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A general continuum theory for the distribution of hairs in a bundle is developed, treating indi-
vidual fibers as elastic filaments with random intrinsic curvatures. Applying this formalism to the
iconic problem of the ponytail, the combined effects of bending elasticity, gravity, and orientational
disorder are recast as a differential equation for the envelope of the bundle, in which the compress-
ibility enters through an ‘equation of state’. From this, we identify the balance of forces in various
regions of the ponytail, extract a remarkably simple equation of state from laboratory measurements
of human ponytails, and relate the pressure to the measured random curvatures of individual hairs.

PACS numbers: 87.19.R-, 46.65.+g, 05.45.–a

One of the most familiar features of a bundle of hair
such as a ponytail is its ‘body’ or ‘volume.’ Close ex-
amination reveals that this property arises in a sub-
tle way from the stiffness and shapes of the individual
fibers, whose meandering paths through the bundle pro-
duce many collisions with other hairs (Fig. 1). These
meanderings are in part a consequence of the contacts
themselves, but hairs also have an intrinsic waviness or
curliness [1, 2]. Such curvatures may be generated dur-
ing growth, and vary with ethnicity. They are clearly also
modified by chemical, thermal, and mechanical forces, as
in the ‘water wave’ treatment, or a ‘perm’ [1].

From Leonardo to the Brothers Grimm our fascination
with hair has endured in art and science [3, 4]. Yet,
we still do not have an answer to perhaps the simplest
question that captures the competing effects of filament
elasticity, gravity, and mutual interactions: What is the
shape of a ponytail? Note that the average human has
∼ 105 head hairs, so if even a modest fraction is gathered
into a ponytail, the number involved is enormous: this is
a problem in statistical physics.

Here we propose a theory for the ponytail shape on the
basis of a continuum theory for the spatial distribution of
hairs in a bundle. Their random curvatures give rise to a
swelling pressure characterized by an ‘equation of state’
(EOS) of hair, a concept first introduced semi-empirically
by van Wyk in 1946 in relation to the compressibility of
wool [5, 6], and explored recently for two-dimensional
randomly-curved fibers by Beckrich et al. [7]. We ex-
ploit the predominantly vertical alignment of hairs and
axisymmetry to justify a number of approximations that
render the problem analytically tractable, and thereby
reduce the many-body problem to a one-body problem
for the ponytail envelope. This shows how the EOS mod-
ifies the envelope shape from that of a single hair bent
by gravity, a classic problem in elasticity [2].

In parallel with the theoretical development, we mea-
sured the shapes of ponytails made from commercially

available hair ‘switches’ [8], and of their component
fibers. Typical human hair has an elliptical cross section
and a distribution of major axis diameters 40 . d . 140
µm. We found d = 79 ± 16µm for a random sam-
ple from the switches. Hair has an average density of
' 1.3 g/cm3 [1], and a linear mass density λ ' 65µg/cm
(in more amusing units, 6.5 g/km). Though its inter-
nal microstructure is complex, the bend and twist mod-
uli of hairs [1] are consistent with those of a homoge-
neous incompressible material with a nylon-like modu-
lus E ≈ 4 GPa. On the centimeter scale classical fil-
ament elasticity holds, with a bending modulus A =
Eπd4/64 ≈ 8 × 10−9 N m2. The quantities λ and A and
the acceleration of gravity g combine to form the length
` = (A/λg)1/3 ≈ 5 cm on which gravity bends a hair [2].

