

Vi =
n− 2

2ρ
Z;2,n−2 + vc

n→∞−→ 1

2
Y;2,ρ + vc. (8)

Therefore, (8) has the distributional form

fY(k,λ)+vc(v) =
λk

Γ(k)
(v − vc)

k−1e−λ(v−vc), (9)

which is precisely the empirical law (1) found for Volvox
with λ = k/(v̄ − vc). These hard-core point processes
(including the Matérn and Gibbs processes, 5.4-5.5 [14])
relax the independence property characterizing Poisson
processes by allowing energetic interactions—and there-
fore correlations—between points.
One-dimensional dynamic models. In IS.1-IS.4, fluc-

tuations in Voronoi segments arise from random cell po-
sitions representing static configurations, with different
combinations of fixed and free random variables. Fo-
cusing now on a single organism with fixed N;c(0)λ =
n cells on a time-varying circumference c(t), we now
consider fluctuations in Voronoi segments arising from
random motions of cells during ECM generation, rep-
resented by identically distributed stochastic processes

({ℓ(i)t }ni=1)t≥0. Physically, the random motion of cell
locations arises from stochastic ECM production. Ini-
tially, let us consider a simplified view in which the
ECM is treated like a fluid, and cell motions obey diffu-
sive dynamics without constraints on inter-cell distances.
Gamma distributions are shown to arise once again in the
large-t and n limits.
Model ID.1 (Brownian motion on the circle)—Let

{R(i)
t }ni=1 be n Brownian motions (BMs) on a circle of

radius r given by

R
(j)
t = r exp(iθ

(j)
t ), (10)

with θ
(j)
t standard BMs on R and initial conditions for the

probability density p(j)(0) = δ
R

(j)
0
. The time-depenent

probability density p(i)(t) tends exponentially in L2 to

the uniform distribution, hence R
(i)
t converge in distri-

bution to i.i.d. uniform r.v.s. Therefore, in large t the
configuration approaches Model IS.2, and Vi are beta-
distributed (4) in large t and gamma-distributed in large
t, n (6)—see Fig. 2(a1,a2). Yet, the sample paths of (10)
almost surely intersect, unphysically reordering the cells.
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FIG. 2. Dynamic models of cellular positions during growth converge to gamma distributions in various limits. (a1,a2) Standard
Brownian motion in angular coordinates converges to beta-distributed segments in large t, and gamma-distributed segments
in large n. (b1,b2) Dyson Brownian motion in angular coordinates converges to gamma-distributed segments at large t and
n. Non-conformance to gamma distributions is observed at low n due to pair-repulsion. (c1,c2) Dyson Brownian motion on a
growing domain satisfying particular growth constraints converges in large-t and n to gamma-distributed segments.

Model ID.2 (noncolliding Brownian motion)—Let

{R(i)
t }ni=1 be samples of the conditional distributions of n

circular Brownian motions whose angles are in ascending
order modulo 2π, thereby lying in the set

Dn = {x ∈ Rn | x1 < · · · < xn < x1 + 2π}, (11)

a construction known as noncolliding Brownian motion
or Brownian motion within theWeyl chamberDn [15]. In
[16] eq. 4.1, it is shown that the conditional fluctuations
are Gaussian plus a singular r−1 pair-repulsion,

dθ
(i)
t = σdB

(i)
t +

σ2

2

∑

j ̸=i

cot

(
θ
(i)
t − θ

(j)
t

2

)
dt. (12)

A physical interpretation of (12) is that of a gas confined
to the unit circle with the pair-potential [9]

W = −
∑

j<k

log |exp(iθk)− exp(iθj)| , (13)

constituting a simple model of non-colliding cell mo-

tion. Eq. 12 is precisely the eigenvalue dynamics λ
(j)
t =

exp(iθ
(j)
t ) of a Brownian motion Ut on the unitary group

U(n), known as Dyson Brownian motion [9, 17].

Being confined to Dn (11), the positions R
(i)
t do not

converge to uniform r.v.s on the circle as in I.5—compare
Figs. 2(a1) and 2(b1). The stationary distribution of

(12) is the circular unitary ensemble (CUE) [17],

ρ∗(θ1, · · · , θn) =
1

Zn

∏

j<k

| exp(iθj)− exp(iθk)|2. (14)

We use this result to derive the Voronoi length distri-
bution in the large-t, n limits. Let {θ(i)}ni=1 be a sam-
ple of the stationary distribution (14), the spectrum of
a uniform sample of U(n); the empirical distribution
µθ(n) = n−1

∑n
i=1 δθ(i) converges almost surely in large n

(Theorem 3, [18]) to the uniform distribution on the unit

circle. Thus, the spacings θ
(i+1)
t −θ

(i)
t converge in large-t

and n (in either order [9]) to the spacings of the order
statistics of n uniform random variables as in IS.2. Tak-
ing n → ∞ with density ρ = (n− 2)/c fixed, Vi converge
to k = 2 gamma random variables as in (6).
Convergence to gamma laws depending on particle

count n is shown for BM and DBM in Figs. 2(a2,b2)
[9]; in contrast to BM, DBM spacings lose the long tail
at low n due to repulsion (14).
Model ID.3 (noncolliding Brownian motion,

growth)—To account for growth of the ECM, let
the radius r(t) in ID.2 be time-dependent, scaling the

configuration as R
(i)
t = r(t) exp(iθ

(i)
t ) with θ

(i)
t given by

(12) as shown in Fig. 2(c1). Applying Itô’s lemma, R
(i)
t

satisfies the stochastic differential equation

dR
(i)
t = ṙ exp(iθ

(i)
t )dt+ iR

(i)
t dθ

(i)
t − r

2
θ
(i)
t dt. (15)
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Substituting dθ
(i)
t from (12), the diffusion constant for

