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Orientational degrees of freedom of polymer subunits can be represented by q-state Potts variables in a lattice theory. 

As an example, a one-dimensional decorated-lattice model is introduced to describe the effects of a hydrogen-bonding sol- 

vent on helix-coil transitions of polypeptides. The results suggest that Potts variables provide a useful representation of 

highly directional interactions in a variety of systems. 

Hydrogen bonding has a central role in the thermo- 
dynamic properties of many organic liquids, liquid 
mixtures [l] , and biopolymeric systems [2] _ In addi- 
tion to the anomalous properties of pure (one-compo- 
nent) systems (e.g. the high boiling point of water), 
these interactions can lead to complicated phase equi- 

libria in the mixtures, and conformational equilibria in 
polymer solutions. 

The essential property of hydrogen bonds which is 
responsible for phenomena such as certain lower criti- 
cal solution points [3] and helix-coil transitions [4] 
is their high directional specificity, and resultant large 
(negative) entropy of formation. Statistical mechanical 
lattice models for these systems have been quite suc- 
cessful in describing the thermodynamics and phase 
transitions, either by putting in the low degeneracy of 
the bonding state by hand (as in the Zimm-Bragg [5] 
and other theories [2] ), or, more recently, by intro- 
ducing a statistical variable to represent molecular 
orientational degrees of freedom [6]. In particular, 
the coupled Ising-Potts models for lower critical solu- 
tion points in hydrogen-bonded mixtures, introduced 
by Walker and Vause [7-lo], represent orientations 
by q-state Potts [ 1 l] variables u = 1,2, . . . . 4. This is 
essentially a discretization of orientational phase space, 
such that 4n/q is the solid angle of acceptance of the 
bond. For a realistic description of such interactions, 
q is of the order of several hundred [8,9] . The Potts 
model coupling form, @ ,,iUi(for nearest neighbors i 

and j), embodies the low degeneracy of the bonding 
state (molecules in the same relative orientation, oi = 
ui) relative to the nonbonding states (uj # ui) for q S 1. 

The purpose of this letter is to show, by way of a 
simple, soluble model, that the use of Potts models to 
represent orientational degrees of freedom can be ex- 
tended to hydrogen bonding polymer systems, in 
which the important orientations are those of the polar 
groups of the monomer residues. This study was moti- 
vated by the striking similarity of so-called “inverted” 
helix-coil transitions and certain lower critical solu- 
tion points in binary liquid mixtures [IO] : In its con- 
ventional form, the helix-coil (hc) transition of a po- 
lypeptide is readily understood to result from the 
competition between configurational entropy, leading 
to the disordered random coil at high temperatures, 
and hydrogen bonding energetics, stabilizing the helix 
at low temperatures. While in many systems the helix 
is the stable, low temperature configuration, there are 
some which have inverted transitions, with the helical 
state at higher T. Of course, at sufficiently high T, the 
chain again disorders. The original work of Doty and 
Yang [ 121 on poly-y-benzyl-L-glutamate in ethylene 
dichloride + dichloroacetic acid showed this. The inver- 
sion is understood by considering that, in a hydrogen 
bonding solvent, the heat of desorption of that solvent 
must be supplied if the amino acid residues are to be 
free to bond to one another and stabilize the helix [2, 
51. Thus, while the low-temperature chain configura- 
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tion is helically disordered, the system is highly cor- 
related, through polymer-solvent hydrogen bonds 
which freeze-out orientational freedom, and lower 
the total entropy. 

Turning now to critical solution points in binary 
(At B) liquid mixtures, we see tremendous similarities. 
The normal transitions are upper critical solution 
points, explainable in terms of the competition be- 
tween mixing entropy and interparticle energetics. In 
many hydrogen-bonded mixtures, lower critical solu- 

tion temperatures (LCST) are seen, above which the 
system is phase separated and below which it is homo- 

geneous. As with inverted hc transitions, this low-tem- 
perature phase is macroscopically disordered (mixed), 
but microscopically correlated through A-B hydrogen 
bonds. The descreased orientational entropy at low 
temperatures compensates for the increased mixing 
entropy below the LCST [6-IO] . 

The theory of helix-coil transitions is well devel- 
oped [4] , and inverted transitions have been discussed 
in the context of other models, particularly by Gibbs 
and DiMarzio [ 131. In the present work, we will see 
that a natural description of the interplay of the orien- 
tational freedom of the monomer residues and nearby 
solvent molecules is found in the Potts models. 