Individual hairs display a range of shapes (Fig. 2a)
which we have quantified by high-resolution stereoscopic
imaging [9]. Both the mean squared curvature 〈κ0(s)2〉

FIG. 1: (color online) A ponytail. (a) Rotationally-averaged
image of a switch of N ≈ 9500 fibers, approximately 25 cm
long. Coordinate system for envelope shape R(s) in terms of
arc length s(z). (b) Meanderings of hairs near ponytail edge.
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FIG. 2: (color online) Geometry of hairs. (a) Representative projections of hair contours, thickened for clarity. (b) Mean squared
radial excursion and curvature as functions of arc length, from processing stereoscopic image pairs [9]. The reconstructed arc
lengths cluster tightly around 24.50 ± 0.05 cm (inset histogram), demonstrating the accuracy of the image processing and
analysis methodology. Error bars are standard errors from ensemble averaging (N = 115 fibers in total).

and the radial excursion 〈r0(s)2〉 increase with arclength
s measured from the top of the switch (Fig. 2b). Whilst
some of this is undoubtedly due to gravity (recall ` ≈
5 cm), the major part is intrinsic, as we have verified
by examining inverted hairs. This is in part due to the
preparation process: after washing and rinsing, the hairs
in a drying ponytail pass through a glass transition with
decreasing humidity [1], locking in the intrinsic curva-
ture [10], which is naturally reduced in the vicinity of the
clamp due to confinement by neighboring filaments. Al-
though this is something of a complication when it comes
to interpreting the results, we must regard it as an essen-
tial feature of hair switches and ponytails comprised of
real fibers. For later reference, the length-wise averages
are 〈κ20〉 = 0.15± 0.01 cm−2 and 〈r20〉 = 0.80± 0.05 cm2.

Figure 3a shows measured profiles of radius R(z) vs
distance z below the clamp for four separate switches of
length L ≈ 25 cm. Each profile has been obtained from
the rotational average of five images as in Fig. 1a viewed
from angles 72◦ apart. The switch profile shows quite
good reproducibility and is well modeled and explained
by the theory we now describe. Our starting point for
the continuum theory is to introduce the fiber length
density ρ(r) (the number of fibers per unit area inter-
secting a plane perpendicular to the fibers) and the mean
fiber tangent vector t(r), the local average of unit vec-
tors along the fibers. The latter is a meaningful quantity
when the fiber orientation remains coherent over length
scales much larger than the mean fiber spacing ρ−1/2.
Here the fibers are indeed well-aligned, with t ≡ |t| ≈ 1,
unlike in non-woven fabrics [11]. In the absence of fiber
ends in the bulk these continuum fields obey a continu-
ity equation ∇ · (ρ t) = 0. The analogy to the continu-
ity equation of fluid mechanics mathematizes the remark
made by Leonardo at the beginning of the 16th century,

that hair resembles fluid streamlines [3], an observation
which has been exploited in more recent times to aid com-
puter animation [4]. For later use we also define the local
packing fraction φ = πρd2/4. We propose the energy of
an axisymmetric fiber bundle is

E [ρ, t] =

∫
d3r ρ

(
1

2
Aκ2 + ϕ(r) + 〈u〉

)
, (1)

where κ = |(t ·∇)t| is the curvature field. The terms in
(1) are the elastic energy of mean curvature, the external
(e.g. gravitational) potential ϕ, and a fiber confinement
energy per unit length 〈u〉 that aggregates all terms in-
volving disorder, such as contacts and natural curvatures.
Without axisymmetry, (1) should include terms arising
from the torsion of t. As in density functional theory
[12], we suppose that 〈u〉 is some local function of ρ.
Minimization of (1) provides a variational principle for
the bundle shape and the distribution of fibers. When
recast as mechanical force balance we make contact with
the EOS, and identify P (ρ) = ρ2d〈u〉/dρ as the pressure.