(15) isD = r2σ2/2. Requiring that the lateral diffusion is

time invariant implies Ḋ = 0, and thus that the standard
deviation of the radius-normalized dynamics (12) should
decay as σ(t) ∝ r(t)−1. Exponential convergence of (12)
to the stationary solution (14) is ensured by a growth
condition on r(t). By standard Fourier arguments (e.g.
§2.2, [19], and [9]), solutions to the time-dependent dif-
fusion equation for the probability density of p(t) of the
unitary Brownian motion Ut satisfy, for some constant
Cn > 0 depending only on n,

d(p(t), ν) ≤ d(p(0), ν) exp

(
−Cn

∫ t

0

σ(s)2ds

)
, (16)

with d the L2 metric and ν the uniform (Haar) measure
on the unitary group U(n). Therefore, if r(t) satisfies:

lim
t→∞

∫ t

0

1

r(s)2
ds = ∞, r(0) > 0 (17)

the RHS in (16) vanishes in large t, and global expo-
nential stability is assured. Then, as in ID.2, the posi-

tions R
(i)
t approach a random uniform spacing of a circle

of radius r(t) in large n, resulting in gamma-distributed
Voronoi segments Vi. Rapid convergence in t to a gamma
law (with D = 0.1, n = 1000, ṙ = 1) is shown in Fig.
2(c2). Formally, (17) is not satisfied by such a linear
growth law, yet we observe empirical convergence to a
gamma law on the order of a unit of (scaled) time.

Condition (17) can be understood by a Péclet number
relating drift and diffusion timescales in growth. Consid-
ering the radial drift velocity vr in (15), let

Pe =
τd
τvr

=
2Lṙ

r2σ2
∝ Lṙ (18)

with L a test length section. In the limit Pe → 0, condi-
tion (17) is satisfied; when Pe → ∞, the exponential mul-
tiplier in the bound (16) approaches 1, “freezing” the an-

gles θ
(i)
t to initial conditions. Finally, conditions Ḋ = 0,

Ṗe = 0, and (17) cannot simultaneously be satisfied.
Let us now consider the ECM as a solid, with cell mo-

tions arising from stochastic growth of the inter-cell seg-
ments. As a simple starting point, suppose that the time-

varying intercell lengths ℓ
(i)
t are stochastic processes with

i.i.d. nonnegative increments Gt for t = 0, 1, . . ., repre-
senting a strictly additive growth process in discrete time.
Naturally if Gt have finite second moment, by the central
limit theorem,

ℓ
(i)
t√
t
−
√
tE[Gt]

t→∞−→ W;0,Var(Gt), (19)

where W is a Gaussian random variable. For example,
exponentially distributed fluctuations Gt = X;λ, as in
adding the spacings of T successive Poisson processes,

results in (k = T )-gamma-distributed segments ℓi, con-
verging in large T to a translated Gaussian random vari-
able. This convergence to a Gaussian distribution re-
states the point made earlier [5] regarding the surprising
appearance of gamma distributions and, in light of the
results from static models above, indicates that not every
random growth process produces snapshots of the config-
urations that conform to gamma distributions.
Model ID.4 (maximum-entropy growth rates)—Let the

segments grow linearly in time as ℓ̇i = Gi;µ, with i.i.d.
growth rates Gi which are positive continuous random
variables with some common mean growth rate µ. If
the distribution of Gi maximizes entropy subject to the
mean and nonnegativity constraint—perhaps more in-
terpretable as uncertainty about cellular behavior than
global maximum-entropy assumptions [8]—then Gi;µ =
Xi;1/µ is an exponential random variable of rate λ = 1/µ
(see [9]). Then, for any time t, the normalized configu-
ration

ℓi(t)∑n
j=1 ℓj(t)

=
ℓi(0) + tGi∑n

j=1 ℓj(0) + tGj

d→ Xi;1/µ∑n
j=1 Xj;1/µ

(20)

converges in large t to a uniform spacing as in IS.2, (3)
and therefore has beta-distributed Voronoi lengths (4)
converging to gamma-distributed lengths in large n (6).
Two-dimensional equilibrium and dynamic models. In

dimension d ≥ 2, known analytical results concerning
Voronoi tessellations of point processes are limited to
lower-dimensional facets, such as edge (2D) and face
(3D) distributions (see [23] and §4.4, [24]). The dif-
ficulty in higher dimensions arises primarily from the
loss of uniqueness for shapes satisfying geometric proper-
ties—such as fixed measure (length, area, volume)—for
which one must first consider distributions over shapes,
then marginalize over the level-sets satisfying a scalar ge-
ometric property, such as aspect ratio. For this reason,
in the following models we present primarily numerical
results (with partial analytical arguments where applica-
ble), and present a validation of the numerical method
in the Supplementary Material [9].
Model IIS.1 (periodic unit square)—Consider a homo-

geneous Poisson point process on the unit square [0, 1]2

with periodic boundary conditions, denoted T2. On gen-
eral d-dimensional domains, the point process is specified
by an intensity measure λ(A) for subsets A ⊆ T2 in which
the count NA;λ(A) is a Poisson random variable of rate
λ(A) (see [9] for sampling methods). A homogeneous
Poisson process —one whose intensity λ is constant on
sets A of constant measure—is realizable by sampling the
total count N;λ(T2) and assigning the positions {Ri}ni=1

conditional on N = n as i.i.d. uniform random variables.
Figure 3 shows numerical simulations for k = 1000 trials
with intensity λ(T2) = 103, which is on the order of the
number of somatic cells in Volvox carteri.
The periodic Voronoi tessellation on T2, shown in the

small-n example in Figure 3(a1)-(d1), is constructed by
copying {Ri} in four quadrants around T2 and selecting
the sub-tessellation corresponding to the original points.
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FIG. 3. Poisson-Voronoi tessellation on the periodic unit square. Panels (a1) - (d1) show the Voronoi cells colored by four
geometric quantities defined for closed plane curves (see [9]). Panels (a2) - (d2) show empirical and maximum-likelihood
estimations of gamma (denoted Y ), lognormal (denoted exp(W )), and beta prime (denoted Z′) distributions where applicable.
Poisson-Voronoi tessellations do not have gamma-distributed aspect ratios, instead following an approximate beta-prime law.

