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A general continuum theory for the distribution of hairs in a bundle is developed, treating individual

fibers as elastic filaments with random intrinsic curvatures. Applying this formalism to the iconic problem

of the ponytail, the combined effects of bending elasticity, gravity, and orientational disorder are recast as

a differential equation for the envelope of the bundle, in which the compressibility enters through an

‘‘equation of state.’’ From this, we identify the balance of forces in various regions of the ponytail, extract

a remarkably simple equation of state from laboratory measurements of human ponytails, and relate the

pressure to the measured random curvatures of individual hairs.
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One of the most familiar features of a bundle of hair such
as a ponytail is its ‘‘body’’ or ‘‘volume.’’ Close examina-
tion reveals that this property arises in a subtle way from
the stiffness and shapes of the individual fibers, whose
meandering paths through the bundle produce many colli-
sions with other hairs (Fig. 1). These meanderings are in
part a consequence of the contacts themselves, but hairs
also have an intrinsic waviness or curliness [1,2]. Such
curvatures may be generated during growth, and vary with
ethnicity. They are clearly also modified by chemical,
thermal, and mechanical forces, as in the ‘‘water wave’’
treatment, or a ‘‘perm’’ [1].

From Leonardo to the Brothers Grimm our fascination
with hair has endured in art and science [3,4]. Yet, we still
do not have an answer to perhaps the simplest question that
captures the competing effects of filament elasticity, grav-
ity, and mutual interactions: what is the shape of a pony-
tail? Note that the average human has �105 head hairs, so
if even a modest fraction is gathered into a ponytail, the
number involved is enormous: this is a problem in
statistical physics.

Here we propose a theory for the ponytail shape on the
basis of a continuum theory for the spatial distribution of
hairs in a bundle. Their random curvatures give rise to a
swelling pressure characterized by an ‘‘equation of state’’
(EOS) of hair, a concept first introduced semiempirically
by van Wyk in 1946 in relation to the compressibility of
wool [5,6], and explored recently for two-dimensional
randomly curved fibers by Beckrich et al. [7]. We exploit
the predominantly vertical alignment of hairs and axisym-
metry to justify a number of approximations that render the
problem analytically tractable, and thereby reduce the
many-body problem to a one-body problem for the pony-
tail envelope. This shows how the EOS modifies the enve-
lope shape from that of a single hair bent by gravity, a
classic problem in elasticity [2].

In parallel with the theoretical development, we mea-
sured the shapes of ponytails made from commercially
available hair ‘‘switches’’ [8], and of their component
fibers. Typical human hair has an elliptical cross section
and a distribution of major axis diameters 40 & d &
140 �m. We found d ¼ 79� 16 �m for a random sample
from the switches. Hair has an average density of ’
1:3 g=cm3 [1], and a linear mass density � ’ 65 �g=cm
(in more amusing units, 6:5 g=km). Though its internal
microstructure is complex, the bend and twist moduli of
hairs [1] are consistent with those of a homogeneous
incompressible material with a nylonlike modulus
E � 4 GPa. On the centimeter scale classical filament
elasticity holds, with a bending modulus A ¼ E�d4=64 �
8� 10�9 Nm2. The quantities � and A and the

FIG. 1 (color online). A ponytail. (a) Rotationally averaged
image of a switch of N � 9500 fibers, approximately 25 cm
long. Coordinate system for envelope shape RðsÞ in terms of arc
length sðzÞ. (b) Meanderings of hairs near ponytail edge.

PRL 108, 078101 (2012) P HY S I CA L R EV I EW LE T T E R S
week ending

17 FEBRUARY 2012

0031-9007=12=108(7)=078101(4) 078101-1 � 2012 American Physical Society

http://dx.doi.org/10.1103/PhysRevLett.108.078101


acceleration of gravity g combine to form the length ‘ ¼
ðA=�gÞ1=3 � 5 cm on which gravity bends a hair [2].