To address the specific problem of ponytail shapes we
now introduce models which allow for largely analyti-
cal calculations. With axisymmetry, an integrated form
of the continuity equation is 2πrρ sin θ = −∂n/∂z and
2πrρ cos θ = ∂n/∂r, where n(r, z) is the number of fibers
within a radius r at depth z and θ is the angle the tangent
vector makes to the vertical. (n(r, z) plays the role of the
stream function in fluid mechanics.) We insert this into
Eq. (1), and use a trial uniform radial density function
with self-similar form, n(r, z) = N [r/R(z)]2 where N is
the total number of fibers and R(z) is the ponytail radius
(Fig. 1a). In practice it is more convenient to use R(s),
where s(z) is the arclength from the clamp. If L is the
fully-extended hair length and ϕ = λgz the gravitational
potential energy, then to second order in Rs ≡ dR/ds,
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FIG. 3: (color online) Analysis of ponytail shapes. (a) Measured hair switch profiles (thin black lines), compared to the
prediction of Eq. (3) with Π(R) as given (solid blue line), with Π(R) = 0 (dashed blue line), and with the van Wyk EOS
(dashed red line) [5, 13] (b) Dimensionless swelling pressure Π(R) from cubic and quartic fits to the measured profiles, using
procedure outlined in the text. (c) The magnitude of the four terms in Eq. (3) for the calculated profile (solid blue line) in (a).

neglecting a small splay term, one finds

E = N

∫ L

0

ds

[
1

2
ÃR2

ss +
1

2
λ̃g(L− s)R2

s + 〈u〉
]
, (2)

where 〈u〉 depends on ρ = N/(πR2). The problem is
now mapped to an equivalent single fiber hanging under
gravity in the presence of a radial force field derived from
〈u〉. The uniform distribution in the trial density func-
tion yields renormalized material properties Ã = A/2
and λ̃ = λ/2. Minimizing Eq. (2) leads to

`3Rssss − (L− s)Rss +Rs −Π(R) = 0 (3)

where Π(R) = 4`3P/AρR = −(2`3/A) d〈u〉/dR. We
term this the ponytail shape equation. It describes a force
balance on a length element of the notionally equivalent
single fiber as the sum of four dimensionless terms which
are, respectively, an elastic restoring force, a ‘string ten-
sion’ contribution, a weight term, and a radial swelling
force corresponding to a pressure gradient P/R per unit
fiber density. The ratio Ra ≡ L/` we shall term the Ra-
punzel number, since it is a dimensionless measure of the
ponytail length. When the ponytail hangs from a cir-
cular clamp of radius Rc, the boundary conditions are
R(0) = Rc and Rs(0) = tan θc where θc is the ‘launch’
angle of the outermost fibers emerging from the clamp.
At the free bottom of the ponytail the boundary condi-
tions are Rss(L) = Rsss(L) = 0. To the order at which
we are working, (3) is supplemented by zs ' 1−R2

s/2 to
give the parametric ponytail shape (z(s), R(s)).

Fitting the above theory to the experimental ponytail
profiles in Figure 3a reveals a remarkably simple form
for the pressure Π(R). While the full Eq. (3) can in
principle be used to determine Π(R) from the profiles,
the extraction of high-order derivatives from such data
is notoriously problematic. We notice though that, away
from the clamp, Rssss is likely to be subdominant to

the other terms in Eq. (3) and therefore we can neglect
this elastic term and approximate Π(R) ' Rs − (L −
s)Rss, where the right-hand-side is obtained by a low-
order polynomial fit to the data. Figure 3b shows that
in this region the EOS is accurately represented by

Π(R) = Π0(1−R/R∗) , (4)

with Π0 ≈ 0.85 and R∗ ≈ 6 cm. Inserting this into Eq. (3)
and now including the elastic term recovers the solid blue
line in Fig. 3a, in excellent agreement with the data (by
contrast the van Wyk EOS simply cannot be made to
fit the data [13]). In making these calculations we use
Rc ≈ 4 mm and θc ≈ 17◦, obtained from measurements
near the clamp. The starting radius Rc corresponds to
φ ≈ 0.95, consistent with the near close packing of the
fibers, whilst the starting angle θc is presumably governed
by the method of clamping (in our case a rubber band
wrapped several times around the top of the switch).