Areas a, nondimensionalized as λa, conform to a gamma
random variable with k ≈ 3.5, as in Fig. 3(a2). The

isoperimetric deficit D = L/
√
4πa − 1 (see [9] and [37])

with L the perimeter, conforms after an appropriate
rescaling to a log-normal random variable with σ ≈ 0.6,
shown in Fig. 3(c2). The aspect ratio AR of a Poisson-
Voronoi tessellation does not conform to a gamma dis-
tribution (Fig. 3(b2)), in contrast to prior studies [20]
finding gamma-distributed aspect ratio in a diverse range
of densely-packed cell types and inert matter. Instead,
AR conforms approximately to a beta-prime distribution,
which naturally arises as the ratio of independent gamma
random variables [9]. Figure 3(d2) shows that the ma-
jor axis length is gamma-distributed; while we do not in
general expect the major and minor axis to be indepen-
dent random variables, we show in the SM [9] that both
axes are gamma-distributed, with estimated parameters
within the same order of magnitude as the estimated
beta-prime distribution for aspect ratio.

Model IIS.2 (sphere with hard-core repul-
sion)—Consider a homogeneous Poisson process of
rate λ, thinned (see [9]) to some rate λ′ < λ such that
all points {Ri}ni=1 have a minimum pairwise distance
d(Ri, Rj) ≥ rd where d(·, ·) is the geodesic distance on
the sphere. This generalizes IS.4 to the two-dimensional
case, in which the geometric realization of such a
hard-core repulsion is not unique, a fact intimately
linked to the existence of an ordering of points in
1 dimension. Realizing a minimum spacing requires
dependent thinning, as the inclusion of a particular point
Ri depends upon the locations of nearest-neighbors Rj ,

and an independently thinned Poisson process is again
a Poisson process ([9]). A commonly used procedure is
the Matérn Type-II thinning rule (see [9] and 5.4, [14]):

{R′
i} = {Ri | Mi < Mj ∀j ̸= i, d(Ri, Rj) ≤ rd} (21)

where Mi are i.i.d. uniform random variables called
marks. Heuristically, (21) imposes an upper bound on
the aspect ratio, as the “minor axis” has a lower-bounded
arclength rd. We expect this to result in vanishing
tails in both aspect ratio and isoperimetric deficit, con-
firmed by numerical simulation with k = 100 trials of
λ = 2000, with rd twice the apothem of a regular spher-
ical hexagon (see [9]) of area 4π/λ. The convergence
to approximate gamma laws in area, aspect ratio, and
anisotropy-adjusted isoperimetric deficit is illustrated in
Figure 4. Notably, the isoperimetric deficit is no longer
well-approximated by a log-normal law as in the Poisson
case (Figure 3).
Model IID.1 (Brownian motion on the

sphere)—Analogous to ID.1, consider a fluid ECM

in which cells R
(i)
t undergo diffusive motion without

constraints on the inter-cell distances. Identically to

the 1-dimensional case, R
(i)
t convergence exponentially

in distribution to iid uniform random variables on the
sphere, which is the conditional distribution of a Poisson
process. The resulting statistics on the sphere (Figure 4
(a1)-(d1)) closely follow those of the flat torus (Figure
3), with only area well-approximated by a gamma law.
A conjectured distribution. In dimension d ≥ 2, exact

distributions for the cell measures (areas, volumes, and so
on) of Delaunay triangulations (denoted Di) of a Poisson
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FIG. 4. Spherical point processes with a hard-core repulsion demonstrate a transition to gamma laws in geometric features, such
as aspect ratio and isoperimetric deficit, not normally found in Poisson-Voronoi tessellations. Panel (a2) shows a realization of
a Matérn Type-II process with the minimum distance rd set to twice the apothem of a regular spherical hexagon of area 4π/λ.

point process are known [22], with the distribution in R2

given by a modified Bessel function of the second kind,

fDi(v) = c1v
α1Kn(c2v

α2), (22)

with parameters ci, αj , n. On the other hand, exact dis-
tributions for their vertex-cell duals—the Voronoi tessel-
lations—are presently unknown. We conjecture, how-
ever, that (22) should also govern the Voronoi areas
Vi based on the following heuristic argument. Con-
ditional independence of the volume of the fundamen-
tal region (a particular set containing the vertices of
a Voronoi cell and the origin) and its shape (see [23])
suggests that one may assume a particular approximate
shape for the typical Voronoi cell, say, a disk or reg-
ular hexagon. If its radius Li is gamma-(inclusively,
exponentially-)distributed, then Vi is proportional to L2

i ,
whose distribution is precisely of the form (22) (see [25]).

The universality of gamma distributions in random
Voronoi tessellations—particularly beyond the Poisson-
Voronoi case, and in geometric features beyond area—is
remarkable. Concerning area, let us remark on this obser-
vation using a well-known characterization of the gamma
distribution which seems to be analogous to the indepen-
dent scattering property characterizing Poisson processes
[9]. Let A be the typical partition size of a random tes-
sellation and Ac be the size of the remainder. Then, the

total T = A+Ac and fraction F = A/(A+Ac) are inde-
pendent if and only if A and Ac are independent gamma
random variables of the same rate parameter (Lukacs’
theorem, [13]). This recapitulates the story of gamma
laws describing entropy-maximizing configurations [8];
random tessellations which maximize the joint entropy
H(T, F )—where geometrically realizable, such as one-
dimensional settings—have gamma-distributed partition
sizes.
Even more remarkably, the emergence of these distri-

butions in biological tissues, such as areas in Volvox and
the volumes in “snowflake yeast” [5], as well as aspect ra-
tios in a wide range of confluent tissues and inert matter
[20] suggests that point processes are suitable idealized
models for a quantitative description of the structure of a
multitude of biological systems. In this sense, they play
a role analogous to the idealized random walk models of
polymers and the hard sphere model of fluids.
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SUPPLEMENTAL MATERIAL

This file contains analytical and computational details pertaining to the models discussed in the main body.