Individual hairs display a range of shapes [Fig. 2(a)]
which we have quantified by high-resolution stereoscopic
imaging [9]. Both the mean squared curvature h�0ðsÞ2i and
the radial excursion hr0ðsÞ2i increase with arclength s
measured from the top of the switch [Fig. 2(b)]. While
some of this is undoubtedly due to gravity (recall ‘ �
5 cm), the major part is intrinsic, as we have verified by
examining inverted hairs. This is in part due to the prepa-
ration process: after washing and rinsing, the hairs in a
drying ponytail pass through a glass transition with de-
creasing humidity [1], locking in the intrinsic curvature
[10], which is naturally reduced in the vicinity of the clamp
due to confinement by neighboring filaments. Although
this is something of a complication when it comes to
interpreting the results, we must regard it as an essential
feature of hair switches and ponytails composed of real
fibers. For later reference, the lengthwise averages are
h�2

0i ¼ 0:15� 0:01 cm�2 and hr20i ¼ 0:80� 0:05 cm2.

Figure 3(a) shows measured profiles of radius RðzÞ vs
distance z below the clamp for four separate switches of
length L � 25 cm. Each profile has been obtained from the
rotational average of five images as in Fig. 1(a) viewed
from angles 72� apart. The switch profile shows quite good
reproducibility and is well modeled and explained by the
theory we now describe. Our starting point for the contin-
uum theory is to introduce the fiber length density �ðrÞ (the
number of fibers per unit area intersecting a plane perpen-
dicular to the fibers) and the mean fiber tangent vector tðrÞ,
the local average of unit vectors along the fibers. The latter
is a meaningful quantity when the fiber orientation remains
coherent over length scales much larger than the mean fiber

spacing ��1=2. Here the fibers are indeed well aligned, with
t � jtj � 1, unlike in nonwoven fabrics [11]. In the ab-
sence of fiber ends in the bulk these continuum fields obey

a continuity equation r � ð�tÞ ¼ 0. The analogy to the
continuity equation of fluid mechanics mathematizes the
remark made by Leonardo at the beginning of the 16th
century, that hair resembles fluid streamlines [3], an ob-
servation which has been exploited in more recent times to
aid computer animation [4]. For later use we also define the
local packing fraction � ¼ ��d2=4. We propose the
energy of an axisymmetric fiber bundle is

E ½�; t	 ¼
Z

d3r�

�
1

2
A�2 þ ’ðrÞ þ hui

�
; (1)

where � ¼ jðt � rÞtj is the curvature field. The terms in (1)
are the elastic energy of mean curvature, the external (e.g.,
gravitational) potential ’, and a fiber confinement energy
per unit length hui that aggregates all terms involving
disorder, such as contacts and natural curvatures. Without
axisymmetry, (1) should include terms arising from the
torsion of t. As in density functional theory [12], we
suppose that hui is some local function of �.
Minimization of (1) provides a variational principle for
the bundle shape and the distribution of fibers. When recast
as mechanical force balance we make contact with the
EOS, and identify Pð�Þ ¼ �2dhui=d� as the pressure.
To address the specific problem of ponytail shapes we

now introduce models which allow for largely analytical
calculations. With axisymmetry, an integrated form of the
continuity equation is 2�r� sin� ¼ �@n=@z and
2�r� cos� ¼ @n=@r, where nðr; zÞ is the number of fibers
within a radius r at depth z and � is the angle the tangent
vector makes to the vertical. [nðr; zÞ plays the role of
the stream function in fluid mechanics.] We insert this
into Eq. (1), and use a trial uniform radial density function
with self-similar form, nðr; zÞ ¼ N½r=RðzÞ	2, where N is
the total number of fibers and RðzÞ is the ponytail radius
[Fig. 1(a)]. In practice it is more convenient to use RðsÞ,
where sðzÞ is the arclength from the clamp. If L is the

FIG. 2 (color online). Geometry of hairs. (a) Representative projections of hair contours, thickened for clarity. (b) Mean squared
radial excursion and curvature as functions of arc length, from processing stereoscopic image pairs [9]. The reconstructed arc lengths
cluster tightly around 24:50� 0:05 cm (inset histogram), demonstrating the accuracy of the image processing and analysis
methodology. Error bars are standard errors from ensemble averaging (N ¼ 115 fibers in total).