To study the competition between helical ordering 
and polymer-solvent bonding, I adopt a simplified 
model of a polymer immersed in a hydrogen-bonding 
solvent (fig. 1). In actual polypeptides, the primary 
interactions are between amino acid residues separated 
by three residues, thus stabilizing the a-helix. These 
intervening residues give rise to the cooperative nature 
of the transition [2,4,5] , but are not essential to a 
description of the ordering process: To a first approxi- 
mation, the polymer consists of independent sublattices 
within which interaction are between nearest neigh- 

bors. The orientational state of each residue i (in par- 
ticular, the amide group involved in hydrogen bonding) 
is given by a Potts variable ui = 1, 2, . . . . 4. Associated 
with each site i is a nearby solvent molecule with its 
own orientational variable yi = 1,2, . . . . p. In general, 
4 # p since the residues have a different amount of 
freedom than the unconstrained solvent molecules 

[141. 
The hamiltonian describing the interactions of these 

degrees of freedom has two parts: 
(i) Adjacent polymer units in the proper relative 

orientation for hydrogen bonding, represented by 6 
OiOj 
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Fig. 1. Topology of interactions of hydrogen-bonding groups 

along polymer chain with solvent molecules. The variables pi 

and pi (i = site label) refer to the orientational state of the 

amino acid residue amide group and the solvent bonding site, 

respectively. 

= 1, have energy E,, (< 0). 

(ii) Polymer units hydrogen bonded to their neigh- 
bor&solvent molecules, represented by Ij,iNi= 1, 
have energy E,, (< 0). 

This latter interaction, of course, occurs only when 
the neighboring polymer units are not bonded to each 
other. Thus, the reduced hamiltonian is (/3 = l/kB7’) 

where the sum is over nearest neighbors i and j on the 
polymer chain, K = -/3Epp (> 0), J = -(3Eps (> 0), 
and the factor i is simply to ensure proper counting. 
Considering an isolated pair of polymer sites (t sol- 
vent), we see that the state of two polymer-solvent 
bonds is of much lower degeneracy, 4 (4 - I), than 
that of a polymer-polymer bond plus free solvent, 
q(p - 1)2. As the temperature is lowered, the ordered 
ground state will be helical (all Ui equal, pi random) 
if J/K > 1, and helically disordered (Ui random, ui = /Ji 
for all i) if J/K < 1. (See refs. [7-lo] for the analo- 
gous discussion for binary mixture LCSTs). As in the 
binary mixtures, the different degeneracy scales as- 
sociated with the two types of bonds establish two 
temperature scales for the onset of these correlations. 
Thus, even in a system with J/K > 1, substantial heli- 
cal ordering can occur at intermediate temperatures, 
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as observed experimentally [4,12]. 
The model described by eq. (1) is of a class known 

as “decorated-lattice” models [ 151 , and can be solved 
exactly in terms of the underlying Potts model of the 
polymer chain. The partition function is 

Z(K,J,p,q) 

= IFI bFI’exp]-P9QKJ; IOiI, cUj)>l , (2) 
5 2 

where the prime on the sum over solvent orientations 
excludes the unphysical states of adjacent polymer 
units bonded together and to the solvent. (This exclu- 
sion actually produces a very small effect for p % 1). 

The “dedecoration” transformation of summing 
over solvent orientations can be determined by con- 
sidering two sites, 1 and 2, say. We write 

= exp[K’6,r_ + A] . (3) 

Here, K’ is the effective coupling between 1 and 2, 
and A is an additive constant in the free energy gener- 
ated in the dedecoration. Setting u1 = 02 gives 

(JJ _ l)eK = eK’+A (4) 

Similarly, when u1 # u2, 

(p- l)+eJ=eA. (5) 

The model has now been mapped onto a single chain 
N-site Potts model with partition function 

Z(K, J, P, 4) = eNAZp(K’(K, J, P, 4), 4)) (6) 

where Z, is the q-state Potts partition function. Note 
that the solvent degrees of freedom have served simply 
to introduce a non-trivial relationship between the 
actual temperature of the system (here chosen to be 
T = l/K) and the temperature as measured by the ef- 
fective polymer-polymer coupling K’. The analogous 
result was obtained in the work on binary mixtures, 
where the underlying model has Ising variables (A, B) 
instead of Potts variables [7-lo] . 