I. RANDOM VARIABLES

A. Transforms and convergence

Definition S1 (Pushforward measure). Let g : Rn → Rn be a diffeomorphism and Y = g(X). The pushforward
probability measure µY is, for all measurable U ⊂ Rn,

µY (U) = µX(g−1(U)). (S1)

a. Transforms of random variables. When µX has a Radon-Nikodym derivative fX with respect to the Lebesgue
measure —i.e. is expressible by the probability density µX(U) =

∫
U
fX(x)dx—then by the rule for integration under

a diffeomorphic change of coordinates y = g(x),

µX(U)(g−1(U)) =

∫

g−1(U)

fX(x)dx =

∫

U

fX(g−1(y))

∣∣∣∣det
∂g−1

∂y
(y)

∣∣∣∣ dy. (S2)

As this is true for all U we conclude

fY (y) = fX(g−1(y))

∣∣∣∣det
∂g−1

∂y
(y)

∣∣∣∣ . (S3)

When preferable to work with g rather than g−1, we may apply the chain rule to g−1 ◦ g = 1 to convert (S3) to

fY (g(x)) = fX(x)

∣∣∣∣∣det
(
∂g

∂x
(x)

)−1
∣∣∣∣∣ . (S4)

Due to this fact, we will abbreviate the scaling factor as J−1, denoting the inverse Jacobian determinant. For affine
transforms Y = cX + b, (S3) becomes

fY (y) =
1

c
fX

(
y − b

c

)
. (S5)

b. Sums of random variables. Let X,Y be independent random variables taking values in UX , UY ⊆ R. Then
their sum is distributed as the convolution

X + Y = Z ∼ fZ(z) =

∫

x∈Ux, x≤z

fX(x)fY (z − x)dx = fX ∗ fY . (S6)

This can alternatively be deduced by applying the transform rule (S3) to the map (X,Y ) 7→ (X,X + Y ).

Definition S2 (Convergence in distribution). A sequence of random variables {Xn} taking values in an interval
U ⊆ R is said to converge in distribution if, for all x at which the cumulative distribution function FX is continuous,
the c.d.f.s. FXn

converge pointwise, i.e.

lim
n→∞

FXn(x) = FX(x). (S7)

B. Basic properties of the exponential and gamma random variables

Let us recall with proof several basic properties of the gamma (and exponential, which is a special case) random
variable.
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Definition S3 (Gamma random variable.). The gamma random variable Yk,λ with shape parameter k > 0 and rate
λ > 0 is the continuous random variable with probability density function

fY (y) =
λkyk−1 exp(−λy)

Γ(k)
. (S8)

Its namesake is the gamma function

Γ(k) =

∫ ∞

0

yk−1e−ydy. (S9)

Lemma S1 (Gamma random variables are closed under addition). The sum of two independent gamma random
variables Y1, Y2 with k1, k2 of common rate λ is (k1 + k2)-gamma distributed.

Proof. Since Y1, Y2 ∈ [0,∞), by (S6) we have

Y1 + Y2
pdf∼ fY1

∗ fY2
=

λk1+k2

Γ(k1)Γ(k2)

∫ z

0

yk1−1e−λx(z − y)k2−1e−λ(z−y)dy. (S10)

Taking the Beta function

B(k1, k2) =
Γ(k1)Γ(k2)

Γ(k1 + k2)
=

∫ 1

0

tk1−1(1− t)k2−1dt (S11)

with the change of variable t = y/z yields

=
1

zk1+k2−1

∫ z

0

yk1−1(z − y)k2−1dx. (S12)

Substituting into (S10), we obtain

(S10) =
λk1+k2zk1+k2−1e−λz

Γ(k1 + k2)

pdf∼ Y;k1+k2,λ. (S13)

Corollary. The sum of n iid exponential random variables of rate λ are gamma-distributed with shape parameter n
and rate λ.

Lemma S2 (Beta-gamma convergence). Let Z2,m be a beta random variable. Then m
α Z2,m converges in distribution

to the gamma random variable Y2,α of rate α.

Proof. By direct calculation,

m

α
Z2,m

cdf∼ P
[
Z2,m ≤ zα

m

]
=

1

B(2,m)

∫ zα
m

0

t(1− t)m−1dt z ∈
[
0,

m

α

]
, (S14)

and with the change of variables s = 1− t,

=
1

B(2,m)

∫ 1

1−αz
m

(1− s)sm−1ds (S15)

= m(m+ 1)

[
1

m
sm − 1

m+ 1
sm+1

]1

1− zα
m

(S16)

= 1−
(
(m+ 1)

(
1− zα

m

)m
−m

(
1− zα

m

)m+1
)

(S17)

= 1−
(
1− zα

m

)m
(1 + zα) (S18)

m→∞−→ 1− e−zα(1 + zα) z ∈ [0,∞). (S19)

Recalling the cumulative density function for Y2,α (S8),

Y2,α
cdf∼
∫ z

0

α2ye−αydy = −αye−αy
∣∣z
0
+

∫ z

0

αe−αydy = 1− e−zα(1 + zα). (S20)

Hence, we have the distributional convergence m
α Z2,m

d→ Y2,α.
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Lemma S3 (Memoryless characterization of the exponential). The only continuous random variable X which (i)
possesses a cumulative distribution function FX such that F ′

X(0) exists and (ii) satisfies the memoryless property

P[X > x+ y | X > x] = P[X > y] (S21)

is the exponential.

Proof. By Bayes’ theorem, (S21) is equivalent to

P[X > x+ y] = P[X > x]P[X > y] ⇔ 1− F (x+ y) = (1− F (x))(1− F (y)). (S22)

Let G = 1− F ; then (S22) is G(x+ y) = G(x)G(y). Then for all z,

G′(z) = lim
h→0

G(z)G(h)−G(z)G(0)

h
= G(z)G′(0). (S23)

Since by hypothesis (i) F ′(0) exists, this implies F ′ exists everywhere. Let u be such that F (u) < 1. Since F is
nondecreasing, this implies G > 0 in the interval (−∞, u]. Then for w ∈ (−∞, u], letting G′(0) = −F ′(0) = c,

c =
G′(w)
G(w)

=
d

dw
logG(w). (S24)

Integrating, we obtain G(x) = b exp(cx) for some b. By the conditions F (0) = 0, limt→∞ F (x) = 1, we have b = 1, c <
0. Letting c = −λ for λ > 0 we obtain FX(x) = 1 − exp(−λx). Hence, fX(x) = F ′

X(x) = λ exp(−λx), and X is an
exponential random variable of rate λ.

Lemma S4 (Maximum-entropy characterization of the exponential). The only nonnegative continuous random vari-
able X with density fX which maximizes the entropy with fixed mean µ > 0 is the exponential.