PRL 108, 078101 (2012) P HY S I CA L R EV I EW LE T T E R S
week ending

17 FEBRUARY 2012

078101-2



fully extended hair length and ’ ¼ �gz the gravitational
potential energy, then to second order in Rs � dR=ds,
neglecting a small splay term, one finds

E ¼ N
Z L

0
ds

�
1

2
~AR2

ss þ 1

2
~�gðL� sÞR2

s þ hui
�
; (2)

where hui depends on �� ¼ N=ð�R2Þ. The problem is now
mapped to an equivalent single fiber hanging under gravity
in the presence of a radial force field derived from hui. The
uniform distribution in the trial density function yields

renormalized material properties ~A ¼ A=2 and ~� ¼ �=2.
Minimizing Eq. (2) leads to

‘3Rssss � ðL� sÞRss þ Rs ��ðRÞ ¼ 0; (3)

where�ðRÞ ¼ 4‘3P=A ��R ¼ �ð2‘3=AÞdhui=dR. We term
this the ponytail shape equation. It describes a force bal-
ance on a length element of the notionally equivalent single
fiber as the sum of four dimensionless terms which are,
respectively, an elastic restoring force, a ‘‘string tension’’
contribution, a weight term, and a radial swelling force
corresponding to a pressure gradient P=R per unit fiber
density. The ratio Ra � L=‘ we shall term the Rapunzel
number, since it is a dimensionless measure of the ponytail
length. When the ponytail hangs from a circular clamp of
radius Rc, the boundary conditions are Rð0Þ ¼ Rc and
Rsð0Þ ¼ tan�c, where �c is the ‘‘launch’’ angle of the
outermost fibers emerging from the clamp. At the free
bottom of the ponytail the boundary conditions are
RssðLÞ ¼ RsssðLÞ ¼ 0. To the order at which we are work-
ing, (3) is supplemented by zs ’ 1� R2

s=2 to give the
parametric ponytail shape [zðsÞ, RðsÞ].

Fitting the above theory to the experimental ponytail
profiles in Fig. 3(a) reveals a remarkably simple form for
the pressure �ðRÞ. While the full Eq. (3) can in principle
be used to determine�ðRÞ from the profiles, the extraction
of high-order derivatives from such data is notoriously
problematic. We notice though that, away from the clamp,
Rssss is likely to be subdominant to the other terms in
Eq. (3) and therefore we can neglect this elastic term and

approximate �ðRÞ ’ Rs � ðL� sÞRss, where the right-
hand side is obtained by a low-order polynomial fit to the
data. Figure 3(b) shows that in this region the EOS is
accurately represented by

�ðRÞ ¼ �0ð1� R=R
Þ; (4)

with�0 � 0:85 and R
 � 6 cm. Inserting this into Eq. (3)
and now including the elastic term recovers the solid blue
line in Fig. 3(a), in excellent agreement with the data (by
contrast the van Wyk EOS simply cannot be made to fit the
data [13]). In making these calculations we use Rc �
4 mm and �c � 17�, obtained from measurements near
the clamp. The starting radius Rc corresponds to� � 0:95,
consistent with the near close packing of the fibers, while
the starting angle �c is presumably governed by the method
of clamping (in our case a rubber band wrapped several
times around the top of the switch).
Figure 3(c) shows the magnitudes of the terms in Eq. (3).

In the region near the clamp (s & 2 cm), elasticity and
pressure balance, but for the most part the dominant bal-
ance is between weight and pressure, justifying our claim
that the elastic term is subdominant away from the clamp.
The lower blue dashed line in Fig. 3(a) is the profile for
�ðRÞ ¼ 0. Since Ra � 5 is quite large, this shape is domi-
nated by gravity. Comparing the dashed and solid blue
lines in Fig. 3(a) highlights again the dominant role played
by the swelling pressure in determining the shape.
Given�ðRÞ, the shape of any ponytail can be predicted.