The properties of the Potts model are easily deter- 
mined from the eigenvalues of the associated transfer 
matrix; h, = eK’ t ~7 - 1, X, = eK’ - 1, where X, is 
the larger. In the limit of long chains, where (h,/h,)N 
< 1, the reduced free energyf=N-l In Z is 

f=A+ln(eK’+q- 1). (7) 

The quantity of most relevance to experiments is 
the fractional helicity 8, which is probed by optical 
rotation studies [4]. From eqs. (1) (4) (5) and (7) 

= aflaK 

= aA/aK t [ 1 t (4 - l)e-K’] -l tlK’/aK 

= (1 t (4 - 1) [eeK t (p - 1)-l eJ-K]}-l . (8) 

The competition between the two types of order, 
polymer-polymer (helical) and polymer-solvent, is 
now apparent. As temperature T drops (K, J + + -), 
0 + 1 (0) for J < (>) K. While there can be no long- 
range order in this one-dimensional system in the ab- 
sence of long-range interactions, we may distinguish 
the ordered and disordered polymer chains based on a 
reasonable choice for 0 (0 < 0 < 1). The temperature 
variation of the helicity is shown in fig. 2 for various 
values of the competition parameter CY = J/K. The 
orientational parameters ~7 and p were set at 50 and 
500 respectively, to represent the different scales of 

e 

0.01 ’ I 

0.0 0.1 0.2 
T= K-’ 

0.3 

Fig. 2. Helicity as a function of temperature from eq. (8) with 
q = 50, p = 500 and several values of J/K, as indicated. 
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Fig. 3. Temperatures at which the helicity equals 0.7 as a func- 

tion of the competition parameter 01 = J/K for 4 = 50, p = 500. 

The high-temperature “coil” state is totally disordered, while 

the low-temperature “coil” state is helically disordered, but 

correlated through polymer-solvent hydrogen bonds. 

orientational freedom of the residues and solvent mol- 
ecules * r . Note the dramatic temperature dependence 
of 0 in the vicinity of the lower transition ((II = 1. l), 
as seen in experiments. The rather gradual decrease in 
8 at the normal transition is a consequence of the low 
directionality chosen for the residue-residue interac- 
tions. It is easy to show that the temperature deriva- 
tive of the 8-T curve scales like [ln(q - l)] 2 at the 
19 = l/2 point. Fig. 3 shows the temperatures at which 
0 = 0.7 (meaning a significantly helical chain) as a func- 
tion of 01, for (Y > 1. In this range, there are two “or- 
dering” temperatures, the lower being the inverted 
transition. These results are very similar to those from 
the work on binary mixtures, in which closed-loop 
coexistence curves come and go as a function of a com- 
petition parameter (see fig. 19 of ref. [S]). 

The inclusion of further-neighbor interactions, ne- 

cessary for a description of the cooperativity of the 
transition, can be formulated in the context of the 
hamiltonian of eq. (1) although the mathematics be- 
comes quite complicated. A simpler, self-consistent 
formulation can be described as follows: As the sub- 

*’ For a related discussion of these ideas, see ref. [ 141. 

lattices order, the free polymer sites between bonded 
segments lose orientational freedom because of the 
geometrical constraints of the latter sites. Thus, the 
entropy lost when they do form a hydrogen bond is 
less than if they did so from within a totally disorder- 
ed chain, while the energy of such a bond is changed 
little. Therefore, the effective 4 of the segments de- 
creases with increasing overall helicity. Within a given 
sublattice, this can be approximated by a self-consist- 
ent 4 of the form, say, 4 = q. - 4 10, where -k, ln(qo 
- 4 1 - 1) is the entropy of formation of a hydrogen 
bond between residues constrained by a fully ordered 
chain [9], and q. reflects the directional freedom in 
the disordered chain. Substituting such an expression 
into the order parameter of a simple one-dimensional 
Potts model, and solving for the self-consistent 0, one 
finds that as the cooperativity parameter ql/qo in- 
creases toward unity, the sharpness of the helix-coil 
transition increases. 

In summary, we see than an extremely simple re- 
presentation of directional interactions in polymer 

systems is achieved through the use of Potts variables 
to describe molecular orientations. The parameters of 
the theory can be related to physical quantities such 
as the energy and entropy of formation of the h) o- 
gen bonds, as in the analogous work on binary mix- 
tures [9] . This type of model is also currently being 
studied in the context of liquid crystal transitions in 
polymeric systems, in which conformational changes 
of the molecules can drive liquid crystalling phase tran 
sitions [ 141. The inclusion of entropic effects through 
the use of q-state Potts spins may also prove useful in 
other problems of polymer conformation, for which 
the Ising model is too restrictive. Possible applications 
include the study of both static and dynamic properties. 

I have benefited from numerous discussions with 
A.N. Berker and J.S. Walker, and thank the authors 
of ref. [ 141 for communication of their results prior 
to publication. The support of a graduate fellowship 
from the Fannie and John Hertz Foundation is grate- 
fully acknowledged. 
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