Proof. By hypothesis, fX is a critical point of the functional

J [f ] =

∫ ∞

0

L(f(x), λ0, λ1)dx, (S25)

for Lagrange multipliers λ0, λ1 constraining the 0th, 1st moments, and Lagrangian density

L(f(x), λ0, λ1) = f(x) log f(x) + λ1f(x) + λ1xf(x). (S26)

Since for all test functions φ, the Fréchet derivative vanishes,

0 = ⟨DJ [f ], φ⟩ =
∫ ∞

0

∂L

∂f(x)
φ(x)dx, (S27)

by the fundamental lemma of the calculus of variations,

0 =
∂L

∂f(x)
= 1 + log f(x) + λ0 + xλ1, (S28)

we have f(x) = exp(−1− λ0 − xλ1). Applying the total probability constraint,

1 =

∫ ∞

0

exp(−1− λ0 − xλ1)dx =
1

λ1
exp(−1− λ0), (S29)

where λ1 > 0 necessarily. Then, fX(x) = λ1 exp(−λ1x) is the density of an exponential random variable with rate
λ1.

C. Characterization theorem for gamma random variables

Theorem S5 (Lukacs 1955, [13]). Let Y1, Y2 be independent random variables. Then

A = Y1 + Y2, B =
Y1

Y1 + Y2
(S30)

are independent if and only if Y1, Y2 are gamma random variables of the same rate λ.
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Proof ( =⇒ ). Consider the map

g(Y1, Y2) =

(
Y1 + Y2,

Y1

Y1 + Y2

)
=: (A,B). (S31)

Then for a ̸= 0,

g−1(a, b) = (ab, a− ab). (S32)

Therefore
∣∣∣∣det

∂g−1

∂(a, b)

∣∣∣∣ =
∣∣∣∣det

[
b 1− b
a −a

]∣∣∣∣ = a. (S33)

By (S4), the pushforward density is

fg(Y1,Y2)(a, b) = afY1(ab)fY2(a− ab) (S34)

=
a(ab)k1−1(a− ab)k2−1

Γ(k1)Γ(k2)
λk1+k2e−λa (S35)

=
bk1−1(1− b)k2−1

Γ(k1)Γ(k2)
ak1+k2−1λk1+k2e−λa. (S36)

By inspection, the total A and fraction B are independent. Substituting the Beta function (S11),

(S34) =
bk1−1(1− b)k2−1

B(k1, k2)

ak1+k2−1λk1+k2e−λa

Γ(k1 + k2)
=: fB(b)fA(a). (S37)

Then fA(a) is a gamma distribution (as expected, S1) and fB(b) is a beta distribution. Therefore,

B =
Y1;k1,λ

Y1;k1,λ + Y2;k2,λ
= Zk1,k2

(S38)

is beta-distributed.

Note that (S38) is independent of the rate λ of Y1, Y2. The converse ( ⇐= ), that gamma distributions are unique
in possessing this independence property, is not proven here, but we refer the reader to a straightforward proof [36]
relying on the fact that the gamma distribution is uniquely determined by its moments (Exercise 3.3.25, [10]).

II. POINT PROCESSES

A. Definitions

The usual Poisson process of rate λ on [0,∞) is realizable as the cumulative sum of i.i.d. exponential random
variables Xi;λ. The construction of general point processes on a domain K ⊆ Rd is more technical, formalizing the
notion of a “random almost-surely finite subset,” for which we recall several standard definitions [11]. Throughout,
we will assume K is a closed set.

Definition S1 (Finite point process —2.2-2.4, [11]). A finite point process N on a complete separable metric space
K is a family of random variables N(E) for each Borel set E ∈ FK , such that, for every bounded E,

P[N(E) < ∞] = 1. (S39)

Formally, N is a random measure (see e.g. 5.1 [11] or Chapter 9 [11]). Without delving too deeply into this
formalism, let us introduce the following definition based upon samples of N .

Definition S2 (Simple point process). A simple point process N is one whose points are non-overlapping. In other
words, every sample of N can be written as the counting measure

ν =
∑

i∈I

δxi
(S40)

where I is an index set and δ denotes the Dirac measure and P[xi = xj ] = 0 for all i ̸= j.
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Definition S3 (Non-atomic point process). A nonatomic point process N is one for whom the probability of realizing
any particular point x ∈ K is zero. That is,

P[N({x}) > 0] = 0. (S41)

These definitions are sufficient to define and analyze the Poisson point process.

Definition S4 (Poisson point process). A Poisson point process N on a c.s.m.s. K is defined by an intensity measure
Λ(E) such that, for all Borel sets E ∈ FK , N(E) is a Poisson random variable, i.e.

N(E)
pdf∼ Λ(E)k exp(−Λ(E))

k!
. (S42)

Example II.1 (Stationary Poisson process). A stationary Poisson process of rate λ is given by the intensity measure
Λ(E) = λµ(E), where µ is the Lebesgue measure.

Definition S5 (Independent scattering / complete independence). A point process N satisfies the independent
scattering or complete independence property if, for all n > 1 and disjoint Borel sets E1, . . . , En ∈ FK , the variables
N(E1), . . . , N(En) are mutually independent.

B. Characterization theorem for Poisson point processes

Immediately, we see that Poisson point processes are simple and finite if the intensity measure Λ(E) is given by

Λ(E) =

∫

E

λ(x)dx (S43)

for some function λ : K → R+. Poisson point processes S4 satisfy the complete independence property S5, but
remarkably, these properties are not logically independent.

Theorem S1 (Prekopa 1957, Theorem 2.4.V [11]). A point process N is a non-atomic Poisson point process if and
only if it is finite S1, simple S2, non-atomic S3, and completely independent S5.

The characterization theorem S1 motivates and justifies the use of Poisson processes (i.e. Poisson-distributed count
variables) in any scenario where points in any realization are non-interacting.

C. Sampling Poisson and Matérn point processes

Lemma S2. The conditional distribution of a Poisson point process of intensity λ(x) on a domain K is 1
Λ(K)λ(x).

Lemma S2 allows one to sample a homogeneous Poisson point process of rate λ by first sampling a Poisson random
variable Nλµ(K) = n, and scattering the n as points as i.i.d. uniform random variables in K. Point processes with a
hard-core repulsion (such as the Matérn Type-II point process [14]) can often be realized as a thinning of a Poisson
point process.