Thus we are led to a kind of experimentum crucis, shown in
Fig. 4, in which the predictions of Eq. (3) are compared to
the profiles of progressively cut hair switches. The agree-
ment is very good. We observe empirically that the launch
angle �c is remarkably constant at 17�, only decreasing to
16� for the shortest hair switch (all calculations used �c ¼
17�). The calculated profiles show a modest compaction on
increasing length, while the experimental profiles almost
completely collapse on top of one another. This is not an
effect of plasticity [11] since the switches are compressed
in the cutting stage. The predicted profiles can similarly

FIG. 3 (color online). Analysis of ponytail shapes. (a) Measured hair switch profiles (thin black lines), compared to the prediction of
Eq. (3) with �ðRÞ as given (solid blue line), with �ðRÞ ¼ 0 (lower dashed blue line), and with the van Wyk EOS (upper dashed red
line) [5,13]. (b) Dimensionless swelling pressure �ðRÞ from cubic and quartic fits to the measured profiles, using the procedure
outlined in the text. (c) The magnitude of the four terms in Eq. (3) for the calculated profile (solid blue line) in (a).
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collapse [Fig. 4(c)], by allowing for an additional length
dependence reflecting the gradient in the intrinsic fiber
properties [Fig. 2(b)].

How are we to interpret the EOS recovered by this
analysis? We propose that it can be associated with the
intrinsic curvatures of the filaments. Let us imagine that the
effects of collisions with neighboring fibers can be cap-
tured by a tube model. Specifically, consider a helical fiber
[14] of radius a0 confined within a cylinder of radius
a < a0, for which hui � Ah�2

0ið1� a=a0Þ2=2 (this is not

exact but is quite accurate). Matching this to hui ¼
ðA=2‘3ÞR1

R �ðRÞdR, obtained by integrating the expres-

sion below Eq. (3), and inserting our empirical�ðRÞ gives
a=a0 � 1� �þ �R=R
 where � ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�0R


=2‘3h�2
0i

q
�

0:4. If we additionally suppose a20 � hr20i then, for instance,
at the clamp (R ¼ Rc) the confining tube radius a �
6 mm. This seems to be in reasonable accord with obser-
vations [see, e.g., Fig. 1(b)]. In the tube model, the pressure
thus arises from increasing confinement of the fibers but
they are still far from being completely straightened, even
at high compression. This is perhaps not surprising con-
sidering the role that must eventually be played by friction.

Of the existing EOS theories, that of van Wyk does not
fit our data [red dashed line, Fig. 3(a)], nor does it have an
explicit link to the random curvatures. The fiber-collision
model [7] can be extended to three dimensions, but the link
to the underlying statistical properties becomes very un-
wieldy. More importantly, in that model fiber excursions
are limited by nearest-neighbor collisions. This is not
necessarily the case in three dimensions, and in fact is
not supported by our data. Hence the microscopic link
between fiber confinement and packing fraction remains
an important open problem. Interestingly, both the tube
model and the collision model predict that the pressure
remains finite on approach to the close packing limit, in
marked contrast to thermal systems of hard particles. Thus,
a bundle can be collapsed by sufficiently strong interfiber

attractions, such as the capillary forces acting on wet hair
[15] or a paintbrush.
The program laid out here extends some central para-

digms in statistical physics to the enchanting problem of
ponytail shapes. The remarkably simple equation of state
we have found, along with the systematic variation of
intrinsic curvature along fibers, may open the way to
understanding a wide range of hair and fur geometries. It
is also of interest to extend the analysis to the dynamics of
fiber bundles, epitomized by the ‘‘swing’’ of a ponytail
[16], where the notion of an equivalent single fiber may
again prove fruitful.
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FIG. 4. Trimming a ponytail. (a) Superimposed
rotationally averaged outlines of four hair switches, cut down
from 25 cm in steps of 5 cm. (b) Predicted profiles from Eq. (3)
with �ðRÞ ¼ �0ð1� R=R
Þ. (c) Predicted profiles with
�ðR; sÞ ¼ �0ð1� R=R
Þ � 2s=L
, where L
 ¼ 25 cm.
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