Figure 3c shows the magnitudes of the terms in Eq. (3).
In the region near the clamp (s . 2 cm), elasticity and
pressure balance, but for the most part the dominant
balance is between weight and pressure, justifying our
claim that the elastic term is subdominant away from
the clamp. The blue dashed line in Fig. 3a is the profile
for Π(R) = 0. Since Ra ≈ 5 is quite large, this shape is
dominated by gravity. Comparing the dashed and solid
blue lines in Fig. 3a highlights again the dominant role
played by the swelling pressure in determining the shape.

Given Π(R), the shape of any ponytail can be pre-
dicted. Thus we are led to a kind of experimentum cru-
cis, shown in Fig. 4, in which the predictions of Eq. (3)
are compared to the profiles of progressively cut hair
switches. The agreement is very good. We observe em-
pirically that the launch angle θc is remarkably constant
at 17◦, only decreasing to 16◦ for the shortest hair switch
(all calculations used θc = 17◦). The calculated profiles
show a modest compaction on increasing length, while
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FIG. 4: Trimming a ponytail. (a) Superimposed rotationally-
averaged outlines of four hair switches, cut down from 25 cm
in steps of 5 cm. (b) Predicted profiles from Eq. (3) with
Π(R) = Π0(1 −R/R∗). (c) Predicted profiles with Π(R, s) =
Π0(1 −R/R∗) × 2s/L∗ where L∗ = 25 cm.

the experimental profiles almost completely collapse on
top of one another. This is not an effect of plasticity [11]
since the switches are compressed in the cutting stage.
The predicted profiles can similarly collapse (Fig. 4c), by
allowing for an additional length dependence reflecting
the gradient in the intrinsic fiber properties (Fig. 2b).

How are we to interpret the EOS recovered by this
analysis? We propose that it can be associated with the
intrinsic curvatures of the filaments. Let us imagine that
the effects of collisions with neighboring fibers can be
captured by a tube model. Specifically, consider a helical
fiber [14] of radius a0 confined within a cylinder of ra-
dius a < a0, for which 〈u〉 ≈ A〈κ20〉(1− a/a0)2/2 (this is
not exact but is quite accurate). Matching this to 〈u〉 =
(A/2`3)

∫∞
R

Π(R) dR, obtained by integrating the expres-
sion below Eq. (3), and inserting our empirical Π(R) gives
a/a0 ≈ 1−α+αR/R∗ where α =

√
Π0R∗/2`3〈κ20〉 ≈ 0.4.

If we additionally suppose a20 ≈ 〈r20〉 then for instance at
the clamp (R = Rc) the confining tube radius a ≈ 6 mm.
This seems to be in reasonable accord with observations,
(see e. g. Fig. 1b). In the tube model, the pressure thus
arises from increasing confinement of the fibers but they
are still far from being completely straightened, even at
high compression. This is perhaps not surprising consid-
ering the role that must eventually be played by friction.

Of the existing EOS theories, that of van Wyk does not
fit our data (red dashed line, Fig. 3a), nor does it have an
explicit link to the random curvatures. The fiber-collision
model [7] can be extended to three dimensions, but the
link to the underlying statistical properties becomes very
unwieldy. More importantly, in that model fiber excur-
sions are limited by nearest-neighbor collisions. This is
not necessarily the case in three dimensions, and in fact
is not supported by our data. Hence the microscopic link
between fiber confinement and packing fraction remains
an important open problem. Interestingly both the tube
model and the collision model predict that the pressure

remains finite on approach to the close packing limit, in
marked contrast to thermal systems of hard particles.
Thus, a bundle can be collapsed by sufficiently strong
inter-fiber attractions, such as the capillary forces acting
on wet hair [15] or a paintbrush.

The program laid out here extends some central
paradigms in statistical physics to the enchanting prob-
lem of ponytail shapes. The remarkably simple equation
of state we have found, along with the systematic vari-
ation of intrinsic curvature along fibers, may open the
way to understanding a wide range of hair and fur ge-
ometries. It is also of interest to extend the analysis to
the dynamics of fiber bundles, epitomized by the ‘swing’
of a ponytail [16], where the notion of an equivalent single
fiber may again prove fruitful.
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