Definition S6 (Matérn type-II hard-core point process, [14]). Let N be a homogeneous Poisson point process of rate
λ. To each point Xi of N , assign a mark Mi which are i.i.d. uniform random variables on (0, 1). Then, construct the
Matérn process N ′ with hard-core repulsion distance r as

N ′ = {Xi ∈ N | Mi < Mj ∀Mj ∈ B(Xi, r), i ̸= j}. (S44)

The points of N ′ are situated at a minimum distance r from one another.

1. Poisson and Matérn processes on Sd

Recall that a zero-mean multivariate Gaussian W0,Σ with Σ a d× d symmetric positive-definite covariance matrix
has the ellipsoids {x | x⊺Σ−1x = r2} as level sets of constant density. When Σ = I, this is the property of spherical

symmetry. Combined with the fact that the map x 7→ x ∥x∥−1
is surface-area-preserving up to a constant multiple,
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this yields a computationally efficient and numerically stable method for generating iid uniform random variables Ui

on Sd: Ui = Wi;0,I ∥Wi;0,I∥−1
.

Lemma S2 then allows the realization of homogeneous Poisson processes on d-spheres of radius r as NλArd =
n, {Ui}ni=1, with A the surface area of the unit sphere Sd and λ the intensity per unit area. Conveniently, the
parametrization of Ui in Cartesian coordinates allows the realization of Matérn processes (S6) using the geodesic
(great-circle) distance d(Ui, Uj) = r arccos(Ui · Uj).

III. GEOMETRY OF CLOSED CURVES

A. Moments of area

The area moments of simple closed curves on planar surfaces are useful for quantifying for geometric properties of
internally connected objects such as cells. All tensorial quantities and identities below are for dimension 2.

Definition S1 (Planar nth area moment tensor). Let x ∈ D be a two-dimensional domain bounded by a simple
closed curve ∂D = C. The nth moment tensor of the area D with respect to a point v is defined as

I
(n)
i1i2···in(v) =

∫

D

(xi1 − vi1)(xi2 − vi2) · · · (xin − vin) (S45)

for i1, · · · , in ∈ {1, 2}. When the argument v is dropped, it is assumed v = 0.

We will assume D is a uniform mass-density domain in the following.

1. First moment, center of mass, and centrality

Applying the divergence theorem, I(1) becomes the surface integral

I(1) =

∫

D

x =
1

3

∫

D

∂ixixj =
1

3

∫

C

nixixj (S46)

where ni is the unit boundary normal.

Definition S2 (Center of mass of a closed curve). The center of mass of D is

µ =
I(1)

I(0)
. (S47)

The notation µ is used for the probabilistic interpretation as the expected value of a uniform distribution supported
on D.

Definition S3 (Variance-adjusted centrality of a test point within a polygon). For a test point y, we define the
centrality metric

centrality(y) = ∥W (y − µ)∥2 = (y − µ)⊺Σ−1(y − µ) (S48)

with W a matrix defined as W ⊺W = Σ−1, and Σ the second central moment defined in the next part (S50).

This whitening procedure (using terminology from the probabilistic interpretation of Σ) enables comparison across
curves C of varying moments—that is, centrality(y) is dimensionless. In probability, (S48) is the Mahalanobis distance
of y and D.

2. Second moment, area moment of inertia, and isotropy

Again by divergence theorem,

I(2) =

∫

D

xixj =
1

4

∫

D

∂ixixjxk =
1

4

∫

C

nixixjxk. (S49)
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Definition S4 (Second moment of area). The second central moment of area (i.e. the area moment of inertia about
the center of mass) is

Σ = I(2)(µ) = I(2) − (µ⊗ I(1) + I(1) ⊗ µ) + I(0)µ⊗ µ (S50)

where x⊗ y = xy⊺.

In connection to probability, Σ is precisely the covariance matrix of a mean-zero uniform distribution supported on
the domain D.

Definition S5 (Principal axes of a polygon). Using (S50), we may define the principal axes and stretches of a polygon
(represented by a closed curve C) via Hermitian eigendecomposition

Σ = PΛP−1

with vi the columns of P being the principal axes and and λi > 0 in ascending order (as Σ is symmetric positive-definite
for non-degenerate curves).

We then define the “anisotropy” of the shape D as the distance of the second central moment Σ to its ℓ2-orthogonal
projection onto the subspace V ∈ Rd×d of isotropic matrices. There are two linearly independent isotropic matrices
in dimension d = 2, the matrices Σ = δij and Σ = ϵij . The latter identity cannot hold since Σii ̸= 0 for all i as defined
by (S49), hence we take V to be the one-dimensional subspace αI with α ∈ R. Computing

0 =
∂

∂α
∥Σ− αI∥2 = −2⟨Σ− αI, I⟩ = −2 tr(Σ) + 2dα, (S51)

then the orthogonal projection of Σ onto V is simply tr(Σ)
d I as expected. Thus in dimension d (d = 2 for planar

curves), we define the anisotropy of D (in dimensionless units) as

anisotropy(D) =

∥∥∥∥
d

(tr Σ)
Σ− I

∥∥∥∥
2

. (S52)

Clearly anisotropy(D) is nonnegative. Furthermore, anisotropy(D) vanishes if and only if D is a regular polygon.
Furthermore, the “orientation” of an anisotropic domain D is given by the principal axes of Σ and “elongation” by
the principal stretches. For an ellipse, Σ−1 = M is precisely the ellipse matrix (S71).

3. Approximation by an ellipse.

Definition S6 (Aspect ratio of a polygon). Let λ1, λ2 and v1, v2 be the principal stretches and axes (in ascending
order) of the second central moment Σ (S50). Define the aspect ratio:

R =

√
λ2

λ1
(S53)

Then an ellipse with the same orientation, aspect ratio, and area (πab) as D (as defined previously by its nth
moments) has the minor and major axes:

a =

√
I(0)

πR
, b = Ra (S54)

Equation (S54) may be considered a superior approximation of the polygon D over e.g. a weighted ℓ2-minimization
of vertex distance or a bounding ellipse approach.

4. Whitening a polygon.

Let a polygon C have second central moment Σ (S50) and centroid µ (S47). With C given in counterclockwise
oriented coordinates as {xi}ni=1, we define the whitened polygon Cw,

Cw = {W (xi − µ) | ∀i}, W = Σ−1/2, (S55)

with the matrix square root W typically approximated by singular value decomposition (SVD) as

W = U(S + ε)−1/2U∗, W = USV ⊺, (S56)

and W then referred to as the ZCA whitening matrix with a regularization constant ε ≪ 1.



8

B. Isoperimetric inequality

We recall here several quantities which can be used as measures of the deviation of a closed plane curve C from a
circle. The classical isoperimetric inequality is

4πA ≤ L2, (S57)

where A is the area bounded by C (denoted by the set E) and L its total arclength, which is an equality only for
circles. Accordingly, one may define the isoperimetric quotient

Q =
4πA

L2
∈ [0, 1], (S58)

which is maximized for circles. A natural question, however, is whether (S57) can be used to define a set distance, in
the sense of Hausdorff metric, of the area bounded by C to the “best” circle. This turns out [37] to be related to the
problem of making (S57) quantitative, in the sense of a nonnegative quantity ν(E) such that

4πA+ ν(E) ≤ L2 (S59)

for all simple closed curves C, with ν(E) = 0 iff C is a circle. Without proof, we cite [37] the result that the
isoperimetric deficit, defined as the dimensionless quantity

D(E) =
L√
4πA

− 1 (S60)

upper-bounds any such quantity ν(E) via

ν(E) ≤ C2

√
D(E) (S61)

for some dimension-dependent constant C2. For convex E (applicable e.g. to the cells of a Voronoi tessellation of
Euclidean space), (S60) upper-bounds the Hausdorff distance to the best-fit equal-volume ball as

inf
x∈R2

dH(E,B + x) ≤ C2D(E)α2 (S62)

for dimension-dependent constants C2, α2 [37]. Naturally this is sharp for E which is a ball.

C. Curves on surfaces of constant Gaussian curvature

Identity S1 (Area-angle formula for a polygon on S2 or H2). Let n denote the number of sides of a regular spherical
or hyperbolic polygon with interior angles θi. Then by Gauss-Bonnet,

KA+

n∑

i=1

(π − θi) = 2π (S63)

with K the Gaussian curvature.

IV. MODELS

Model IS.3 (variable N , fixed C)—As in Model IS.2, let us consider the kth order statistic of N uniform ran-
dom variables (representing the fixed-circumference constraint), with Nλ now a Poisson-distributed random variable
conditioned to be minimum k. The marginal distribution of this order statistic given λ is (a particular) compound
beta-Poisson distribution, given by

P(Zk,N−k+1 = x|λ,N ≥ k) =

∞∑

n=k

P(Zk,n−k+1 = x|N = n)P(N = n|λ,N ≥ k). (S64)
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(a1) Aspect ratio (b1) Minor axis (c1) Major axis

0 2 4 6 8 10
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3.25Z ′2.34,8.61
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10−4
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10−2

10−1

100

(c2)

0.25Y3.95,1

FIG. S1. Gamma-distributed stretches and approximately beta-prime distributed aspect ratio.

To see the parametrization more clearly, let m = n− k + 1; then,

(S64) =
1

1− P(N < k)

∞∑

m=1

xk−1(1− x)m−1

B(k,m)

λm−1+ke−λ

Γ(m+ k)
(S65)

=
1

1− P(N < k)

λkxk−1e−λ

Γ(k)

∞∑

m=1

(λ(1− x))m−1

Γ(m)
(S66)

=
1

1− P(N < k)

λkxk−1e−λx

Γ(k)
(S67)

=: c0
λkxk−1e−λx

Γ(k)
, x ∈ [0, 1]. (S68)

Recognizing the second factor as the gamma distribution, the first factor c0 is simply a normalizing constant restricting
the support to [0, 1]. Here we see the emergence of gamma distributions from the order statistics of a Poisson-
distributed number of uniform random variables, which is in fact a roundabout way to construct the 1D Poisson
process. As we take the support of this distribution (the circumference C) to infinity, we have P (NCλ < k) → 0 for
any fixed k, hence c0 → 1 and we recover the true gamma distribution.

Model IIS.1 (periodic unit square)—Figure S1(b2-c2) shows that both major and minor axes of the Poisson-Voronoi
tessellation, nondimensionalized to empirical mean 1, follow gamma distributions.
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Empirical Gamma Beta
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1.5

1.28 (Gilbert 1962)

Second moment V2
i

Gamma Beta
2.0

2.5

3.0

3.5

4.0

4.5

5.0
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6.0

3.315 (Tanemura 2003)

Shape parameter (k)

Gamma Beta
0.002

0.004

0.006

0.008

0.010

RMSE against empirical CDF

FIG. S2. Gamma- and Beta-maximum likelihood fits for Poisson-Voronoi tessellations of the flat torus T2. The numerically
integrated value of the second moment E[V 2

i ] = 1.280 found by [26] is plotted as a dashed line in the left plot. The experimentally
determined shape parameter k = 3.315 of the generalized-gamma fit found by [27] is plotted as a dashed line in the middle plot.

V. COMPUTATIONAL METHODS

A. Validation of the numerical method for Poisson-Voronoi tessellations

Let Vi be the measure (area, volume, etc.) of the typical Poisson-Voronoi cell. While the distribution of Vi is
presently unknown, exact second moments of Vi in R2 and R3 are known [26], facilitating comparison with numerical
study. Large simulations [27, 28] with n > 106 cells have found that gamma distributions, and in particular a
3-parameter generalization [27]

fY;k,λ,a
(v) =

aλk/avk−1e−λva

Γ(k/a)
(S69)

achieve good maximum-likelihood fit to data with < 1% error relative to the analytical second moment. In Fig. S2,
the estimated second moment ⟨V 2

i ⟩, shape parameter k, and CDF root mean square error are displayed for 500 trials

of N
pdf∼ Poisson(103) points. The average empirical, gamma, and beta second moments show good agreement with

Gilbert’s [26] numerically integrated value of 1.280 and are within 1% relative error, validating the numerical method.
The estimated value of k ≈ 3.7 for gamma on the torus T is consistent with prior results finding k ≈ 3.6 [29] in the
plane R2. On the other hand, the estimated value of k ≈ 3.2 for beta is lower than gamma and closer to Tanemura’s
[27] generalized-gamma (S69) fit finding k = 3.315, suggesting that a beta hypothesis is a good substitute for the
generalized gamma distribution. Lastly, we observe that the beta RMSE is slightly decreased compared to gamma.

B. Fitting ellipsoids in d dimensions

Let x, v be vectors in some d-dimensional basis. The equation of a (d− 1)-sphere S centered at v is

∥x− v∥22 = 1 ∀x ∈ S. (S70)

Applying a rotation P (an orthogonal matrix) of the sphere onto a set of principal axes and stretching along those
axes by Λ (a positive diagonal matrix), one generalizes (S70) to an ellipsoid E via a symmetric positive-definite matrix
M = PΛP ⊺ such that x satisfies

(x− v)⊺M(x− v) = 1 ∀x ∈ E. (S71)

The elliptic radii ri are then ri = Λ
− 1

2
ii and the elliptic axes are the columns of P .
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1. Minimum-volume bounding ellipsoid

Given the volume V

V ∝
d∏

i=1

ri =
√
det(M−1), (S72)

it follows that maximizing log det(M) minimizes V . Hence for a given dataset {xi}ni=1, the following convex program
computes the minimum-volume bounding ellipsoid:

sup
M,v

log det(M) (S73)

subject to (xi − v)⊺M(x− vi) ≤ 1 ∀i (S74)

M > 0. (S75)

Here, M > 0 is in the sense of linear matrix inequality (LMI), i.e. M is constrained to lie in the positive-definite
cone. However, the offset xi−v produces a variable-product constraint which is not disciplined-convex. The following
reparametrization uses the invertibility of M to eliminate the product from the problem:

sup
A,b

log det(A) (S76)

subject to ∥Axi − b∥22 ≤ 1 ∀i (S77)

A > 0 (S78)

M = A2 = A⊺A (S79)

v = A−1b. (S80)

DCP solvers such as CVXOPT [38] solve this problem. We reduce the problem size by considering the subset of X
lying on the convex hull, computed in O(n log n).

2. Minimal ℓ2-distance projection to ellipsoid

Given a representation of an ellipsoid as (M, v) in the same basis as x, define the following convex program:

inf
Ŷ

∥∥∥Ŷ − X̂
∥∥∥
2

2
(S81)

subject to ∥Ax̂i∥22 = 1 ∀i (S82)

A⊺A = A2 = M (S83)

X̂ = X − v (S84)

Ŷ = Y − v, (S85)

with A computed either by (Hermitian) eigendecomposition or Cholesky factorization of M . Then Y is the minimum-
ℓ2-distance projection ofX onto (M, v). This problem is not DCP; however, since there are no matrix cone constraints,
we can simply use non-DCP solvers compatible with nonlinear constraints, such as SLSQP [39]. The constraint
Jacobian for (S82) is 2Mx̂i.

C. Fitting hyperplanes in d dimensions

The equation of a hyperplane H in d dimensions is

n · (x− v) = 0 ∀x ∈ H (S86)

for n, v ∈ Rd. Without loss of generality, we may assume that ∥n∥ = 1, so that n is a unit normal to H; expressing
H in the form

n · x− b = 0 (S87)
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(a) (b) (c) (d)

FIG. S3. Computational pipeline for extracting geometric features of V. carteri. (a) The somatic cell positions, available from
[5], displayed in three-dimensional space. (b) The minimum-volume bounding ellipsoid containing the somatic cells is computed
as in Section VB1. This establishes the approximate anterior-posterior axis of the spheroid. (c) The ℓ2-orthogonal projection
of the somatic cell positions X to this ellipsoid are computed as in Section VB2, and the Delaunay tetrahedralization of this
projected point cloud X̂ is computed. As X̂ is now its own convex hull, the index triplets corresponding to the triangular faces
lying on the convex hull of the tetrahedral complex are taken to be an approximate Delaunay triangulation of the original point
cloud X. (d) An approximate Voronoi tessellation of the surface is computed by sub-triangulating the Delaunay triangulation,
connecting the circumcenters of adjacent triangular faces. The best-fit planes approximating these curved faces are computed
as in Section VC, and the corresponding planar embeddings are treated as closed plane curves for downstream analysis as in
Section III.

we see that b = n · v is the distance from the origin to H. It further follows that the distance from an arbitrary point
y ∈ Rd to the plane is

d(y,H) = |n · (y − v)| = |n · y − b| . (S88)

Now, let {xi}Ni=1 = X ∈ RN×d be a set of data points with N ≥ 3. The best-fit hyperplane (in the ℓ2 sense) is

inf
n,v

∥(X − v)n∥22 (S89)

subject to ∥n∥2 = 1. (S90)

The cost is bi-convex in the parameters v and n. Calculating the gradient of the cost with respect to v, we find:

0 =
∂

∂v
∥(X − v)n∥22 =

N∑

i=1

(xi − v) (S91)

Thus v = 1
N

∑N
i=1 xi is the centroid. Letting X = X − v, the gradient of the cost with respect to n is:

0 =
∂

∂n

∥∥Xn
∥∥2
2
= 2X

⊺
Xn (S92)

A common numerically stable method to estimate n is the singular vector of X corresponding to the smallest singular
value, which is 0 if {xi} are coplanar. Moreover, by (S88) it follows that the ℓ2-orthogonal projection of X onto H is

Y = X − (X − v)nn⊺. (S93)

Let u ∈ Rd be a random vector such that u × n ̸= 0 (e.g. a Gaussian vector, for which this is almost surely true);
then a planar embedding XH of X is defined by a random orthonormal basis:

B =
1

∥v∥
[
v v × n

]
, v = u× n, (S94)

XH = XB. (S95)
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D. 3D reconstruction & analysis of Volvox

First, 3D meshes and an ellipsoidal approximation of the organism’s surface are constructed using the procedure
detailed in Figure S3. Then, the anterior section—typically free of reproductive cells (gonidia) which interrupt the
positions of somatic cells at the surface—is determined by separating cells into two subsets lying on either side of
the plane normal to the ellipsoid’s major axis. The subset with smaller cell counts is used as a (generally good)
approximation of the anterior side. Finally, the areas of the Voronoi faces are converted to solid-angles (4π times the
area fraction of total) and are filtered by the cutoff vc = 0.007 specified in [5]. The empirical area distribution for
each organism is shifted by this cutoff and nondimensionalized to empirical mean 1, at which point they are combined
across all 6 organisms.
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